
Introduction to Robotics
Lecture 4: 3D rotations and exponential

coordinates



Exponential coordinates

I We now introduce a 3-parameters representation for 3D
rotations [ instead of the 3× 3 orthogonal matrix].

I Idea: represent the rotation through a rotation axis ω̂
(normalized, i.e. ‖ω̂‖ = 1) and a rotation angle around this
axis, say θ. The vector ω = ω̂θ contains the three-parameters
exponential coordinate representation of the rotation.

I If a frame coincident with s is rotated for 1 second around ω̂
at angular velocity θ, then the resulting frame is R.

I Equivalently, if a frame coincident with s is rotated for θ
seconds around ω̂ at angular velocity 1, then the resulting
frame is R.



Review from Linear ODEs
I Consider the scalar linear ODE

ẋ = ax(t)

with initial state x(0) = x0. Its solution at time t is

x(t) = eatx0.

I The exponential function has the expansion

eat = 1 + at +
1

2
a2t2 +

1

3!
a3t3 + · · · .

I Consider the vector linear ODE

ẋ = Ax ,

with x ∈ Rn, A ∈ Rn×n and x(0) = x0.
I We can write its solution as

x(t) = eAtx0

where

eAt = 1 + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

is the matrix exponential.



Some properties of matrix exponential

The matrix exponential

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

has the following properties

I d
dt (eAt) = AeAt = eAtA.

I If A = PDP−1 with D a diagonal matrix, then eAt = PeDtP−1

I If A and B commute, i.e. AB = BA, then
eAeB = eBeA = eA+B

I The matrix exponential of A is always invertible, and
(eAt)−1 = e−At .



Some properties of matrix exponential

I Assume the vector p(0) is rotated by θ around ω̂ to p(θ).
I We can assume that p(t) rotates at a constant rate of 1 rad/s

for a time θ. We thus have

ṗ = ω̂ × p

for θ seconds.
I We can write this equation as

ṗ = [ω̂]p,

whose solution is p(t) = e [ω̂]tp(0).
I We conclude that p(θ) = e [ω̂]θp(0).



Some properties of matrix exponential

I Because [ω̂] is 3× 3 skew-symmetric and ω̂ is of unit norm,
we have

[ω̂]3 = −[ω̂] and [ω̂]4 = −[ω̂]2.

Recall that sin θ = θ − 1
3!θ

3 + · · · and cos θ = 1− 1
2!θ

2 + · · · .
I We conclude from the 2 points above that

e [ω̂]θ = I + [ω̂]θ +
1

2!
[ω̂]2 +

1

3!
[ω̂]3 + · · ·

= I + (θ − θ3

3!
+ · · · )[ω̂] + (

θ2

2!
− θ4

4!
+ · · · )[ω̂]2



Rodrigues formula
I We have thus shown the following, known as Rodrigues

formula:

Rot(ω̂, θ) = e [ω̂]θ = I + sin θ[ω̂] + (1− cos θ)[ω̂]2

I We say that (ω̂, θ) are the exponential coordinates of the
rotation matrix R if R = eω̂θ.



Matrix logarithm

I Given a rotation matrix R, in order to obtain its exponential
coordinates, we need to take its so-called logarithm:

exp : [ω]θ ∈ so(3) −→ R ∈ SO(3)

log : R ∈ SO(3) −→ [ω̂]θ ∈ so(3)

I We can expand each entry in Rodrigues formula and obtain,
with cθ = cos θ and sθ = sin θ



Matrix logarithm

I From previous equation for R, we see that

trR := r11 + r22 + r33 = 1 + 2 cos θ −→ solve for θ.

I Set R equal to the above matrix, and compute R> − R to
obtain:

r32 − r23 = 2ω̂1 sin θ

r13 − r31 = 2ω̂2 sin θ

r21 − r12 = 2ω̂3 sin θ

I We can write the above as

[ω̂] =
1

2 sin θ
(R − R>).

−→ valid when sin θ 6= 0.



Matrix logarithm when sin θ = 0

I If θ = 2kπ, we have rotated by 360 degrees, and the rotation
is, in the end, independent of ω̂. It is undefined in this case,
or any ω̂ does the job.

I If θ = (2k + 1)π, then Rodrigues formula is

R = I + 2[ω̂]2.

Based on this formula, we find

ω̂i = ±
√

rii + 1

2

2ω̂i ω̂j = rij

for i 6= j .


