Introduction to Robotics
Lecture 3: Planar Rigid-Body Motions and 3D
rotation matrices



Rigid-Body motions in the plane

» We now describe the position of a rigid body, first in 2D.

> ldea: attach a frame (=point-+direction vectors) to the body.
Each point in the body can be described by its position with
respect to the frame.

= we only need to describe the position of the frame with
respect to a reference frame.

» We need to choose one: body frame (b) / reference frame (s)



Rigid-Body motions in the plane

> Xs,¥s and s give the reference frame.

» The frame b is described by three points: p, xp, yp, and is
attached to a rigid body. We consider p a point, but xp, yp to
be vectors (think of x; as pXp)

» To describe the vectors xp, v, with respect to xs, ys, we need
four numbers: indeed, we have

Xp = cos Oxs + sin fys
y¥b = —sin Oxs + cos Oys.
» Do not confuse a vector and its coordinates. The
coordinates of a vector are defined with respect to a given

basis; the same 'physical’ vector has different coord. with
respect to different bases.



Configuration and DoFs

» We put these in the matrix

P = Pgyp=(x )/b)=<

Note that R only has one free parameter, 6. In fact,

(*) RTR= <(1) (1)> — 3 constraints on entries of R

sin@ cosf

cosf —sin 0)

» R,: the columns of Ry, are the vectors of b in basis s.

» We call any R satisfying (*) a rotation or orthogonal
matrix.

» We can represent the position of the rigid body through the
vector p and the rotation matrix R: frame b = (R, p)



Change of coordinates and rotation matrices

» Consider a vector v = visXs + Vasys, expressed in the reference
frame s. To express it in the body frame coordinates, we need
to solve

V = VisXs + Vasys = VipXp + Vapyp
for Vib, V2b.
» We have [xp yp| = [Xs ¥s]Rsp and from the previous bullet,

[Xs ys] <Vls> = [xb yb) <V1b>_ We conclude that
V2s Vop

Vib -1 ( Vis
=R .
<V2b> sb <V2s>
» Recall that Ry, is obtained by writing the coordinate
vectors of basis b in basis s.



Changing frames

» Let (Rsc, r) denote the frame {c} with respect to {s} and
(Rsp, p) the frame {b} with respect to {s}. We can also
represent {c} with respect to {b} as (Rpc, q) (note that this
is with respect to xp, yp!). Then we have

Rsc = RsbRbc
r= Rsbq +p



Motions

» Rigid body (ellipse) with frames ¢ and d. The frame d = s at
first, and ¢ = (R, r) in s.

» Then d move to d’ (and d’ = b) with b= (P, p) in s. This
motion sends ¢ to ¢’ = (R, r") with

R = PR
r'=Pr+p



Special Euclidean Group SE(2)

» We can nicely summarize the above as follows: we say that a
3 x 3 matrix S is in the Euclidean Group of dimension 2 if it

can be written as
S R r
—\0 1

where R € R?*? is a rotation matrix (i.e. RTR =/ and
det R =1), and r € R2.

» We can verify that

515, = (R10R2 R1f21+ r1>

is again an element of SE(2), which is exactly the
composition of motions!

» Furthermore, S~1 corresponds to the inverse motion to the
motion S.



Frames in 3D

» We write the coordinates of the frame R in the reference
frame s as
ri = sy + rnis + r3;ss.

» Since the r; are orthonormal, we have
2 2 2 2
[rill*=1=r; + r5; + r3;, and

r-Trj:0fori7éj

1



Frames in 3D

» For example,

T T
ri = (nis1 + ris2 + r3153) ' (ri2s1 + ros + r32s3)

= rnin2 + M1 + 31

where we used fact that the s; are orthonormal.
ni rn2 ns
» Set R=|rm1 rns m3|. The above constraints are
1 r ra3
summarized as
R'R=1,
where [ is the 3 x 3 identity matrix.

» The matrix R is a rotation or orthogonal matrix in 3D.



Right-handed frames

positive T
rotation QID

» A frame is right-handed, or positively oriented, if its x, y and
z axes align with the index, middle finger and thumb
respectively.

» Mathematically, a frame R is right-handed if the determinant
of R is positive (in fact 1):

det R =1 < frame is right-handed



Rotation matrices in 3D
u,k {c}
I). - I’.

