Introduction to Robotics Lecture 11: Inverse Kinematics

Inverse kinematics

 Forward kinematics: compute the end-effector position (as an element of SE(3)) from joint angles θ_i: compute the function

$$T$$
: joint space $\rightarrow SE(3): \theta \mapsto T(\theta)$

• Inverse kinematics: compute the (possible) joint angles from the position of the end-effector: compute the function

$$T^{-1}: SE(3) \rightarrow \text{joint space}: X \mapsto \theta.$$

• The inverse kinematics function is often *multi-valued*.

- Returns the angle between x-axis and vector (x, y) in the plane.
- Unline atan, which is valued in $(-\pi/2, \pi/2]$, atan2 is valued in $(-\pi, \pi]$.
- It is a default trig. function in most programming languages.

$$\operatorname{atan}(y/x) = \begin{cases} \operatorname{atan}(y/x) \text{ if } & x > 0 \\ \operatorname{atan}(y/x) + \pi \text{ if } & x < 0 \text{ and } y \ge 0 \\ \operatorname{atan}(y/x) - \pi \text{ if } & x < 0 \text{ and } y < 0 \\ \pi/2 \text{ if } & x = 0 \text{ and } y > 0 \\ -\pi/2 \text{ if } & x = 0 \text{ and } y < 0 \\ \operatorname{undefined if } & x = 0 \text{ and } y = 0 \end{cases}$$

Analytic inverse kinematics

• Recall: Law of cosines

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma),$$

where a, b, c are the lengths of the edges of the triangle, and α, β, γ the angles opposite a, b and c respectively.

• We have $L_1^2 + L_2^2 - 2L_1L_2\cos\beta = x^2 + y^2$. It follows

$$\beta = \cos^{-1}\left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1L_2}\right)$$

Analytic inverse kinematics

- Similarly, $\alpha = \cos^{-1}\left(\frac{L_1^2 L_2^2 + x^2 + y^2}{2L_1\sqrt{x^2 + y^2}}\right)$
- Using atan2 function, we get $\gamma = \operatorname{atan2}(y, x)$.
- The two possible solutions are

$$\theta_1 = \gamma - \alpha, \theta_2 = \pi - \beta$$
 and $\theta_1 = \gamma + \alpha, \theta_2 = \beta - \pi$

• If $x^2 + y^2 \notin [L_1 - L_2, L_1 + L_2]$, then no solutions exist.

- In the 2R robot example, there were 2 DOFs for the end-effector, and 2 joint angles. This implied that there was a *finite* number of solutions.
- If there are more joint angles than DOFs of the end-effector, there may be an *infinite number of solutions*.
- We will mostly look at cases where #DOFs of end-effector = # joint angles.
- We thus assume in general

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_6]\theta_6} M$$

and we are given an end-effector pose $X \in SE(3)$. We need to find $T^{-1}(X)$.

- Euler angles are useful in evaluating inverse kinematic maps analytically.
- The ZYX Euler angles can be used to represent an arbitrary rotation in \mathbb{R}^3 as follows:

$$\mathsf{R}(lpha,eta,\gamma)=\mathsf{Rot}(\hat{z},lpha)\mathsf{Rot}(\hat{y},eta)\mathsf{Rot}(\hat{x},\gamma)$$

with $\alpha,\gamma\in(-\pi,\pi]$ and $\beta\in[-\pi/2,\pi/2)$ and

$$\operatorname{Rot}(\hat{z},\alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad \operatorname{Rot}(\hat{y},\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{bmatrix},$$
$$\operatorname{Rot}(\hat{x},\gamma) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\gamma & -\sin\gamma\\ 0 & \sin\gamma & \cos\gamma \end{bmatrix}.$$

- We now look at the inverse problem: given R ∈ SO(3), can we always find α, β, γ so that R(α, β, γ) = R? The answer is yes, and we now show how:
- Explicitly, we have

$$R(\alpha,\beta,\gamma) = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

• Denote by r_{ij} the *ij*the entry of *R*. We can first look at r_{31} and articulate our answer around its value

Analytic inverse kinematics: Euler angles

$$R(\alpha,\beta,\gamma) = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

- 1. If $r_{31} \neq \pm 1 \text{ set } \beta = \operatorname{atan2}(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$, $\alpha = \operatorname{atan2}(r_{21}, r_{11}) \text{ and } \gamma = \operatorname{atan2}(r_{32}, r_{33})$.
- 2. If $r_{31} = -1$, then $\beta = \pi/2$. There exists an infinite number of solutions for α and γ . One such solution is $\alpha = 0, \gamma = \operatorname{atan2}(r_{12}, r_{22})$
- If r₃₁ = 1, then β = -π/2. There exists an infinite number of solutions for α and γ.
 One such solution is α = 0, γ = atan2(r₁₂, r₂₂)

- PUMA stands for Programmable Universal Machine for Assembly
- Industrial robot arm, developed for car manufacturing in late 1970's. Still widely used today.

Zero position:

- 1. Two shoulder joint intersect orthogonally at a common point. Joint axis 1 is aligned with \hat{z}_0 , joint axis 2 with \hat{y}_0 .
- 2. Joint axis 3 (elbow) in \hat{x}_0, \hat{y}_0 plane and parallel with joint axis 2
- 3. Joint 4-5-6 form a wrist. They intersect orthogonally at a common point and are aligned to the \hat{z}_0 , \hat{y}_0 and \hat{x}_0 directions respectively.

- The inverse kinematics problem can be split into inverse orientation and position problems (Not true for all mechanisms!)
- Let $p = (p_x, p_y, p_z)$ be position of the wrist center.
- Assume $(p_x, p_y) \neq (0, 0)$ We have that $\theta_1 = \operatorname{atan2}(p_y, p_x)$.
- When (p_x, p_y) = (0,0), we are in a singular configuration, there are infinitely many solutions for θ₁.

- Finding θ_2 and θ_3 reduces to IK for planar 2R robot.
- Applying what we had derived before to this case, we get

$$\cos heta_3 = (r^2 + p_z^2 - a_2^2 - a_3^2)/(2a_2a_3) = D$$

We then have $heta_3 = \operatorname{atan2}(\sqrt{1-D^2},D)$

• We obtain for θ_2

$$\theta_2 = \operatorname{atan2}(p_z, r) - \operatorname{atan2}(a_3s_3, a_2 + a_3c_3)$$

• Recall that $X = e^{[S_1]\theta_1} \cdots e^{[S_6]\theta_6} M$, and we know M and X and have just figured out what $\theta_1, \theta_2, \theta_3$ are. We thus need to solve

$$e^{[S_4] heta_4}e^{[S_5] heta_5}e^{[S_6] heta_6} = e^{[-S_3] heta_3}e^{-[S_2] heta_2}e^{-[S_1] heta_1}XM^{-1}$$

where $\omega_4 = (0, 0, 1), \omega_5 = (0, 1, 0)$ and $\omega_6 = (1, 0, 0).$

• Denote by *R* the rotation component of $e^{[-S_3]\theta_3}e^{-[S_2]\theta_2}e^{-[S_1]\theta_1}XM^{-1}$. We thus need to find $\theta_4, \theta_5, \theta_6$ so that

 $Rot(\hat{z}, \theta_4)Rot(\hat{y}, \theta_5)Rot(\hat{x}, \theta_6) = R.$

This is exactly the ZYX Euler angles problem we have solved.