## Introduction to Robotics

Lecture 11: Inverse Kinematics

## Inverse kinematics


(a) A workspace, and lefty and righty configurations.

- Forward kinematics: compute the end-effector position (as an element of $S E(3)$ ) from joint angles $\theta_{i}$ : compute the function

$$
T: \text { joint space } \rightarrow S E(3): \theta \mapsto T(\theta)
$$

- Inverse kinematics: compute the (possible) joint angles from the position of the end-effector: compute the function

$$
T^{-1}: S E(3) \rightarrow \text { joint space }: X \mapsto \theta
$$

- The inverse kinematics function is often multi-valued.
- Returns the angle between $x$-axis and vector $(x, y)$ in the plane.
- Unline atan, which is valued in $(-\pi / 2, \pi / 2]$, atan2 is valued in $(-\pi, \pi]$.
- It is a default trig. function in most programming languages.

$$
\operatorname{atan} 2(y, x)=\left\{\begin{array}{rr}
\operatorname{atan}(y / x) \text { if } & x>0 \\
\operatorname{atan}(y / x)+\pi \text { if } & x<0 \text { and } y \geq 0 \\
\operatorname{atan}(y / x)-\pi \text { if } & x<0 \text { and } y<0 \\
\pi / 2 \text { if } & x=0 \text { and } y>0 \\
-\pi / 2 \text { if } & x=0 \text { and } y<0 \\
\text { undefined if } & x=0 \text { and } y=0
\end{array}\right.
$$

## Analytic inverse kinematics


(a) A workspace, and lefty and righty

- Recall: Law of cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

where $a, b, c$ are the lengths of the edges of the triangle, and $\alpha, \beta, \gamma$ the angles opposite $a, b$ and $c$ respectively.

- We have $L_{1}^{2}+L_{2}^{2}-2 L_{1} L_{2} \cos \beta=x^{2}+y^{2}$. It follows

$$
\beta=\cos ^{-1}\left(\frac{L_{1}^{2}+L_{2}^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right)
$$

## Analytic inverse kinematics


(a) A workspace, and lefty and righty
(b) Geometric solution. configurations.

- Similarly, $\alpha=\cos ^{-1}\left(\frac{L_{1}^{2}-L_{2}^{2}+x^{2}+y^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right)$
- Using atan2 function, we get $\gamma=\operatorname{atan} 2(y, x)$.
- The two possible solutions are

$$
\theta_{1}=\gamma-\alpha, \theta_{2}=\pi-\beta \text { and } \theta_{1}=\gamma+\alpha, \theta_{2}=\beta-\pi
$$

- If $x^{2}+y^{2} \notin\left[L_{1}-L_{2}, L_{1}+L_{2}\right]$, then no solutions exist.


## Analytic inverse kinematics

- In the 2 R robot example, there were 2 DOFs for the end-effector, and 2 joint angles.

This implied that there was a finite number of solutions.

- If there are more joint angles than DOFs of the end-effector, there may be an infinite number of solutions.
- We will mostly look at cases where \#DOFs of end-effector $=\#$ joint angles.
- We thus assume in general

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M
$$

and we are given an end-effector pose $X \in S E(3)$. We need to find $T^{-1}(X)$.

## Analytic inverse kinematics: Euler angles

- Euler angles are useful in evaluating inverse kinematic maps analytically.
- The ZYX Euler angles can be used to represent an arbitrary rotation in $\mathbb{R}^{3}$ as follows:

$$
R(\alpha, \beta, \gamma)=\operatorname{Rot}(\hat{z}, \alpha) \operatorname{Rot}(\hat{y}, \beta) \operatorname{Rot}(\hat{x}, \gamma)
$$

with $\alpha, \gamma \in(-\pi, \pi]$ and $\beta \in[-\pi / 2, \pi / 2)$ and

$$
\begin{gathered}
\operatorname{Rot}(\hat{\mathrm{z}}, \alpha)=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right], \quad \operatorname{Rot}(\hat{\mathrm{y}}, \beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right], \\
\operatorname{Rot}(\hat{\mathrm{x}}, \gamma)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right] .
\end{gathered}
$$

## Analytic inverse kinematics: Euler angles

- We now look at the inverse problem: given $R \in S O(3)$, can we always find $\alpha, \beta, \gamma$ so that $R(\alpha, \beta, \gamma)=R$ ? The answer is yes, and we now show how:
- Explicitly, we have

$$
R(\alpha, \beta, \gamma)=\left[\begin{array}{ccc}
\mathrm{c}_{\alpha} \mathrm{c}_{\beta} & \mathrm{c}_{\alpha} \mathrm{s}_{\beta} \mathrm{s}_{\gamma}-\mathrm{s}_{\alpha} \mathrm{c}_{\gamma} & \mathrm{c}_{\alpha} \mathrm{s}_{\beta} \mathrm{c}_{\gamma}+\mathrm{s}_{\alpha} \mathrm{s}_{\gamma} \\
\mathrm{s}_{\alpha} \mathrm{c}_{\beta} & \mathrm{s}_{\alpha} \mathrm{s}_{\beta} \mathrm{s}_{\gamma}+\mathrm{c}_{\alpha} \mathrm{c}_{\gamma} & \mathrm{s}_{\alpha} \mathrm{s}_{\beta} \mathrm{c}_{\gamma}-\mathrm{c}_{\alpha} \mathrm{s}_{\gamma} \\
-\mathrm{s}_{\beta} & \mathrm{c}_{\beta} \mathrm{s}_{\gamma} & \mathrm{c}_{\beta} \mathrm{c}_{\gamma}
\end{array}\right]
$$

