Introduction to Robotics
 Lecture 4: 3D rotations and exponential coordinates

Exponential coordinates

- We now introduce a 3-parameters representation for 3D rotations [instead of the 3×3 orthogonal matrix].
- Idea: represent the rotation through a rotation axis $\hat{\omega}$ (normalized, i.e. $\|\hat{\omega}\|=1$) and a rotation angle around this axis, say θ. The vector $\omega=\hat{\omega} \theta$ contains the three-parameters exponential coordinate representation of the rotation.
- If a frame coincident with s is rotated for 1 second around $\hat{\omega}$ at angular velocity θ, then the resulting frame is R.
- Equivalently, if a frame coincident with s is rotated for θ seconds around $\hat{\omega}$ at angular velocity 1 , then the resulting frame is R.

Review from Linear ODEs

- Consider the scalar linear ODE

$$
\dot{x}=a x(t)
$$

with initial state $x(0)=x_{0}$. Its solution at time t is

$$
x(t)=e^{a t} x_{0} .
$$

- The exponential function has the expansion

$$
e^{a t}=1+a t+\frac{1}{2} a^{2} t^{2}+\frac{1}{3!} a^{3} t^{3}+\cdots
$$

- Consider the vector linear ODE

$$
\dot{x}=A x,
$$

with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$ and $x(0)=x_{0}$.

- We can write its solution as

$$
x(t)=e^{A t} x_{0}
$$

where

$$
e^{A t}=1+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

Some properties of matrix exponential

The matrix exponential

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

has the following properties

- $\frac{d}{d t}\left(e^{A t}\right)=A e^{A t}=e^{A t} A$.
- If $A=P D P^{-1}$ with D a diagonal matrix, then $e^{A t}=P e^{D t} P^{-1}$
- If A and B commute, i.e. $A B=B A$, then
$e^{A} e^{B}=e^{B} e^{A}=e^{A+B}$
- The matrix exponential of A is always invertible, and $\left(e^{A t}\right)^{-1}=e^{-A t}$.

Some properties of matrix exponential

- Assume the vector $p(0)$ is rotated by θ around $\hat{\omega}$ to $p(\theta)$.
- We can assume that $p(t)$ rotates at a constant rate of $1 \mathrm{rad} / \mathrm{s}$ for a time θ. We thus have

$$
\dot{p}=\hat{\omega} \times p
$$

for θ seconds.

- We can write this equation as

$$
\dot{p}=[\hat{\omega}] p
$$

whose solution is $p(t)=e^{[\hat{\omega}] t} p(0)$.

- We conclude that $p(\theta)=e^{[\hat{\omega}] \theta} p(0)$.

Some properties of matrix exponential

- Because [$\hat{\omega}$] is 3×3 skew-symmetric and $\hat{\omega}$ is of unit norm, we have

$$
[\hat{\omega}]^{3}=-[\hat{\omega}] \text { and }[\hat{\omega}]^{4}=-[\hat{\omega}]^{2} .
$$

Recall that $\sin \theta=\theta-\frac{1}{3!} \theta^{3}+\cdots$ and $\cos \theta=1-\frac{1}{2!} \theta^{2}+\cdots$.

- We conclude from the 2 points above that

$$
\begin{aligned}
e^{[\hat{\omega}] \theta} & =I+[\hat{\omega}] \theta+\frac{1}{2!}[\hat{\omega}]^{2}+\frac{1}{3!}[\hat{\omega}]^{3}+\cdots \\
& =I+\left(\theta-\frac{\theta^{3}}{3!}+\cdots\right)[\hat{\omega}]+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right)[\hat{\omega}]^{2}
\end{aligned}
$$

Rodrigues formula

- We have thus shown the following, known as Rodrigues formula:

$$
\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2}
$$

- We say that $(\hat{\omega}, \theta)$ are the exponential coordinates of the rotation matrix R if $R=e^{\hat{\omega} \theta}$.

La Rēpublique fondēe sur la libertē. l'égalité. la fraternité, doit reconnaitre dēsormais au travail des femmes autant et plus de droits que l'ancien régime n'en reconnut autrefois à leur oisivetē féodale

Matrix logarithm

- Given a rotation matrix R, in order to obtain its exponential coordinates, we need to take its so-called logarithm:

$$
\begin{array}{llr}
\exp :[\omega] \theta \in \mathfrak{s o}(3) & \longrightarrow & R \in S O(3) \\
\log : R \in S O(3) & \longrightarrow & {[\hat{\omega}] \theta \in \mathfrak{s o}(3)}
\end{array}
$$

- We can expand each entry in Rodrigues formula and obtain, with $c_{\theta}=\cos \theta$ and $s_{\theta}=\sin \theta$

$$
\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
$$

Matrix logarithm

- From previous equation for R, we see that

$$
\operatorname{tr} R:=r_{11}+r_{22}+r_{33}=1+2 \cos \theta \longrightarrow \text { solve for } \theta
$$

- Set R equal to the above matrix, and compute $R^{\top}-R$ to obtain:

$$
\begin{aligned}
r_{32}-r_{23} & =2 \hat{\omega}_{1} \sin \theta \\
r_{13}-r_{31} & =2 \hat{\omega}_{2} \sin \theta \\
r_{21}-r_{12} & =2 \hat{\omega}_{3} \sin \theta
\end{aligned}
$$

- We can write the above as

$$
[\hat{\omega}]=\frac{1}{2 \sin \theta}\left(R-R^{\top}\right)
$$

\longrightarrow valid when $\sin \theta \neq 0$.

Matrix logarithm when $\sin \theta=0$

- If $\theta=2 k \pi$, we have rotated by 360 degrees, and the rotation is, in the end, independent of $\hat{\omega}$. It is undefined in this case, or any $\hat{\omega}$ does the job.
- If $\theta=(2 k+1) \pi$, then Rodrigues formula is

$$
R=I+2[\hat{\omega}]^{2}
$$

Based on this formula, we find

$$
\begin{aligned}
\hat{\omega}_{i} & = \pm \sqrt{\frac{r_{i i}+1}{2}} \\
2 \hat{\omega}_{i} \hat{\omega}_{j} & =r_{i j}
\end{aligned}
$$

for $i \neq j$.

