Introduction to Robotics
Lecture 2: Configuration Space Representation
and holonomic/non-holonomic constraints



Configuration and DoFs

» The number of DoF's of a C-space gives us its dimension.

» Does it imply that if dof = n, then the C-space is R"? No:
spaces of the same dimension can be different and are not
necessarily R"”. This impacts the way we set coordinates on
the C-space.

» Two spaces are (topologically) equivalent is they can be
continuously deformed into the other without cutting or

gluing.

Examples



Configuration and DoFs

» The C-space of a point in the plane is R?.
» An angle variable is an element of the circle, denoted by st

» Rotations in 3D are more complex. They are not given by
three independent angles!

» C-space of rigid body in the plane is R? x S?.

» C-space of PR-robot arm is R x S!. C-space of 2R robot arm
in S1 x St := T2

» C-space of a planar rigid body with a 2R robot arm:
R? x St x T2

» For S? the 2-sphere: S x St # S2I



Configuration Space Representation

» A choice of n free coordinates to represent an n-dimensional
space is called an explicit parametrization. They are not
unique for a given C-space. For example, we can choose
where to put the 'origin’, or 'default configuration.
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Configuration Space Representation

» An implicit representation is given by constrained coordinates.
It is often easier to obtain than an explicit representation.

> Four angles + relations

Lycos(01) + Lacos(01 +62) + -+ Lacos(01 + 02+ ---+04) =0
Ly sin(01)+ Ly sin(91 +(92)+~~-+ L4sin(91 +6r+--- +(94) =0
014+6>+603+04,—2r=0

= 1 DoF.



Velocity constraints

» When the robot has mass/inertia, we need to include
dynamical variable to describe its state. E.g., we need the
position and momentum of a particle to describe its motion.

» Given a description of a state space with variables

(q17QZaP1,P2), with q,- = pi,

constraints on the velocity can be either holonomic or
non-holonomic: we explain the difference in the following
slides.

» In a nutshell: holonomic constraints decrease the dimension of
the C-space, non-holonomic constraints do not.



Velocity constraints

> Use x € R" for the position coordinates.

» We consider constraints given by

where A(x) is a matrix. These are called Pfaffian constraints.

» Given a set of Pfaffian constraints, we say they are integrable
if we can find a function g such that % = A. Such
constraints are holonomic.

» Why? If such g exists, the constraints A(x)x = 0 are the
same as the constraints on the position variables g(x) = c:

%g(x(t)) - giX — A()% = 0.

> If no such g exists, the constraints are called non-holonomic.



Velocity constraints
» Consider a rolling disk on the plane. Described by (x,y, 0, ¢).

> The coin rolls without slipping: its always goes in the
direction (cos ¢, sin ¢) with speed r6:

X\  _,[cos¢
()=o)
» Set [q1 g1 -+ qa] =[x y ¢ 0], we have the Pfaffian
constraints
1 0 0 —rcosqgs) .
(0 10 rsinq3>q_0’

» These are not holonomic: intuitively, no decrease in dimension
of C-space.



How to check for non-holonomy of constraints

» A necessary condition for non-holonomy: if there exists g
0, ogi

such that 28 = A, then A;; = $&..
ox ! y ox;

» Using equality of the mixed derivatives, we obtain the
necessary condition:

8A,j B 6Aik

Oy ox;

» Consider a rolling disk on the plane. Described by (x, y, 0, ¢).

» These are not holonomic: mathematically, no g with %5 =A
exists: no equality of mixed derivatives!

. . . . . 0%g _ O%g
» If such g exists and is twice differentiable, then Ixdy = Dyox:
og1 _ _ g _
> Here, g — —/C0sq3 and thus dqi0qs — 1SN g3
i dg1 _ g _ P
> Similarly, 9gs — 0 and thus D008 — 0 = contradiction.



