
Introduction to Robotics

Lecture 11: Inverse Kinematics
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Inverse kinematics

• Forward kinematics: compute the end-effector position (as an element of SE(3)) from

joint angles θi : compute the function

T : joint space→ SE(3) : θ 7→ T (θ)

• Inverse kinematics: compute the (possible) joint angles from the position of the

end-effector: compute the function

T−1 : SE(3)→ joint space : X 7→ θ.

• The inverse kinematics function is often multi-valued. 2



The two argument arctan function: atan2

• Returns the angle between x-axis and vector (x , y) in the plane.

• Unline atan, which is valued in (−π/2, π/2], atan2 is valued in (−π, π].

• It is a default trig. function in most programming languages.

atan2(y , x) =



atan(y/x) if x > 0

atan(y/x) + π if x < 0 and y ≥ 0

atan(y/x)− π if x < 0 and y < 0

π/2 if x = 0 and y > 0

−π/2 if x = 0 and y < 0

undefined if x = 0 and y = 0
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Analytic inverse kinematics

• Recall: Law of cosines

c2 = a2 + b2 − 2ab cos(γ),

where a, b, c are the lengths of the edges of the triangle, and α, β, γ the angles

opposite a, b and c respectively.

• We have L2
1 + L2

2 − 2L1L2 cosβ = x2 + y 2. It follows

β = cos−1

(
L2
1 + L2

2 − x2 − y 2

2L1L2

)
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Analytic inverse kinematics

• Similarly, α = cos−1

(
L21−L22+x2+y2

2L1

√
x2+y2

)
• Using atan2 function, we get γ = atan2(y , x).

• The two possible solutions are

θ1 = γ − α, θ2 = π − β and θ1 = γ + α, θ2 = β − π

• If x2 + y 2 /∈ [L1 − L2, L1 + L2], then no solutions exist.
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Analytic inverse kinematics

• In the 2R robot example, there were 2 DOFs for the end-effector, and 2 joint angles.

This implied that there was a finite number of solutions.

• If there are more joint angles than DOFs of the end-effector, there may be an infinite

number of solutions.

• We will mostly look at cases where #DOFs of end-effector = # joint angles.

• We thus assume in general

T (θ) = e [S1]θ1 · · · e [S6]θ6M

and we are given an end-effector pose X ∈ SE(3). We need to find T−1(X ).
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Analytic inverse kinematics: Euler angles

• Euler angles are useful in evaluating inverse kinematic maps analytically.

• The ZYX Euler angles can be used to represent an arbitrary rotation in R3 as follows:

R(α, β, γ) = Rot(ẑ , α)Rot(ŷ , β)Rot(x̂ , γ)

with α, γ ∈ (−π, π] and β ∈ [−π/2, π/2) and
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Analytic inverse kinematics: Euler angles

• We now look at the inverse problem: given R ∈ SO(3), can we always find α, β, γ so

that R(α, β, γ) = R? The answer is yes, and we now show how:

• Explicitly, we have

• Denote by rij the ijthe entry of R. We can first look at r31 and articulate our answer

around its value
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Analytic inverse kinematics: Euler angles

1. If r31 6= ±1 set β = atan2(−r31,
√

r 211 + r 221), α = atan2(r21, r11) and γ = atan2(r32, r33).

2. If r31 = −1, then β = π/2. There exists an infinite number of solutions for α and γ.

One such solution is α = 0, γ = atan2(r12, r22)

3. If r31 = 1, then β = −π/2. There exists an infinite number of solutions for α and γ.

One such solution is α = 0, γ = − atan2(r12, r22)
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Analytic inverse kinematics: 6R Puma arm

• PUMA stands for Programmable Universal Machine for Assembly

• Industrial robot arm, developed for car manufacturing in late 1970’s. Still widely used

today.
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Analytic inverse kinematics: 6R Puma arm

Zero position:

1. Two shoulder joint intersect orthogonally at a common point. Joint axis 1 is aligned

with ẑ0, joint axis 2 with ŷ0.

2. Joint axis 3 (elbow) in x̂0, ŷ0 plane and parallel with joint axis 2

3. Joint 4-5-6 form a wrist. They intersect orthogonally at a common point and are

aligned to the ẑ0, ŷ0 and x̂0 directions respectively.
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Analytic inverse kinematics: 6R Puma arm

• The inverse kinematics problem can be split into inverse orientation and position

problems (Not true for all mechanisms!)

• Let p = (px , py , pz) be position of the wrist center.

• Assume (px , py ) 6= (0, 0) We have that θ1 = atan2(py , px).

• When (px , py ) = (0, 0), we are in a singular configuration, there are infinitely many

solutions for θ1.
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Analytic inverse kinematics: 6R Puma arm

• Finding θ2 and θ3 reduces to IK for planar 2R robot.

• Applying what we had derived before to this case, we get

cos θ3 = (r 2 + p2
z − a22 − a23)/(2a2a3) = D

We then have θ3 = atan2(
√

1− D2,D)
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Analytic inverse kinematics: 6R Puma arm

• We obtain for θ2

θ2 = atan2(pz , r)− atan2(a3s3, a2 + a3c3)

• Recall that X = e [S1]θ1 · · · e [S6]θ6M, and we know M and X and have just figured out

what θ1, θ2, θ3 are. We thus need to solve

e [S4]θ4e [S5]θ5e [S6]θ6 = e [−S3]θ3e−[S2]θ2e−[S1]θ1XM−1

where ω4 = (0, 0, 1), ω5 = (0, 1, 0) and ω6 = (1, 0, 0).
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Analytic inverse kinematics: 6R Puma arm

• Denote by R the rotation component of e [−S3]θ3e−[S2]θ2e−[S1]θ1XM−1. We thus need

to find θ4, θ5, θ6 so that

Rot(ẑ , θ4)Rot(ŷ , θ5)Rot(x̂ , θ6) = R.

This is exactly the ZYX Euler angles problem we have solved.
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