Introduction to Robotics
 Lecture 3: Planar Rigid-Body Motions and 3D rotation matrices

Rigid-Body motions in the plane

- We now describe the position of a rigid body, first in 2D.
- Idea: attach a frame (=point+direction vectors) to the body. Each point in the body can be described by its position with respect to the frame.
\Rightarrow we only need to describe the position of the frame with respect to a reference frame.
- We need to choose one: body frame (b) / reference frame (s)

Rigid-Body motions in the plane

- x_{s}, y_{s} and s give the reference frame.
- The frame b is described by three points: p, x_{b}, y_{b}, and is attached to a rigid body. We consider p a point, but x_{b}, y_{b} to be vectors (think of x_{b} as $p \vec{x}_{b}$)
- To describe the vectors x_{b}, y_{b} with respect to x_{s}, y_{s}, we need four numbers: indeed, we have

$$
\begin{aligned}
& x_{b}=\cos \theta x_{s}+\sin \theta y_{s} \\
& y_{b}=-\sin \theta x_{s}+\cos \theta y_{s} .
\end{aligned}
$$

- Do not confuse a vector and its coordinates. The coordinates of a vector are defined with respect to a given basis; the same 'physical' vector has different coord. with respect to different bases.

Configuration and DoFs

- We put these in the matrix

$$
P=P_{s b}=\left(\begin{array}{ll}
x_{b} & y_{b}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Note that R only has one free parameter, θ. In fact,

$$
(*) \quad R^{\top} R=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \longrightarrow 3 \text { constraints on entries of } R
$$

- $R_{s b}$: the columns of $R_{s b}$ are the vectors of b in basis s.
- We call any R satisfying ($*$) a rotation or orthogonal matrix.
- We can represent the position of the rigid body through the vector p and the rotation matrix R : frame $b=(\mathbf{R}, \mathbf{p})$

Change of coordinates and rotation matrices

- Consider a vector $v=v_{1 s} x_{s}+v_{2 s} y_{s}$, expressed in the reference frame s. To express it in the body frame coordinates, we need to solve

$$
v=v_{1 s} x_{s}+v_{2 s} y_{s}=v_{1 b} x_{b}+v_{2 b} y_{b}
$$

for $v_{1 b}, v_{2 b}$.

- We have $\left[\begin{array}{ll}x_{b} & y_{b}\end{array}\right]=\left[\begin{array}{ll}x_{s} & y_{s}\end{array}\right] R_{s b}$ and from the previous bullet,

$$
\begin{gathered}
{\left[\begin{array}{ll}
x_{s} & y_{s}
\end{array}\right]\binom{v_{1 s}}{v_{2 s}}=\left[\begin{array}{ll}
x_{b} & y_{b}
\end{array}\right]\binom{v_{1 b}}{v_{2 b}} . \text { We conclude that }} \\
\binom{v_{1 b}}{v_{2 b}}=R_{s b}^{-1}\binom{v_{1 s}}{v_{2 s}} .
\end{gathered}
$$

- Recall that $R_{s b}$ is obtained by writing the coordinate vectors of basis b in basis s.

Changing frames

- Let $\left(R_{s c}, r\right)$ denote the frame $\{c\}$ with respect to $\{s\}$ and $\left(R_{s b}, p\right)$ the frame $\{b\}$ with respect to $\{s\}$. We can also represent $\{c\}$ with respect to $\{b\}$ as $\left(R_{b c}, q\right)$ (note that this is with respect to $x_{b}, y_{b}!$). Then we have

$$
\begin{aligned}
R_{s c} & =R_{s b} R_{b c} \\
r & =R_{s b} q+p
\end{aligned}
$$

Motions

- Rigid body (ellipse) with frames c and d. The frame $d \equiv s$ at first, and $c=(R, r)$ in s.
- Then d move to d^{\prime} (and $d^{\prime} \equiv b$) with $b=(P, p)$ in s. This motion sends c to $c^{\prime}=\left(R^{\prime}, r^{\prime}\right)$ with

$$
\begin{aligned}
R^{\prime} & =P R \\
r^{\prime} & =P r+p
\end{aligned}
$$

Special Euclidean Group $S E(2)$

- We can nicely summarize the above as follows: we say that a 3×3 matrix S is in the Euclidean Group of dimension 2 if it can be written as

$$
S=\left(\begin{array}{ll}
R & r \\
\mathbf{0} & 1
\end{array}\right)
$$

where $R \in \mathbb{R}^{2 \times 2}$ is a rotation matrix (i.e. $R^{\top} R=I$ and $\operatorname{det} R=1$), and $r \in \mathbb{R}^{2}$.

