Introduction to Robotics
Lecture 12: Numerical Inverse Kinematics



Inverse kinematics

» Forward kinematics: compute the end-effector position (as an
element of SE(3)) from joint angles #;: compute the function

T : joint space — SE(3) : 6 — T(0)

» Inverse kinematics: compute the (possible) joint angles from
the position of the end-effector: compute the function

T~1: SE(3) — joint space : X 6.

» The inverse kinematics function is often multi-valued.

» When analytic solutions are are or impossible to come by, we
can solve T(8) — X = 0 for 6 numerically.

» We write the previous equation as f(6) — x = 0, where
x €R™and f: R" - R™.



Newton-Raphson method

» Let x4 be the desired end-effector coordinates (the ones we
want to find joint angles 6;'s for). Define g(6) := f(6) — xq.
We need to find a zero of g(6), that is 64 so that g(64) = 0.

» Start with an initial guess 6° for 6. Using a Taylor expansion,
we can write

of
xqg = f(0q) = F(6°) + priG
——
J(69)

By — 6°) +h.o.t,
N—_——
A0

where we see that the Jacobian evaluated at 6°, J(6°),
appears.

» Truncating the expansion, we get
J(6°)A0 = x4 — £(6°).

We can use this equation to get an approximation to Af!



Newton-Raphson method

zqa— f(O) A

6o 61 Oa ]

—i

'
1
Al = ("'Tflm,v) (zq — f(Bp))

» Assuming that J(0°) is invertible, we get
A0 = J7HO) (xq — F(0)).

» We can then set
0! = 0% + NG

and iterate the process to obtain a sequence {6°,6',62, ...}
converging to 04.



The case of non-invertible Jacobian: pseudo-inverse

» The Jacobian J(6°) can fail to be invertible for 2 reasons:
either it is singular (i.e. with det J(6°) = 0), or it is
non-square.

» In both cases, we can replace the inverse of J by its
pseudo-inverse.

» For J € R™*" we denote by JT € R"*" its Moore-Penrose
pseudo-inverse, or simply pseudo-inverse.

» Consider the linear equation
Jy =z

It either has many solutions (e.g. if n < m), exactly one
solution (e.g. if m = n and J is full rank), or no solutions
(e.g. if n> m and z is not in the column span of J.)



The case of non-invertible Jacobian: pseudo-inverse

» The solution
y = Jiz

is so that
1. If Jis square and invertible, y* = J~1z.
2. If there are many solutions to Jy = z, then y* is the one of
minimal norm. That is, for any other solution y, Jy = z, we

have [|y*[| < |7[].
3. If there are no solutions, then y* minimizes the norm of the

error
[y =z < [y — 2]

for all y



The case of non-invertible Jacobian: pseudo-inverse

v

When J is of full column rank (for m > n, tall matrix), we
have
J=uTn "

v

When J is of full row rank (for n < m, wide matrix), we have
JI=JT (")

When n = m and J is of full rank, Jt = J~1.

If the matrix is not of full rank, remove redundant columns or
rows and apply above formulas

v

v



Numerical inverse kinematics

v

When J is of full column rank (for m > n, tall matrix), we
have
J=uT Ut

v

When J is of full row rank (for n < m, wide matrix), we have
J=JT (")t

When n = m and J is of full rank, Jt = J~1.

If the matrix is not of full rank, remove redundant columns (or
rows)

v

v



Numerical inverse kinematics

>

The Newton-Raphson algorithm needs to be modified in order
to take into account that X € SE(3), which comes with some
constraints, and is not a general matrix in R**4.

Deriving the algorithm exactly requires more advanced
mathematics, which is outside the scope of this course.

Intuitively, the error vector xg — f(6') represents the update
needed to go from the current guess to the desired
end-effector configuration (after being multiplied by the
inverse Jacobian).

Said otherwise, following the direction (xq4 — f(6')) for one
second, starting from ('), should send us to x4 (but only
does it approximately, because of the truncation of Taylor
series).

In our case, we are given X € SE(3), and instead of
computing X — T(6'), we should compute the twist which, if

followed for one second, sends us from T(6') to X.



Numerical inverse kinematics

» Denote this twist by V. Recall that X is the desired
configuration, and T,(6") the current configuration in the
algorithm. The twist that sends us from Ty, (67) to X satisfies
by definition

Top(0))elel = X = T 4.

» Hence els] = T,1(0") Toy and we obtain

[Vo] = log( T, (07) Tea)



Numerical inverse kinematics: algorithm

Proceeding by analogy with our previous algorithm, we obtain:

1. Given X = T4y a desired position for the end-effector. Given
Tsb(0) the forward kinematics map. Given tolerances €, and
ey. Given an initial guess 6°.

2. While [Jwp|| > ew or ||vp]| > &yt
2.1 Set [Vb] = |Og( st(ei)Tsd)
2.2 Set 0"t = 0" + JI(6")V
2.3 Increment i



Numerical inverse kinematics: zero of SE(3)-valued
functions

» We can derive the algorithm given on the previous slide as
follows: our final goal is to find a Af so that

Top(0" + A0) = Toy,

and thus have #9. We cannot obtain it at once usually, but we
can write a first order approximation to it and iterate.

» Writing the first order expansion of the left-hand-side, we get

; oT
st(el) + %A@ ~ Tsd.



Zeros of SE(3)-valued functions

» An alternative approach, that uses the fact that the function
T is valued in SE(3), is the following: we write

Top(0) e = Ty

which implies that [V] = log( T, (6") Tsq).
» Now we are after Af as described in the previous slide, and

we decided to approximate it up to first order. Hence we
expand the exponential, up to first order, to get

Top(0) (1 + [V]) + h.o.t. = Tey



Zeros of SE(3)-valued functions

» Multiplying the last equation by Tszl on the left, and similarly
for the equation T4 (0') + %—EAH ~ Tsq, We get

I+ V] =T, Tu
[+ JpA0 = T, Tey
T -19T
where we recall that the body Jacobian is exactly T_,~ 54
» We conclude that J,Af = [V] and thus Af = JZ[V], where
[V] = log( Tszl Tsd). For a higher order approximation, we
should keep more terms in the expansion, but then we need to
solve quadratic equations (in V and A#).
» This matches the algorithm given earlier.

» Can you write an iterative algorithm that uses the space
Jacobian instead of the body Jacobian?



Inverse Velocity Kinematics

» Assume you want a robot’s end-effector to follow a trajectory
st(t).

» One way to do it is to discretize the trajectory T (tx) and
compute 6 to that

T(Qk) = st(tk).

If doing so, we need to make sure that 6 and 61 are close
to each other, since there may be many solutions to that
equation. One possibility is to initialize with the previous
value: set 6, = 0.

» Equivalently, we can feed velocities to the joints evaluated
according to
: Q(tk) — Q(tk_l)
O(ty) ~ ————F——=
(tk — tk—1)

» This approach relies on the previously seen method for
computing the inverse kinematics



