Introduction to Robotics Lecture 10: Statics of open chains, Singularities and Manipulability • Considering the robot to be at static equilibrium, we can equate power at the joint with power at the end-effector:

$$\tau^{ op}\dot{ heta} = \mathcal{F}_b\mathcal{V}_b$$

• Since $\mathcal{V}_b = J_b(\theta)\dot{\theta}$, we get $\tau = J_b^{\top}(\theta)\mathcal{F}_b$ and $\tau = J_s^{\top}(\theta)\mathcal{F}_s$. We simply write

$$\tau = J^{\top}(\theta) \mathcal{F}$$

- We can use the above equation to derive the torques to apply at the joint to counteract the effect of an external wrench −F applied at the end-effector (e.g. by a load attached to it)
- Recall J(θ) ∈ ℝ^{6×n}. Depending on whether n > 6 or n < 6, the system is over- or under-determined.

- If *n* > 6, the chain is called redundant. Immobilizing the end-effector does not fix the value of the torque joints.
- We need to consider dynamics to continue the analysis. We do not do it here.
- If n < 6 and J^T ∈ ℝ^{n×6}, then we do not have enough joints to generate 6 DoFs of the end-effector twist. We cannot *actively* generate forces in the 6 − n directions in the nullspace of J^T(θ)

- Values of the joints θ_i for which the end-effector cannot move in one or more directions instantaneously is called a *kinematic singularity*
- Mathematically, this corresponds to θ for which $J(\theta)$ is not full (column) rank.
- Since J has 6 rows, it means that J(θ) has fewer that 6 linearly independent columns at a singular configuration.
- Said otherwise: there are 6 degrees of freedom for the twist of the end-effector, and each column of the Jacobian maps into some possible motions for the end-effector. To be non-singular (i.e. regular), we need at least 6 independent possible motions.

$$\mathcal{V}_b = J_{b1}\dot{\theta}_1 + \cdots + J_{bn}\dot{\theta}_n.$$

• Kinematic singularities are independent of the frame chosen to express the twist. Indeed, recall that $V_s = \operatorname{Ad}_{T_{sb}} V_b$ and thus

$$J_s = \operatorname{Ad}_{T_{sb}} J_b.$$

• Since $\operatorname{Ad}_{T_{sb}}$ is invertible, we conclude that J_s and J_b have the same rank.

Examples of singular configurations

- We assume that there are n = 6 joints with 1DOF each. The Jacobian has thus 6 columns.
- Assume 2 R joints, say 1 and 2, have collinear revolution axes: $\omega_{s1} = \pm \omega_{s2}$.
- Then the corresponding column of the Jacobian are

$$J_{s_1} = egin{bmatrix} \omega_{s_1} \ -\omega_{s_1} imes q_1 \end{bmatrix}$$
 and $J_{s_2} = egin{bmatrix} \omega_{s_2} \ -\omega_{s_2} imes q_2 \end{bmatrix}$.

• Since $q_1 - q_2$ is aligned with ω_{si} , we have $\omega_{si} \times (q_1 - q_2) = 0$ and thus $\omega_{si} \times q_1 = \omega_{si} \times q_2$. Hence $J_{b1} = J_{b2}$. The Jacobian is thus singular, for any θ .

Examples of singular configurations

• Three coplanar and parallel revolute joint axes. The first three columns of the Jacobian are

$$J_s(\theta) = \left[\begin{array}{ccc} \omega_{s1} & \omega_{s1} & \cdots \\ 0 & -\omega_{s1} \times q_2 & -\omega_{s1} \times q_3 & \cdots \end{array} \right]$$

• Since q_2 and q_3 are aligned, so are $-\omega_{s1} \times q_2$ and $-\omega_{s1} \times q_3$. The Jacobian cannot be regular.