Introduction to Robotics
 Lecture 12: Numerical Inverse Kinematics

Inverse kinematics

- Forward kinematics: compute the end-effector position (as an element of $S E(3)$) from joint angles θ_{i} : compute the function

$$
T: \text { joint space } \rightarrow S E(3): \theta \mapsto T(\theta)
$$

- Inverse kinematics: compute the (possible) joint angles from the position of the end-effector: compute the function

$$
T^{-1}: S E(3) \rightarrow \text { joint space }: X \mapsto \theta
$$

- The inverse kinematics function is often multi-valued.
- When analytic solutions are are or impossible to come by, we can solve $T(\theta)-X=0$ for θ numerically.
- We write the previous equation as $f(\theta)-x=0$, where $x \in \mathbb{R}^{m}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Newton-Raphson method

- Let x_{d} be the desired end-effector coordinates (the ones we want to find joint angles θ_{i} 's for). Define $g(\theta):=f(\theta)-x_{d}$. We need to find a zero of $g(\theta)$, that is θ_{d} so that $g\left(\theta_{d}\right)=0$.
- Start with an initial guess θ^{0} for θ_{d}. Using a Taylor expansion, we can write

$$
x_{d}=f\left(\theta_{d}\right)=f\left(\theta^{0}\right)+\left.\underbrace{\frac{\partial f}{\partial \theta}}_{J\left(\theta^{0}\right)}\right|_{\theta^{0}}(\underbrace{\left(\theta_{d}-\theta^{0}\right)}_{\Delta \theta}+\text { h.o.t }
$$

where we see that the Jacobian evaluated at $\theta^{0}, J\left(\theta^{0}\right)$, appears.

- Truncating the expansion, we get

$$
J\left(\theta^{0}\right) \Delta \theta=x_{d}-f\left(\theta^{0}\right)
$$

We can use this equation to get an approximation to $\Delta \theta$!

Newton-Raphson method

- Assuming that $J\left(\theta^{0}\right)$ is invertible, we get

$$
\Delta \theta=J^{-1}\left(\theta^{0}\right)\left(x_{d}-f\left(\theta^{0}\right)\right)
$$

- We can then set

$$
\theta^{1}:=\theta^{0}+\Delta \theta
$$

and iterate the process to obtain a sequence $\left\{\theta^{0}, \theta^{1}, \theta^{2}, \ldots\right\}$ converging to θ_{d}.

The case of non-invertible Jacobian: pseudo-inverse

- The Jacobian $J\left(\theta^{0}\right)$ can fail to be invertible for 2 reasons: either it is singular (i.e. with det $J\left(\theta^{0}\right)=0$), or it is non-square.
- In both cases, we can replace the inverse of J by its pseudo-inverse.
- For $J \in \mathbb{R}^{m \times n}$, we denote by $J^{\dagger} \in \mathbb{R}^{n \times n}$ its Moore-Penrose pseudo-inverse, or simply pseudo-inverse.
- Consider the linear equation

$$
J y=z
$$

It either has many solutions (e.g. if $n<m$), exactly one solution (e.g. if $m=n$ and J is full rank), or no solutions (e.g. if $n>m$ and z is not in the column span of J.)

The case of non-invertible Jacobian: pseudo-inverse

- The solution

$$
y^{*}=J^{\dagger} z
$$

is so that

1. If J is square and invertible, $y^{*}=J^{-1} z$.
2. If there are many solutions to $J y=z$, then y^{*} is the one of minimal norm. That is, for any other solution $\tilde{y}, J \tilde{y}=z$, we have $\left\|y^{*}\right\| \leq\|\tilde{y}\|$.
3. If there are no solutions, then y^{*} minimizes the norm of the error

$$
\left\|J y^{*}-z\right\| \leq\|J \tilde{y}-z\|
$$

for all \tilde{y}

The case of non-invertible Jacobian: pseudo-inverse

- When J is of full column rank (for $m>n$, tall matrix), we have

$$
J^{\dagger}=\left(J^{\top} J\right)^{-1} J^{\top}
$$

- When J is of full row rank (for $n<m$, wide matrix), we have

$$
J^{\dagger}=J^{\top}\left(J J^{\top}\right)^{-1}
$$

- When $n=m$ and J is of full rank, $J^{\dagger}=J^{-1}$.
- If the matrix is not of full rank, remove redundant columns or rows and apply above formulas

Numerical inverse kinematics

- When J is of full column rank (for $m>n$, tall matrix), we have

$$
J^{\dagger}=\left(J^{\top} J\right)^{-1} J^{\top}
$$

- When J is of full row rank (for $n<m$, wide matrix), we have

$$
J^{\dagger}=J^{\top}\left(J J^{\top}\right)^{-1}
$$

- When $n=m$ and J is of full rank, $J^{\dagger}=J^{-1}$.
- If the matrix is not of full rank, remove redundant columns (or rows)

Numerical inverse kinematics

- The Newton-Raphson algorithm needs to be modified in order to take into account that $X \in S E(3)$, which comes with some constraints, and is not a general matrix in $\mathbb{R}^{4 \times 4}$.
- Deriving the algorithm exactly requires more advanced mathematics, which is outside the scope of this course.
- Intuitively, the error vector $x_{d}-f\left(\theta^{i}\right)$ represents the update needed to go from the current guess to the desired end-effector configuration (after being multiplied by the inverse Jacobian).
- Said otherwise, following the direction $\left(x_{d}-f\left(\theta^{i}\right)\right)$ for one second, starting from $f\left(\theta^{i}\right)$, should send us to x_{d} (but only does it approximately, because of the truncation of Taylor series).
- In our case, we are given $X \in S E(3)$, and instead of computing $X-T\left(\theta^{i}\right)$, we should compute the twist which, if followed for one second, sends us from $T\left(\theta^{i}\right)$ to X.

