
Introduction to Robotics
Lecture 12: Numerical Inverse Kinematics



Inverse kinematics

I Forward kinematics: compute the end-effector position (as an
element of SE (3)) from joint angles θi : compute the function

T : joint space→ SE (3) : θ 7→ T (θ)

I Inverse kinematics: compute the (possible) joint angles from
the position of the end-effector: compute the function

T−1 : SE (3)→ joint space : X 7→ θ.

I The inverse kinematics function is often multi-valued.

I When analytic solutions are are or impossible to come by, we
can solve T (θ)− X = 0 for θ numerically.

I We write the previous equation as f (θ)− x = 0, where
x ∈ Rm and f : Rn → Rm.



Newton-Raphson method

I Let xd be the desired end-effector coordinates (the ones we
want to find joint angles θi ’s for). Define g(θ) := f (θ)− xd .
We need to find a zero of g(θ), that is θd so that g(θd) = 0.

I Start with an initial guess θ0 for θd . Using a Taylor expansion,
we can write

xd = f (θd) = f (θ0) +
∂f

∂θ
|θ0︸ ︷︷ ︸

J(θ0)

(θd − θ0)︸ ︷︷ ︸
∆θ

+h.o.t,

where we see that the Jacobian evaluated at θ0, J(θ0),
appears.

I Truncating the expansion, we get

J(θ0)∆θ = xd − f (θ0).

We can use this equation to get an approximation to ∆θ!



Newton-Raphson method

I Assuming that J(θ0) is invertible, we get

∆θ = J−1(θ0)(xd − f (θ0)).

I We can then set
θ1 := θ0 + ∆θ

and iterate the process to obtain a sequence {θ0, θ1, θ2, . . .}
converging to θd .



The case of non-invertible Jacobian: pseudo-inverse

I The Jacobian J(θ0) can fail to be invertible for 2 reasons:
either it is singular (i.e. with det J(θ0) = 0), or it is
non-square.

I In both cases, we can replace the inverse of J by its
pseudo-inverse.

I For J ∈ Rm×n, we denote by J† ∈ Rn×n its Moore-Penrose
pseudo-inverse, or simply pseudo-inverse.

I Consider the linear equation

Jy = z .

It either has many solutions (e.g. if n < m), exactly one
solution (e.g. if m = n and J is full rank), or no solutions
(e.g. if n > m and z is not in the column span of J.)



The case of non-invertible Jacobian: pseudo-inverse

I The solution
y∗ = J†z

is so that

1. If J is square and invertible, y∗ = J−1z .
2. If there are many solutions to Jy = z , then y∗ is the one of

minimal norm. That is, for any other solution ỹ , Jỹ = z , we
have ‖y∗‖ ≤ ‖ỹ‖.

3. If there are no solutions, then y∗ minimizes the norm of the
error

‖Jy∗ − z‖ ≤ ‖Jỹ − z‖

for all ỹ



The case of non-invertible Jacobian: pseudo-inverse

I When J is of full column rank (for m > n, tall matrix), we
have

J† = (J>J)−1J>

I When J is of full row rank (for n < m, wide matrix), we have

J† = J>(JJ>)−1

I When n = m and J is of full rank, J† = J−1.

I If the matrix is not of full rank, remove redundant columns or
rows and apply above formulas



Numerical inverse kinematics

I When J is of full column rank (for m > n, tall matrix), we
have

J† = (J>J)−1J>

I When J is of full row rank (for n < m, wide matrix), we have

J† = J>(JJ>)−1

I When n = m and J is of full rank, J† = J−1.

I If the matrix is not of full rank, remove redundant columns (or
rows)



Numerical inverse kinematics

I The Newton-Raphson algorithm needs to be modified in order
to take into account that X ∈ SE (3), which comes with some
constraints, and is not a general matrix in R4×4.

I Deriving the algorithm exactly requires more advanced
mathematics, which is outside the scope of this course.

I Intuitively, the error vector xd − f (θi ) represents the update
needed to go from the current guess to the desired
end-effector configuration (after being multiplied by the
inverse Jacobian).

I Said otherwise, following the direction (xd − f (θi )) for one
second, starting from f (θi ), should send us to xd (but only
does it approximately, because of the truncation of Taylor
series).

I In our case, we are given X ∈ SE (3), and instead of
computing X − T (θi ), we should compute the twist which, if
followed for one second, sends us from T (θi ) to X .



Numerical inverse kinematics

I Denote this twist by Vb. Recall that X is the desired
configuration, and Tsb(θi ) the current configuration in the
algorithm. The twist that sends us from Tsb(θi ) to X satisfies
by definition

Tsb(θi )e [Vb] = X =: Tsd .

I Hence e [Vb] = T−1
sb (θi )Tsd and we obtain

[Vb] = log(T−1
sb (θi )Tsd)



Numerical inverse kinematics: algorithm

Proceeding by analogy with our previous algorithm, we obtain:

1. Given X = Tsd a desired position for the end-effector. Given
Tsb(θ) the forward kinematics map. Given tolerances εw and
εv . Given an initial guess θ0.

2. While ‖ωb‖ > εw or ‖vb‖ > εv :

2.1 Set [Vb] = log(Tsb(θi )Tsd)

2.2 Set θi+1 := θi + J†b(θi )Vb
2.3 Increment i



Numerical inverse kinematics: zero of SE (3)-valued
functions

I We can derive the algorithm given on the previous slide as
follows: our final goal is to find a ∆θ so that

Tsb(θi + ∆θ) = Tsd ,

and thus have θd . We cannot obtain it at once usually, but we
can write a first order approximation to it and iterate.

I Writing the first order expansion of the left-hand-side, we get

Tsb(θi ) +
∂T

∂θ
∆Θ ' Tsd .



Zeros of SE (3)-valued functions

I An alternative approach, that uses the fact that the function
T is valued in SE (3), is the following: we write

Tsb(θi )e [V] = Tsd

which implies that [V] = log(T−1
sb (θi )Tsd).

I Now we are after ∆θ as described in the previous slide, and
we decided to approximate it up to first order. Hence we
expand the exponential, up to first order, to get

Tsb(θi )(I + [V]) + h.o.t. = Tsd



Zeros of SE (3)-valued functions

I Multiplying the last equation by T−1
sb on the left, and similarly

for the equation Tsb(θi ) + ∂T
∂θ ∆θ ' Tsd , we get

I + [V] = T−1
sb Tsd

I + Jb∆θ = T−1
sb Tsd

where we recall that the body Jacobian is exactly T−1
sb

∂T
∂θ

I We conclude that Jb∆θ = [V] and thus ∆θ = J†b[V], where
[V] = log(T−1

sb Tsd). For a higher order approximation, we
should keep more terms in the expansion, but then we need to
solve quadratic equations (in V and ∆θ).

I This matches the algorithm given earlier.

I Can you write an iterative algorithm that uses the space
Jacobian instead of the body Jacobian?



Inverse Velocity Kinematics

I Assume you want a robot’s end-effector to follow a trajectory
Tsb(t).

I One way to do it is to discretize the trajectory Tsb(tk) and
compute θk to that

T (θk) = Tsb(tk).

If doing so, we need to make sure that θk and θk+1 are close
to each other, since there may be many solutions to that
equation. One possibility is to initialize with the previous
value: set θ0

k+1 = θk .

I Equivalently, we can feed velocities to the joints evaluated
according to

θ̇(tk) ' θ(tk)− θ(tk−1)

(tk − tk−1)

I This approach relies on the previously seen method for
computing the inverse kinematics