» Rotation matrices are also used to change frame: the point p
expressed in the frames a, b and ¢ has coordinates

1 1 0
pa=|1|,pp=|-1],pc=1|-1
0 0 —1

» The matrices of the frames are

100 0 -1 0 0 -1 0
Ro=(0 1 0|,Re=[1 0 0|,Re=[0 0 -1
00 1 0 0 1 1 0 0



Rotations matrices

» We used the convention R, for the matrix whose columns
are the coordinates of the frame b expressed in the
frame a. We have the composition law:

RabRbe = Rac and R,! = Ry,

> If p, is the vector p expressed in frame a, then Rpip, = pp.

» Why is it called a rotation matrix? Rotating a vector v around
the axis x axis by angle 6 is given by

1 0 0
Rot(x,0)v = [0 cosf —sind | v,
0 sinf cosf

and rotations around y and z axis are obtained similarly.

> An arbitrary rotation can be obtained by composing these
elementary rotations!



Representing rotations with rotation vector

» Given a vector w = (w1, ws,ws), a rotation of angle 6 around
w is given by the matrix

Rot (&, 0) =
co+ &1 —cp) wiwa(1 —cg) —wzsp  W1ws(1l — cg) + wase
wiwa (1 — cg) + wW3se co +@3(1 —cp) waws3 (1 — cg) — wWrsg

w3(1 —cp) —wasy  wWawz(l —co) + wise co+w3(1 —cp)



Group of rotation matrices

Definition
The Special Orthogonal Group SO(3), or group of rotation
matrices, is the set of all 3 x 3 matrices satisfying

R"R=1and detR = 1.

The set of matrices SO(3) has the following properties: if
R; € SO(3), then
1. RiR» € SO(3): closure under multiplication
2. RF1=RT
3. Rotation matrices preserve length of vectors: given x € R3,
and RXx, the rotated vector, we have
|Rx||? = x"RTRx = x"x.
4. They do not commute in general: R1R> # RxR;.
5. The inverse of a rotation matrix is a rotation matrix.



Cross-product

» Given a, b vectors in R3, their cross-product is given by
ax b= |al[b]lsin(6)N,
where N is the unit normal vector to the plane containing a
and b. The direction of N is given by the right-hand rule. The

angle 6 is the angle between a and b.
> In coordinates,

asbs — a3by
axb= a3b1 — a1b3
aiby — axbhy



Angular velocities

» Consider a small rotation of angle A# of the frame {x,y, z}
around the vector @. It sends the frame vectors at time t to
x(t+ At),...,z(t + At) at time t + At.

» Observe that

x(t + At) ~ x(t) + A0 x x.
In the limit At — 0, we have
X =w X X,

and similarly for y and z, where w := @0.



Angular velocities in reference frame

» Let x=r,y =rpand z=r3 and set R = [r; r r3]. We can
write
R=wxn wxn wxnl=wxR

» We want to get rid of the cross product and only have matrix
multiplications.

» We need the following definition: to each vector w € R3, we
can associate uniquely a 3 x 3 matrix

w1 0 —w3 Wy
w=|w2| < w3 0 —W1 = [w]
w3 —wy w1 0
» Matrices as the one above are so that A= —A'. They are

called skew-symmetric. The set of skew-symmetric matrices is
denoted by so(3)



Angular velocities and change of frame

» We can now write R = w x R as
R=[w]R < [w] = RRL.

Note: up to now, R, R and w were expressed in an inertial
reference frame.

» Recall that R describe the orientation of the body in the
reference frame, i.e. Rsp =: R.

> We can express the rotation vector in the body frame as
wp = Rpsws = R 1w, = RTwS

where ws = w. Recall that Ry, = Rb_sl



A useful identity

Proposition
For w € R3 and R € SO(3), we have

RIw]RT = [Ruw].

Proof. Let r,-—r be the ith row of R. Recall that if M =is 3 x 3
matrix with columns {a, b, ¢}, then
det M =a'(bxc)=c"(axb)=b"(cxa). We have

rf(wxr) rf(wxr) rf(wxrs)
Rw]R" = ra(wxr) ra(wxry) ra(wxrs)
ri(wxr) ri(wxry) ra(wxrs)




Angular velocities and change of frame

v

Recall that [ws] = RR™L.
» We have wp, = Rpws < [wp] = [RLws].

v

Using the previous Proposition, we have

[wp]) = RT[ws]JR=R"(RR)R=R"R=R'R.

v

We have in summary: for Ry, = R the orientation of a rigid
body in 3D with angular velocity vector ws (in reference
frame) or wy, (in body frame), we have

RR™Y = [w]

R7IR = [wb]



