Introduction to Robotics Lecture 3: Planar Rigid-Body Motions and 3D rotation matrices

Rigid-Body motions in the plane

- We now describe the position of a rigid body, first in 2D.
- Idea: attach a frame (=point+direction vectors) to the body. Each point in the body can be described by its position with respect to the frame.
 - \Rightarrow we only need to describe the position of the frame with respect to a reference frame.
- ▶ We need to choose one: body frame (b) / reference frame (s)

Rigid-Body motions in the plane

- x_s, y_s and s give the reference frame.
- ► The frame b is described by three points: p, x_b, y_b, and is attached to a rigid body. We consider p a point, but x_b, y_b to be vectors (think of x_b as px̄_b)
- ► To describe the vectors x_b, y_b with respect to x_s, y_s, we need four numbers: indeed, we have

$$x_b = \cos \theta x_s + \sin \theta y_s$$
$$y_b = -\sin \theta x_s + \cos \theta y_s$$

Do not confuse a vector and its coordinates. The coordinates of a vector are defined with respect to a given basis; the same 'physical' vector has different coord. with respect to different bases.

Configuration and DoFs

We put these in the matrix

$$P = P_{sb} = \begin{pmatrix} x_b & y_b \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$

Note that R only has one free parameter, θ . In fact,

(*)
$$R^{\top}R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow 3$$
 constraints on entries of R

- R_{sb} : the columns of R_{sb} are the vectors of b in basis s.
- We call any R satisfying (*) a rotation or orthogonal matrix.
- We can represent the position of the rigid body through the vector p and the rotation matrix R: frame b = (R, p)

Change of coordinates and rotation matrices

Consider a vector v = v_{1s}x_s + v_{2s}y_s, expressed in the reference frame s. To express it in the body frame coordinates, we need to solve

$$v = v_{1s}x_s + v_{2s}y_s = v_{1b}x_b + v_{2b}y_b$$

for v_{1b}, v_{2b} .

• We have $[x_b \ y_b] = [x_s \ y_s]R_{sb}$ and from the previous bullet, $[x_s \ y_s] \begin{pmatrix} v_{1s} \\ v_{2s} \end{pmatrix} = [x_b \ y_b] \begin{pmatrix} v_{1b} \\ v_{2b} \end{pmatrix}$. We conclude that

$$\begin{pmatrix} \mathsf{v}_{1b} \\ \mathsf{v}_{2b} \end{pmatrix} = \mathsf{R}_{\mathsf{sb}}^{-1} \begin{pmatrix} \mathsf{v}_{1s} \\ \mathsf{v}_{2s} \end{pmatrix}.$$

Recall that R_{sb} is obtained by writing the coordinate vectors of basis b in basis s.

Changing frames

Let (R_{sc}, r) denote the frame {c} with respect to {s} and (R_{sb}, p) the frame {b} with respect to {s}. We can also represent {c} with respect to {b} as (R_{bc}, q) (note that this is with respect to x_b, y_b!). Then we have

$$R_{sc} = R_{sb}R_{bc}$$
$$r = R_{sb}q + p$$

Motions

- ► Rigid body (ellipse) with frames c and d. The frame d ≡ s at first, and c = (R, r) in s.
- Then d move to d' (and d' ≡ b) with b = (P, p) in s. This motion sends c to c' = (R', r') with

$$R' = PR$$
$$r' = Pr + p$$

Special Euclidean Group SE(2)

We can nicely summarize the above as follows: we say that a 3 × 3 matrix S is in the Euclidean Group of dimension 2 if it can be written as

$$S = \begin{pmatrix} R & r \\ \mathbf{0} & 1 \end{pmatrix}$$

where $R \in \mathbb{R}^{2 \times 2}$ is a rotation matrix (i.e. $R^{\top}R = I$ and det R = 1), and $r \in \mathbb{R}^2$.

We can verify that

$$S_1S_2 = \begin{pmatrix} R_1R_2 & R_1r_2 + r_1 \\ \mathbf{0} & 1 \end{pmatrix}$$

is again an element of SE(2), which is exactly the composition of motions!

► Furthermore, S⁻¹ corresponds to the inverse motion to the motion S.