Numerical inverse kinematics

- Denote this twist by \mathcal{V}_{b}. Recall that X is the desired configuration, and $T_{s b}\left(\theta^{i}\right)$ the current configuration in the algorithm. The twist that sends us from $T_{s b}\left(\theta^{i}\right)$ to X satisfies by definition

$$
T_{s b}\left(\theta^{i}\right) e^{\left[\mathcal{V}_{b}\right]}=X=: T_{s d}
$$

- Hence $e^{\left[\mathcal{V}_{b}\right]}=T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}$ and we obtain

$$
\left[\mathcal{V}_{b}\right]=\log \left(T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}\right)
$$

Numerical inverse kinematics: algorithm

Proceeding by analogy with our previous algorithm, we obtain:

1. Given $X=T_{\text {sd }}$ a desired position for the end-effector. Given $T_{s b}(\theta)$ the forward kinematics map. Given tolerances ε_{w} and ε_{v}. Given an initial guess θ^{0}.
2. While $\left\|\omega_{b}\right\|>\varepsilon_{w}$ or $\left\|v_{b}\right\|>\varepsilon_{v}$:
2.1 Set $\left[\mathcal{V}_{b}\right]=\log \left(T_{s b}\left(\theta^{i}\right) T_{s d}\right)$
2.2 Set $\theta^{i+1}:=\theta^{i}+J_{b}^{\dagger}\left(\theta^{i}\right) \mathcal{V}_{b}$
2.3 Increment i

Numerical inverse kinematics: zero of $S E(3)$-valued functions

- We can derive the algorithm given on the previous slide as follows: our final goal is to find a $\Delta \theta$ so that

$$
T_{s b}\left(\theta^{i}+\Delta \theta\right)=T_{s d}
$$

and thus have θ^{d}. We cannot obtain it at once usually, but we can write a first order approximation to it and iterate.

- Writing the first order expansion of the left-hand-side, we get

$$
T_{s b}\left(\theta^{i}\right)+\frac{\partial T}{\partial \theta} \Delta \Theta \simeq T_{s d}
$$

Zeros of SE(3)-valued functions

- An alternative approach, that uses the fact that the function T is valued in $S E(3)$, is the following: we write

$$
T_{s b}\left(\theta^{i}\right) e^{[\mathcal{V}]}=T_{s d}
$$

which implies that $[\mathcal{V}]=\log \left(T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}\right)$.

- Now we are after $\Delta \theta$ as described in the previous slide, and we decided to approximate it up to first order. Hence we expand the exponential, up to first order, to get

$$
T_{s b}\left(\theta^{i}\right)(I+[\mathcal{V}])+\text { h.o.t. }=T_{s d}
$$

Zeros of SE(3)-valued functions

- Multiplying the last equation by $T_{s b}^{-1}$ on the left, and similarly for the equation $T_{s b}\left(\theta^{i}\right)+\frac{\partial T}{\partial \theta} \Delta \theta \simeq T_{s d}$, we get

$$
\begin{aligned}
I+[\mathcal{V}] & =T_{s b}^{-1} T_{s d} \\
I+J_{b} \Delta \theta & =T_{s b}^{-1} T_{s d}
\end{aligned}
$$

where we recall that the body Jacobian is exactly $T_{s b}^{-1} \frac{\partial T}{\partial \theta}$

- We conclude that $J_{b} \Delta \theta=[\mathcal{V}]$ and thus $\Delta \theta=J_{b}^{\dagger}[\mathcal{V}]$, where $[\mathcal{V}]=\log \left(T_{s b}^{-1} T_{s d}\right)$. For a higher order approximation, we should keep more terms in the expansion, but then we need to solve quadratic equations (in \mathcal{V} and $\Delta \theta$).
- This matches the algorithm given earlier.
- Can you write an iterative algorithm that uses the space Jacobian instead of the body Jacobian?

Inverse Velocity Kinematics

- Assume you want a robot's end-effector to follow a trajectory $T_{s b}(t)$.
- One way to do it is to discretize the trajectory $T_{s b}\left(t_{k}\right)$ and compute θ_{k} to that

$$
T\left(\theta_{k}\right)=T_{s b}\left(t_{k}\right)
$$

If doing so, we need to make sure that θ_{k} and θ_{k+1} are close to each other, since there may be many solutions to that equation. One possibility is to initialize with the previous value: set $\theta_{k+1}^{0}=\theta_{k}$.

- Equivalently, we can feed velocities to the joints evaluated according to

$$
\dot{\theta}\left(t_{k}\right) \simeq \frac{\theta\left(t_{k}\right)-\theta\left(t_{k-1}\right)}{\left(t_{k}-t_{k-1}\right)}
$$

- This approach relies on the previously seen method for computing the inverse kinematics

