Introduction to Robotics
Lecture 11: Inverse Kinematics




Inverse kinematics

Workspace

(a) A workspace, and lefty and righty (b) Geometric solution.
configurations

e Forward kinematics: compute the end-effector position (as an element of SE(3)) from
joint angles 0;: compute the function

T : joint space — SE(3) : 6 — T(0)

e Inverse kinematics: compute the (possible) joint angles from the position of the
end-effector: compute the function

T~ : SE(3) — joint space : X ~— 0.

e The inverse kinematics function is often multi-valued. 2



The two argument arctan function: atan?2

e Returns the angle between x-axis and vector (x, y) in the plane.
e Unline atan, which is valued in (—7/2,7/2], atan2 is valued in (—m,7].

e It is a default trig. function in most programming languages.

atan(y/x) if x>0
atan(y/x)+7mif x<O0andy >0
atan(y/x) —7mif x<O0andy <0
w/2if x=0andy >0

—m/2if x=0andy <0

atan2(y, x) =

undefined if x=0and y =0



Analytic inverse kinematics

Workspace

(a) A workspace, and lefty and righty (b) Geometric solution.

configurations.

e Recall: Law of cosines
c® = a° + b> — 2abcos(n),
where a, b, ¢ are the lengths of the edges of the triangle, and «, 3,y the angles
opposite a, b and c respectively.
e We have L2 + 13 —2L1l5cos 3 = x> + y°. It follows

(LB -X—y
[ = cos (—2L1L2 \



Analytic inverse kinematics

(a) A workspace, and lefty and righty (b) Geometric solution

configurations.

. . _ L2—L2+ 2+ 2
Similarly, o = cos™* (#

2014/ x24y2

e Using atan2 function, we get v = atan2(y, x).
e The two possible solutions are

Oh=y—a,pb=m—Fand b1 =~v+a,b=0—m=

If x* + y? ¢ [L1 — Lo, L1 + L2], then no solutions exist.



Analytic inverse kinematics

e In the 2R robot example, there were 2 DOFs for the end-effector, and 2 joint angles.
This implied that there was a finite number of solutions.

e If there are more joint angles than DOFs of the end-effector, there may be an infinite
number of solutions.

e We will mostly look at cases where #DOFs of end-effector = # joint angles.

e We thus assume in general
T(6) = elS1101 || [Selfs g

and we are given an end-effector pose X € SE(3). We need to find T~'(X).



Analytic inverse kinematics: Euler angles

e Fuler angles are useful in evaluating inverse kinematic maps analytically.

e The ZYX Euler angles can be used to represent an arbitrary rotation in R* as follows:

R(, B,7) = Rot(2, a)Rot(§, B)Rot(%,7)
with a,v € (—m, 7] and 8 € [-7/2,7/2) and

cosa —sina 0 cosB 0 sinf
Rot(z, ) = | sina  cosa 0 |, Rot(y,3) = 0 1 0
0 0 1 —sinf3 0 cosp
1 0 0
Rot(x,7)=| 0 cosy —sin~y

0 siny  cos~y



Analytic inverse kinematics: Euler angles

e We now look at the inverse problem: given R € SO(3), can we always find «, 3, so
that R(«, 8,7) = R? The answer is yes, and we now show how:

e Explicitly, we have
CaCg  CaSpSy — SaCy CaSpCy + S S~

R(a,B,7) = | SaCs  SaSaSy + CaCy  S4SgCy — €4S,
—s3 €3Sy c3Cy

e Denote by rj the jjthe entry of R. We can first look at r3; and articulate our answer
around its value



Analytic inverse kinematics: Euler angles

CaCg  CaSESy — SaCy CaSpCy + SaSy
R(a,3,7) = | SaC3  SaSgSy + CaCy  SaSaCy — CoSs,
—Sg C3S~ CBCH

1. If 31 # +1 set 8 = atan2(—rs1, \/rd + r4), a = atan2(r1, n1) and v = atan2(rsz, r33).
2. If 31 = —1, then 8 = /2. There exists an infinite number of solutions for « and ~.
One such solution is & = 0,y = atan2(r2, r»)

3. If 31 =1, then 8 = —m /2. There exists an infinite number of solutions for o and +.
One such solution is o = 0,y = — atan2(ri2, r2)



Analytic inverse kinematics: 6R Puma arm

e PUMA stands for Programmable Universal Machine for Assembly
e Industrial robot arm, developed for car manufacturing in late 1970’s. Still widely used
today.
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Analytic inverse kinematics: 6R Puma arm

2U

Zero position:

1. Two shoulder joint intersect orthogonally at a common point. Joint axis 1 is aligned
with Z, joint axis 2 with p.

2. Joint axis 3 (elbow) in Ro, o plane and parallel with joint axis 2

3. Joint 4-5-6 form a wrist. They intersect orthogonally at a common point and are
aligned to the 2y, yo and X directions respectively.
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Analytic inverse kinematics: 6R Puma arm

e The inverse kinematics problem can be split into inverse orientation and position

problems (Not true for all mechanisms!)
Let p = (px, py, pz) be position of the wrist center.
Assume (px, py) # (0,0) We have that 6; = atan2(py, px).

When (px, py) = (0,0), we are in a singular configuration, there are infinitely many
solutions for 6.
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Analytic inverse kinematics: 6R Puma arm

Yo

e Finding 6> and 03 reduces to IK for planar 2R robot.
e Applying what we had derived before to this case, we get

costly = (r* 4+ p2 — a3 — a3)/(2axa3) = D

We then have 03 = atan2(+/1 — D?, D)
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Analytic inverse kinematics: 6R Puma arm

e We obtain for 6>
0> = atan2(p;, r) — atan2(asss, a» + asc3)

e Recall that X = el1101 ... l561% 01 and we know M and X and have just figured out
what 61, 0>, 03 are. We thus need to solve

el54104 [S5105 [Sel0 _ [—S3]03 o —[52102 o —~[51101 yp g1
where ws = (0,0,1),ws = (0,1,0) and we = (1,0, 0).
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Analytic inverse kinematics: 6R Puma arm

Yo

e Denote by R the rotation component of el 53103 g~ [52102 o= [S1101 XAJ =1 We thus need
to find 64, 05,06 so that

F\’Ol‘(f7 94):?01.’()77 95)R0t(>?7 96) =R.

This is exactly the ZYX Euler angles problem we have solved.
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