Frames in 3D

► We write the coordinates of the frame R in the reference frame s as

$$r_i = r_{1i}s_1 + r_{2i}s_2 + r_{3i}s_3.$$

• Since the r_i are orthonormal, we have

$$\|r_i\|^2 = 1 = r_{1i}^2 + r_{2i}^2 + r_{3i}^2$$
, and
 $r_i^{ op} r_j = 0$ for $i \neq j$

Frames in 3D

For example,

$$r_1^{\top} r_2 = (r_{11}s_1 + r_{21}s_2 + r_{31}s_3)^{\top} (r_{12}s_1 + r_{22}s_2 + r_{32}s_3)$$
$$= r_{11}r_{12} + r_{21}r_{22} + r_{31}r_{32}$$

where we used fact that the s_i are orthonormal.

• Set $R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$. The above constraints are summarized as

$$K = I$$

where I is the 3×3 identity matrix.

▶ The matrix *R* is a **rotation or orthogonal** matrix in 3D.

Right-handed frames

- A frame is right-handed, or positively oriented, if its x, y and z axes align with the index, middle finger and thumb respectively.
- Mathematically, a frame R is right-handed if the determinant of R is positive (in fact 1):

det $R = 1 \leftrightarrow$ frame is right-handed

Rotation matrices in 3D

Rotation matrices are also used to change frame: the point p expressed in the frames a, b and c has coordinates

$$p_a = \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}, p_b = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}, p_c = \begin{pmatrix} 0\\ -1\\ -1 \end{pmatrix}$$

The matrices of the frames are

$$R_{sa} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, R_{sb} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, R_{sc} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

Rotations matrices

We used the convention R_{ab} for the matrix whose columns are the coordinates of the frame b expressed in the frame a. We have the composition law:

$$R_{ab}R_{bc} = R_{ac}$$
 and $R_{ab}^{-1} = R_{ba}$.

- If p_a is the vector p expressed in frame a, then $R_{ba}p_a = p_b$.
- Why is it called a rotation matrix? Rotating a vector v around the axis x axis by angle θ is given by

$${\it Rot}(x, heta) v = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{pmatrix} v,$$

and rotations around y and z axis are obtained similarly.

An arbitrary rotation can be obtained by composing these elementary rotations!

Representing rotations with rotation vector

► Given a vector ω = (ω₁, ω₂, ω₃), a rotation of angle θ around ω is given by the matrix

$$\begin{aligned} \operatorname{Rot}(\hat{\omega},\theta) &= \\ \begin{bmatrix} c_{\theta} + \hat{\omega}_{1}^{2}(1-c_{\theta}) & \hat{\omega}_{1}\hat{\omega}_{2}(1-c_{\theta}) - \hat{\omega}_{3}s_{\theta} & \hat{\omega}_{1}\hat{\omega}_{3}(1-c_{\theta}) + \hat{\omega}_{2}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{2}(1-c_{\theta}) + \hat{\omega}_{3}s_{\theta} & c_{\theta} + \hat{\omega}_{2}^{2}(1-c_{\theta}) & \hat{\omega}_{2}\hat{\omega}_{3}(1-c_{\theta}) - \hat{\omega}_{1}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{3}(1-c_{\theta}) - \hat{\omega}_{2}s_{\theta} & \hat{\omega}_{2}\hat{\omega}_{3}(1-c_{\theta}) + \hat{\omega}_{1}s_{\theta} & c_{\theta} + \hat{\omega}_{3}^{2}(1-c_{\theta}) \end{bmatrix} . \end{aligned}$$

Group of rotation matrices

Definition

The Special Orthogonal Group SO(3), or group of rotation matrices, is the set of all 3×3 matrices satisfying

$$R^{\top}R = I$$
 and det $R = 1$.

The set of matrices SO(3) has the following properties: if $R_i \in SO(3)$, then

- 1. $R_1R_2 \in SO(3)$: closure under multiplication
- 2. $R^{-1} = R^{\top}$
- 3. Rotation matrices preserve length of vectors: given $x \in \mathbb{R}^3$, and Rx, the rotated vector, we have $||Rx||^2 = x^\top R^\top Rx = x^\top x.$
- 4. They do not commute in general: $R_1R_2 \neq R_2R_1$.
- 5. The inverse of a rotation matrix is a rotation matrix.

Cross-product

► Given *a*, *b* vectors in \mathbb{R}^3 , their cross-product is given by $a \times b = ||a|| ||b|| \sin(\theta) N$,

where N is the unit normal vector to the plane containing a and b. The direction of N is given by the right-hand rule. The angle θ is the angle between a and b.

