Introduction to Robotics
Lecture 10: Statics of open chains, Singularities and Manipulability

- Considering the robot to be at static equilibrium, we can equate power at the joint with power at the end-effector:

$$
\tau^{\top} \dot{\theta}=\mathcal{F}_{b} \mathcal{V}_{b}
$$

- Since $\mathcal{V}_{b}=J_{b}(\theta) \dot{\theta}$, we get $\tau=J_{b}^{\top}(\theta) \mathcal{F}_{b}$ and $\tau=J_{s}^{\top}(\theta) \mathcal{F}_{s}$. We simply write

$$
\tau=J^{\top}(\theta) \mathcal{F}
$$

- We can use the above equation to derive the torques to apply at the joint to counteract the effect of an external wrench $-\mathcal{F}$ applied at the end-effector (e.g. by a load attached to it)
- Recall $J(\theta) \in \mathbb{R}^{6 \times n}$. Depending on whether $n>6$ or $n<6$, the system is over- or under-determined.
- If $n>6$, the chain is called redundant. Immobilizing the end-effector does not fix the value of the torque joints.
- We need to consider dynamics to continue the analysis. We do not do it here.
- If $n<6$ and $J^{\top} \in \mathbb{R}^{n \times 6}$, then we do not have enough joints to generate 6 DoFs of the end-effector twist. We cannot actively generate forces in the $6-n$ directions in the nullspace of $J^{\top}(\theta)$

Singularity analysis

- Values of the joints θ_{i} for which the end-effector cannot move in one or more directions instantaneously is called a kinematic singularity
- Mathematically, this corresponds to θ for which $J(\theta)$ is not full (column) rank.
- Since J has 6 rows, it means that $J(\theta)$ has fewer that 6 linearly independent columns at a singular configuration.
- Said otherwise: there are 6 degrees of freedom for the twist of the end-effector, and each column of the Jacobian maps into some possible motions for the end-effector. To be non-singular (i.e. regular), we need at least 6 independent possible motions.

$$
\mathcal{V}_{b}=J_{b 1} \dot{\theta}_{1}+\cdots+J_{b n} \dot{\theta}_{n} .
$$

- Kinematic singularities are independent of the frame chosen to express the twist. Indeed, recall that $\mathcal{V}_{s}=\operatorname{Ad}_{T_{s b}} \mathcal{V}_{b}$ and thus

$$
J_{s}=\operatorname{Ad}_{T_{s b}} J_{b}
$$

- Since $\operatorname{Ad}_{T_{s b}}$ is invertible, we conclude that J_{s} and J_{b} have the same rank.

Examples of singular configurations

- We assume that there are $n=6$ joints with 1DOF each. The Jacobian has thus 6 columns.
- Assume 2 R joints, say 1 and 2 , have collinear revolution axes: $\omega_{s 1}= \pm \omega_{s 2}$.
- Then the corresponding column of the Jacobian are

$$
J_{s_{1}}=\left[\begin{array}{cc}
\omega_{s 1} & \\
-\omega_{s 1} \times q_{1}
\end{array}\right] \text { and } J_{s 2}=\left[\begin{array}{c}
\omega_{s 2} \\
-\omega_{s 2} \times q_{2}
\end{array}\right] \text {. }
$$

- Since $q_{1}-q_{2}$ is aligned with $\omega_{s i}$, we have $\omega_{s i} \times\left(q_{1}-q_{2}\right)=0$ and thus $\omega_{s i} \times q_{1}=\omega_{s i} \times q_{2}$. Hence $J_{b 1}=J_{b 2}$. The Jacobian is thus singular, for any θ.

Examples of singular configurations

- Three coplanar and parallel revolute joint axes. The first three columns of the Jacobian are

$$
J_{s}(\theta)=\left[\begin{array}{cccc}
\omega_{s 1} & \omega_{s 1} & \omega_{s 1} & \cdots \\
0 & -\omega_{s 1} \times q_{2} & -\omega_{s 1} \times q_{3} & \cdots
\end{array}\right]
$$

- Since q_{2} and q_{3} are aligned, so are $-\omega_{s 1} \times q_{2}$ and $-\omega_{s 1} \times q_{3}$. The Jacobian cannot be regular.

