
Introduction to Robotics
Lecture 3: Planar Rigid-Body Motions and 3D

rotation matrices



Rigid-Body motions in the plane

I We now describe the position of a rigid body, first in 2D.

I Idea: attach a frame (=point+direction vectors) to the body.
Each point in the body can be described by its position with
respect to the frame.
⇒ we only need to describe the position of the frame with
respect to a reference frame.

I We need to choose one: body frame (b) / reference frame (s)



Rigid-Body motions in the plane

I xs , ys and s give the reference frame.
I The frame b is described by three points: p, xb, yb, and is

attached to a rigid body. We consider p a point, but xb, yb to
be vectors (think of xb as ~pxb)

I To describe the vectors xb, yb with respect to xs , ys , we need
four numbers: indeed, we have

xb = cos θxs + sin θys

yb = − sin θxs + cos θys .

I Do not confuse a vector and its coordinates. The
coordinates of a vector are defined with respect to a given
basis; the same ’physical’ vector has different coord. with
respect to different bases.



Configuration and DoFs

I We put these in the matrix

P = Psb =
(
xb yb

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Note that R only has one free parameter, θ. In fact,

(∗) R>R =

(
1 0
0 1

)
−→ 3 constraints on entries of R

I Rsb: the columns of Rsb are the vectors of b in basis s.
I We call any R satisfying (∗) a rotation or orthogonal

matrix.
I We can represent the position of the rigid body through the

vector p and the rotation matrix R: frame b = (R,p)



Change of coordinates and rotation matrices

I Consider a vector v = v1sxs + v2sys , expressed in the reference
frame s. To express it in the body frame coordinates, we need
to solve

v = v1sxs + v2sys = v1bxb + v2byb

for v1b, v2b.

I We have [xb yb] = [xs ys ]Rsb and from the previous bullet,

[xs ys ]

(
v1s
v2s

)
= [xb yb]

(
v1b
v2b

)
. We conclude that

(
v1b
v2b

)
= R−1sb

(
v1s
v2s

)
.

I Recall that Rsb is obtained by writing the coordinate
vectors of basis b in basis s.



Changing frames

I Let (Rsc , r) denote the frame {c} with respect to {s} and
(Rsb, p) the frame {b} with respect to {s}. We can also
represent {c} with respect to {b} as (Rbc , q) (note that this
is with respect to xb, yb!). Then we have

Rsc = RsbRbc

r = Rsbq + p



Motions

I Rigid body (ellipse) with frames c and d . The frame d ≡ s at
first, and c = (R, r) in s.

I Then d move to d ′ (and d ′ ≡ b) with b = (P, p) in s. This
motion sends c to c ′ = (R ′, r ′) with

R ′ = PR

r ′ = Pr + p



Special Euclidean Group SE (2)

I We can nicely summarize the above as follows: we say that a
3× 3 matrix S is in the Euclidean Group of dimension 2 if it
can be written as

S =

(
R r
0 1

)
where R ∈ R2×2 is a rotation matrix (i.e. R>R = I and
detR = 1), and r ∈ R2.

I We can verify that

S1S2 =

(
R1R2 R1r2 + r1
0 1

)
is again an element of SE (2), which is exactly the
composition of motions!

I Furthermore, S−1 corresponds to the inverse motion to the
motion S .



Frames in 3D

s1s2

s3 r1r2r3

I We write the coordinates of the frame R in the reference
frame s as

ri = r1i s1 + r2i s2 + r3i s3.

I Since the ri are orthonormal, we have

‖ri‖2 = 1 = r21i + r22i + r23i , and

r>i rj = 0 for i 6= j



Frames in 3D

I For example,

r>1 r2 = (r11s1 + r21s2 + r31s3)>(r12s1 + r22s2 + r32s3)

= r11r12 + r21r22 + r31r32

where we used fact that the si are orthonormal.

I Set R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

. The above constraints are

summarized as
R>R = I ,

where I is the 3× 3 identity matrix.

I The matrix R is a rotation or orthogonal matrix in 3D.



Right-handed frames

I A frame is right-handed, or positively oriented, if its x , y and
z axes align with the index, middle finger and thumb
respectively.

I Mathematically, a frame R is right-handed if the determinant
of R is positive (in fact 1):

detR = 1↔ frame is right-handed



Rotation matrices in 3D

I Rotation matrices are also used to change frame: the point p
expressed in the frames a, b and c has coordinates

pa =

1
1
0

 , pb =

 1
−1
0

 , pc =

 0
−1
−1

 .