In coordinates,

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Angular velocities

Consider a small rotation of angle Δθ of the frame {x, y, z} around the vector ω̄. It sends the frame vectors at time t to x(t + Δt),..., z(t + Δt) at time t + Δt.

Observe that

$$x(t + \Delta t) \simeq x(t) + \overline{\omega} \Delta \theta \times x.$$

In the limit $\Delta t \rightarrow 0$, we have

$$\dot{x} = \omega \times x,$$

and similarly for y and z, where $\omega := \bar{\omega}\dot{\theta}$.

Angular velocities in reference frame

• Let $x = r_1$, $y = r_2$ and $z = r_3$ and set $R = [r_1 \ r_2 \ r_3]$. We can write

$$\dot{R} = [\omega \times r_1 \ \omega \times r_2 \ \omega \times r_3] = \omega \times R$$

- We want to get rid of the cross product and only have matrix multiplications.
- We need the following definition: to each vector ω ∈ ℝ³, we can associate uniquely a 3 × 3 matrix

$$\omega = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \leftrightarrow \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} := [\omega].$$

Matrices as the one above are so that A = −A^T. They are called *skew-symmetric*. The set of skew-symmetric matrices is denoted by so(3) Angular velocities and change of frame

• We can now write
$$\dot{R} = \omega \times R$$
 as

$$\dot{R} = [\omega]R \Leftrightarrow [\omega] = \dot{R}R^{-1}.$$

Note: up to now, R, \dot{R} and ω were expressed in an inertial reference frame.

- ► Recall that R describe the orientation of the body in the reference frame, i.e. R_{sb} =: R.
- We can express the rotation vector in the body frame as

$$\omega_b = R_{bs}\omega_s = R^{-1}\omega_s = R^{\top}\omega_s$$

where $\omega_s = \omega$. Recall that $R_{sb} = R_{bs}^{-1}$

A useful identity

Proposition For $\omega \in \mathbb{R}^3$ and $R \in SO(3)$, we have

$$R[\omega]R^{\top} = [R\omega].$$

Proof. Let r_i^{\top} be the *i*th row of *R*. Recall that if $M = \text{is } 3 \times 3$ matrix with columns $\{a, b, c\}$, then det $M = a^{\top}(b \times c) = c^{\top}(a \times b) = b^{\top}(c \times a)$. We have

$$\begin{split} R[\omega]R^{\mathrm{T}} &= \begin{bmatrix} r_{1}^{\mathrm{T}}(\omega \times r_{1}) & r_{1}^{\mathrm{T}}(\omega \times r_{2}) & r_{1}^{\mathrm{T}}(\omega \times r_{3}) \\ r_{2}^{\mathrm{T}}(\omega \times r_{1}) & r_{2}^{\mathrm{T}}(\omega \times r_{2}) & r_{2}^{\mathrm{T}}(\omega \times r_{3}) \\ r_{3}^{\mathrm{T}}(\omega \times r_{1}) & r_{3}^{\mathrm{T}}(\omega \times r_{2}) & r_{3}^{\mathrm{T}}(\omega \times r_{3}) \end{bmatrix} \\ &= \begin{bmatrix} 0 & -r_{3}^{\mathrm{T}}\omega & r_{2}^{\mathrm{T}}\omega \\ r_{3}^{\mathrm{T}}\omega & 0 & -r_{1}^{\mathrm{T}}\omega \\ -r_{2}^{\mathrm{T}}\omega & r_{1}^{\mathrm{T}}\omega & 0 \end{bmatrix} \\ &= [R\omega], \end{split}$$

Angular velocities and change of frame

• Recall that
$$[\omega_s] = \dot{R}R^{-1}$$
.

• We have
$$\omega_b = R_{sb}^\top \omega_s \Leftrightarrow [\omega_b] = [R_{sb}^\top \omega_s].$$

Using the previous Proposition, we have

$$[\omega_b] = R^\top [\omega_s] R = R^\top (\dot{R} R^\top) R = R^\top \dot{R} = R^{-1} \dot{R}.$$

We have in summary: for R_{sb} = R the orientation of a rigid body in 3D with angular velocity vector ω_s (in reference frame) or ω_b (in body frame), we have

$$\dot{R}R^{-1} = [\omega_s]$$
$$R^{-1}\dot{R} = [\omega_b]$$