- Denote by $r_{i j}$ the $i j$ the entry of $R$. We can first look at $r_{31}$ and articulate our answer around its value


## Analytic inverse kinematics: Euler angles

$$
R(\alpha, \beta, \gamma)=\left[\begin{array}{ccc}
\mathrm{c}_{\alpha} \mathrm{c}_{\beta} & \mathrm{c}_{\alpha} \mathrm{s}_{\beta} \mathrm{s}_{\gamma}-\mathrm{s}_{\alpha} \mathrm{c}_{\gamma} & \mathrm{c}_{\alpha} \mathrm{s}_{\beta} \mathrm{c}_{\gamma}+\mathrm{s}_{\alpha} \mathrm{s}_{\gamma} \\
\mathrm{s}_{\alpha} \mathrm{c}_{\beta} & \mathrm{s}_{\alpha} \mathrm{s}_{\beta} \mathrm{s}_{\gamma}+\mathrm{c}_{\alpha} \mathrm{c}_{\gamma} & \mathrm{s}_{\alpha} \mathrm{s}_{\beta} \mathrm{c}_{\gamma}-\mathrm{c}_{\alpha} \mathrm{s}_{\gamma} \\
-\mathrm{s}_{\beta} & \mathrm{c}_{\beta} \mathrm{s}_{\gamma} & \mathrm{c}_{\beta} \mathrm{c}_{\gamma}
\end{array}\right]
$$

1. If $r_{31} \neq \pm 1$ set $\beta=\operatorname{atan} 2\left(-r_{31}, \sqrt{r_{11}^{2}+r_{21}^{2}}\right), \alpha=\operatorname{atan} 2\left(r_{21}, r_{11}\right)$ and $\gamma=\operatorname{atan} 2\left(r_{32}, r_{33}\right)$.
2. If $r_{31}=-1$, then $\beta=\pi / 2$. There exists an infinite number of solutions for $\alpha$ and $\gamma$. One such solution is $\alpha=0, \gamma=\operatorname{atan} 2\left(r_{12}, r_{22}\right)$
3. If $r_{31}=1$, then $\beta=-\pi / 2$. There exists an infinite number of solutions for $\alpha$ and $\gamma$. One such solution is $\alpha=0, \gamma=-\operatorname{atan} 2\left(r_{12}, r_{22}\right)$

## Analytic inverse kinematics: 6R Puma arm



- PUMA stands for Programmable Universal Machine for Assembly
- Industrial robot arm, developed for car manufacturing in late 1970's. Still widely used today.


## Analytic inverse kinematics: 6R Puma arm



Zero position:

1. Two shoulder joint intersect orthogonally at a common point. Joint axis 1 is aligned with $\hat{z}_{0}$, joint axis 2 with $\hat{y}_{0}$.
2. Joint axis 3 (elbow) in $\hat{x}_{0}, \hat{y}_{0}$ plane and parallel with joint axis 2
3. Joint 4-5-6 form a wrist. They intersect orthogonally at a common point and are aligned to the $\hat{z}_{0}, \hat{y}_{0}$ and $\hat{x}_{0}$ directions respectively.

## Analytic inverse kinematics: 6R Puma arm



- The inverse kinematics problem can be split into inverse orientation and position problems (Not true for all mechanisms!)
- Let $p=\left(p_{x}, p_{y}, p_{z}\right)$ be position of the wrist center.
- Assume $\left(p_{x}, p_{y}\right) \neq(0,0)$ We have that $\theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right)$.
- When $\left(p_{x}, p_{y}\right)=(0,0)$, we are in a singular configuration, there are infinitely many solutions for $\theta_{1}$.


## Analytic inverse kinematics: 6R Puma arm



- Finding $\theta_{2}$ and $\theta_{3}$ reduces to IK for planar 2R robot.
- Applying what we had derived before to this case, we get

$$
\cos \theta_{3}=\left(r^{2}+p_{z}^{2}-a_{2}^{2}-a_{3}^{2}\right) /\left(2 a_{2} a_{3}\right)=D
$$

We then have $\theta_{3}=\operatorname{atan} 2\left(\sqrt{1-D^{2}}, D\right)$

## Analytic inverse kinematics: 6R Puma arm



- We obtain for $\theta_{2}$

$$
\theta_{2}=\operatorname{atan} 2\left(p_{2}, r\right)-\operatorname{atan} 2\left(a_{3} s_{3}, a_{2}+a_{3} c_{3}\right)
$$

- Recall that $X=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M$, and we know $M$ and $X$ and have just figured out what $\theta_{1}, \theta_{2}, \theta_{3}$ are. We thus need to solve

$$
e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}}=e^{\left[-\mathcal{S}_{3}\right] \theta_{3}} e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} X M^{-1}
$$

where $\omega_{4}=(0,0,1), \omega_{5}=(0,1,0)$ and $\omega_{6}=(1,0,0)$.

## Analytic inverse kinematics: 6R Puma arm



- Denote by $R$ the rotation component of $e^{\left[-\mathcal{S}_{3}\right] \theta_{3}} e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} X M^{-1}$. We thus need to find $\theta_{4}, \theta_{5}, \theta_{6}$ so that

$$
\operatorname{Rot}\left(\hat{z}, \theta_{4}\right) \operatorname{Rot}\left(\hat{y}, \theta_{5}\right) \operatorname{Rot}\left(\hat{x}, \theta_{6}\right)=R .
$$

This is exactly the ZYX Euler angles problem we have solved.