I The matrices of the frames are

Rsa =

1 0 0
0 1 0
0 0 1

 ,Rsb =

0 −1 0
1 0 0
0 0 1

 ,Rsc =

0 −1 0
0 0 −1
1 0 0

 .



Rotations matrices

I We used the convention Rab for the matrix whose columns
are the coordinates of the frame b expressed in the
frame a. We have the composition law:

RabRbc = Rac and R−1ab = Rba.

I If pa is the vector p expressed in frame a, then Rbapa = pb.

I Why is it called a rotation matrix? Rotating a vector v around
the axis x axis by angle θ is given by

Rot(x , θ)v =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 v ,

and rotations around y and z axis are obtained similarly.

I An arbitrary rotation can be obtained by composing these
elementary rotations!



Representing rotations with rotation vector

I Given a vector ω = (ω1, ω2, ω3), a rotation of angle θ around
ω is given by the matrix



Group of rotation matrices

Definition
The Special Orthogonal Group SO(3), or group of rotation
matrices, is the set of all 3× 3 matrices satisfying

R>R = I and detR = 1.

The set of matrices SO(3) has the following properties: if
Ri ∈ SO(3), then

1. R1R2 ∈ SO(3): closure under multiplication

2. R−1 = R>

3. Rotation matrices preserve length of vectors: given x ∈ R3,
and Rx , the rotated vector, we have
‖Rx‖2 = x>R>Rx = x>x .

4. They do not commute in general: R1R2 6= R2R1.

5. The inverse of a rotation matrix is a rotation matrix.



Cross-product

I Given a, b vectors in R3, their cross-product is given by

a× b = ‖a‖‖b‖ sin(θ)N,

where N is the unit normal vector to the plane containing a
and b. The direction of N is given by the right-hand rule. The
angle θ is the angle between a and b.

I In coordinates,

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





Angular velocities

I Consider a small rotation of angle ∆θ of the frame {x , y , z}
around the vector ω̄. It sends the frame vectors at time t to
x(t + ∆t), . . . , z(t + ∆t) at time t + ∆t.

I Observe that

x(t + ∆t) ' x(t) + ω̄∆θ × x .

In the limit ∆t → 0, we have

ẋ = ω × x ,

and similarly for y and z , where ω := ω̄θ̇.



Angular velocities in reference frame

I Let x = r1, y = r2 and z = r3 and set R = [r1 r2 r3]. We can
write

Ṙ = [ω × r1 ω × r2 ω × r3] = ω × R

I We want to get rid of the cross product and only have matrix
multiplications.

I We need the following definition: to each vector ω ∈ R3, we
can associate uniquely a 3× 3 matrix

ω =

ω1

ω2

ω3

↔
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 := [ω].

I Matrices as the one above are so that A = −A>. They are
called skew-symmetric. The set of skew-symmetric matrices is
denoted by so(3)



Angular velocities and change of frame

I We can now write Ṙ = ω × R as

Ṙ = [ω]R ⇔ [ω] = ṘR−1.

Note: up to now, R, Ṙ and ω were expressed in an inertial
reference frame.

I Recall that R describe the orientation of the body in the
reference frame, i.e. Rsb =: R.

I We can express the rotation vector in the body frame as

ωb = Rbsωs = R−1ωs = R>ωs

where ωs = ω. Recall that Rsb = R−1bs



A useful identity

Proposition

For ω ∈ R3 and R ∈ SO(3), we have

R[ω]R> = [Rω].

Proof. Let r>i be the ith row of R. Recall that if M = is 3× 3
matrix with columns {a, b, c}, then
detM = a>(b × c) = c>(a× b) = b>(c × a). We have



Angular velocities and change of frame

I Recall that [ωs ] = ṘR−1.

I We have ωb = R>sbωs ⇔ [ωb] = [R>sbωs ].

I Using the previous Proposition, we have

[ωb] = R>[ωs ]R = R>(ṘR>)R = R>Ṙ = R−1Ṙ.

I We have in summary: for Rsb = R the orientation of a rigid
body in 3D with angular velocity vector ωs (in reference
frame) or ωb (in body frame), we have

ṘR−1 = [ωs ]

R−1Ṙ = [ωb]