- We can verify that

$$
S_{1} S_{2}=\left(\begin{array}{cc}
R_{1} R_{2} & R_{1} r_{2}+r_{1} \\
\mathbf{0} & 1
\end{array}\right)
$$

is again an element of $S E(2)$, which is exactly the composition of motions!

- Furthermore, S^{-1} corresponds to the inverse motion to the motion S.

Frames in 3D

- We write the coordinates of the frame R in the reference frame s as

$$
r_{i}=r_{1 i} s_{1}+r_{2 i} s_{2}+r_{3 i} s_{3} .
$$

- Since the r_{i} are orthonormal, we have

$$
\begin{gathered}
\left\|r_{i}\right\|^{2}=1=r_{1 i}^{2}+r_{2 i}^{2}+r_{3 i}^{2}, \text { and } \\
r_{i}^{\top} r_{j}=0 \text { for } i \neq j
\end{gathered}
$$

Frames in 3D

- For example,

$$
\begin{aligned}
r_{1}^{\top} r_{2}=\left(r_{11} s_{1}+r_{21} s_{2}+r_{31} s_{3}\right)^{\top} & \left(r_{12} s_{1}+r_{22} s_{2}+r_{32} s_{3}\right) \\
& =r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}
\end{aligned}
$$

where we used fact that the s_{i} are orthonormal.

- Set $R=\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$. The above constraints are
summarized as

$$
R^{\top} R=I
$$

where I is the 3×3 identity matrix.

- The matrix R is a rotation or orthogonal matrix in 3D.

Right-handed frames

- A frame is right-handed, or positively oriented, if its x, y and z axes align with the index, middle finger and thumb respectively.
- Mathematically, a frame R is right-handed if the determinant of R is positive (in fact 1):

$$
\operatorname{det} R=1 \leftrightarrow \text { frame is right-handed }
$$

Rotation matrices in 3D

- Rotation matrices are also used to change frame: the point p expressed in the frames a, b and c has coordinates

$$
p_{a}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), p_{b}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), p_{c}=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right) .
$$

- The matrices of the frames are

$$
R_{s a}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), R_{s b}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), R_{s c}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

Rotations matrices

- We used the convention $R_{a b}$ for the matrix whose columns are the coordinates of the frame b expressed in the frame a. We have the composition law:

$$
R_{a b} R_{b c}=R_{a c} \text { and } R_{a b}^{-1}=R_{b a} .
$$

- If p_{a} is the vector p expressed in frame a, then $R_{b a} p_{a}=p_{b}$.
- Why is it called a rotation matrix? Rotating a vector v around the axis x axis by angle θ is given by

$$
\operatorname{Rot}(x, \theta) v=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) v
$$

and rotations around y and z axis are obtained similarly.

- An arbitrary rotation can be obtained by composing these elementary rotations!

Representing rotations with rotation vector

- Given a vector $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, a rotation of angle θ around ω is given by the matrix

$$
\begin{aligned}
& \operatorname{Rot}(\hat{\omega}, \theta)= \\
& {\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right],}
\end{aligned}
$$

Group of rotation matrices

Definition

The Special Orthogonal Group SO(3), or group of rotation matrices, is the set of all 3×3 matrices satisfying

$$
R^{\top} R=I \text { and } \operatorname{det} R=1
$$

The set of matrices $S O(3)$ has the following properties: if $R_{i} \in S O(3)$, then

1. $R_{1} R_{2} \in S O(3)$: closure under multiplication
2. $R^{-1}=R^{\top}$
3. Rotation matrices preserve length of vectors: given $x \in \mathbb{R}^{3}$, and $R x$, the rotated vector, we have

$$
\|R x\|^{2}=x^{\top} R^{\top} R x=x^{\top} x
$$

4. They do not commute in general: $R_{1} R_{2} \neq R_{2} R_{1}$.
5. The inverse of a rotation matrix is a rotation matrix.

Cross-product

- Given a, b vectors in \mathbb{R}^{3}, their cross-product is given by

$$
a \times b=\|a\|\|b\| \sin (\theta) N
$$

where N is the unit normal vector to the plane containing a and b. The direction of N is given by the right-hand rule. The angle θ is the angle between a and b.

- In coordinates,

$$
a \times b=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Angular velocities

- Consider a small rotation of angle $\Delta \theta$ of the frame $\{x, y, z\}$ around the vector $\bar{\omega}$. It sends the frame vectors at time t to $x(t+\Delta t), \ldots, z(t+\Delta t)$ at time $t+\Delta t$.
- Observe that

$$
x(t+\Delta t) \simeq x(t)+\bar{\omega} \Delta \theta \times x
$$

In the limit $\Delta t \rightarrow 0$, we have

$$
\dot{x}=\omega \times x,
$$

and similarly for y and z, where $\omega:=\bar{\omega} \dot{\theta}$.

Angular velocities in reference frame

- Let $x=r_{1}, y=r_{2}$ and $z=r_{3}$ and set $R=\left[\begin{array}{lll}r_{1} & r_{2} & r_{3}\end{array}\right]$. We can write

$$
\dot{R}=\left[\begin{array}{lll}
\omega \times r_{1} & \omega \times r_{2} & \omega \times r_{3}
\end{array}\right]=\omega \times R
$$

- We want to get rid of the cross product and only have matrix multiplications.
- We need the following definition: to each vector $\omega \in \mathbb{R}^{3}$, we can associate uniquely a 3×3 matrix

$$
\omega=\left(\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right) \leftrightarrow\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right):=[\omega] .
$$

- Matrices as the one above are so that $A=-A^{\top}$. They are called skew-symmetric. The set of skew-symmetric matrices is denoted by $\mathfrak{s o}(3)$

Angular velocities and change of frame

- We can now write $\dot{R}=\omega \times R$ as

$$
\dot{R}=[\omega] R \Leftrightarrow[\omega]=\dot{R} R^{-1} .
$$

Note: up to now, R, \dot{R} and ω were expressed in an inertial reference frame.

- Recall that R describe the orientation of the body in the reference frame, i.e. $R_{s b}=: R$.
- We can express the rotation vector in the body frame as

$$
\omega_{b}=R_{b s} \omega_{s}=R^{-1} \omega_{s}=R^{\top} \omega_{s}
$$

where $\omega_{s}=\omega$. Recall that $R_{s b}=R_{b s}^{-1}$

A useful identity

Proposition

For $\omega \in \mathbb{R}^{3}$ and $R \in S O$ (3), we have

$$
R[\omega] R^{\top}=[R \omega] .
$$

Proof. Let r_{i}^{\top} be the i th row of R. Recall that if $M=$ is 3×3 matrix with columns $\{a, b, c\}$, then $\operatorname{det} M=a^{\top}(b \times c)=c^{\top}(a \times b)=b^{\top}(c \times a)$. We have

$$
\begin{aligned}
R[\omega] R^{\mathrm{T}} & =\left[\begin{array}{lll}
r_{1}^{\mathrm{T}}\left(\omega \times r_{1}\right) & r_{1}^{\mathrm{T}}\left(\omega \times r_{2}\right) & r_{1}^{\mathrm{T}}\left(\omega \times r_{3}\right) \\
r_{2}^{\mathrm{T}}\left(\omega \times r_{1}\right) & r_{2}^{\mathrm{T}}\left(\omega \times r_{2}\right) & r_{2}^{\mathrm{T}}\left(\omega \times r_{3}\right) \\
r_{3}^{\mathrm{T}}\left(\omega \times r_{1}\right) & r_{3}^{\mathrm{T}}\left(\omega \times r_{2}\right) & r_{3}^{\mathrm{T}}\left(\omega \times r_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -r_{3}^{\mathrm{T}} \omega & r_{2}^{\mathrm{T}} \omega \\
r_{3}^{\mathrm{T}} \omega & 0 & -r_{1}^{\mathrm{T}} \omega \\
-r_{2}^{\mathrm{T}} \omega & r_{1}^{\mathrm{T}} \omega & 0
\end{array}\right] \\
& =[R \omega],
\end{aligned}
$$

Angular velocities and change of frame

- Recall that $\left[\omega_{s}\right]=\dot{R} R^{-1}$.
- We have $\omega_{b}=R_{s b}^{\top} \omega_{s} \Leftrightarrow\left[\omega_{b}\right]=\left[R_{s b}^{\top} \omega_{s}\right]$.
- Using the previous Proposition, we have

$$
\left[\omega_{b}\right]=R^{\top}\left[\omega_{s}\right] R=R^{\top}\left(\dot{R} R^{\top}\right) R=R^{\top} \dot{R}=R^{-1} \dot{R}
$$

- We have in summary: for $R_{s b}=R$ the orientation of a rigid body in $3 D$ with angular velocity vector ω_{s} (in reference frame) or ω_{b} (in body frame), we have

$$
\begin{aligned}
\dot{R} R^{-1} & =\left[\omega_{s}\right] \\
R^{-1} \dot{R} & =\left[\omega_{b}\right]
\end{aligned}
$$

