
Introduction to Robotics
Lecture 2: Configuration Space Representation

and holonomic/non-holonomic constraints



Configuration and DoFs

I The number of DoF’s of a C-space gives us its dimension.

I Does it imply that if dof = n, then the C-space is Rn? No:
spaces of the same dimension can be different and are not
necessarily Rn. This impacts the way we set coordinates on
the C-space.

I Two spaces are (topologically) equivalent is they can be
continuously deformed into the other without cutting or
gluing.

Examples



Configuration and DoFs

I The C-space of a point in the plane is R2.

I An angle variable is an element of the circle, denoted by S1.

I Rotations in 3D are more complex. They are not given by
three independent angles!

I C-space of rigid body in the plane is R2 × S1.

I C-space of PR-robot arm is R× S1. C-space of 2R robot arm
in S1 × S1 := T 2.

I C-space of a planar rigid body with a 2R robot arm:
R2 × S1 × T 2.

I For S2 the 2-sphere: S1 × S1 6= S2!



Configuration Space Representation
I A choice of n free coordinates to represent an n-dimensional

space is called an explicit parametrization. They are not
unique for a given C-space. For example, we can choose
where to put the ’origin’, or ’default configuration.



Configuration Space Representation

I An implicit representation is given by constrained coordinates.
It is often easier to obtain than an explicit representation.

I Four angles + relations

L1 cos(θ1) + L2 cos(θ1 + θ2) + · · ·+ L4 cos(θ1 + θ2 + · · ·+ θ4) = 0

L1 sin(θ1) + L2 sin(θ1 + θ2) + · · ·+ L4 sin(θ1 + θ2 + · · ·+ θ4) = 0

θ1 + θ2 + θ3 + θ4 − 2π = 0

⇒ 1 DoF.



Velocity constraints

I When the robot has mass/inertia, we need to include
dynamical variable to describe its state. E.g., we need the
position and momentum of a particle to describe its motion.

I Given a description of a state space with variables

(q1, q2, p1, p2), with q̇i = pi ,

constraints on the velocity can be either holonomic or
non-holonomic: we explain the difference in the following
slides.

I In a nutshell: holonomic constraints decrease the dimension of
the C-space, non-holonomic constraints do not.



Velocity constraints

I Use x ∈ Rn for the position coordinates.

I We consider constraints given by

A(x)ẋ = 0,

where A(x) is a matrix. These are called Pfaffian constraints.

I Given a set of Pfaffian constraints, we say they are integrable
if we can find a function g such that ∂g

∂x = A. Such
constraints are holonomic.

I Why? If such g exists, the constraints A(x)ẋ = 0 are the
same as the constraints on the position variables g(x) = c:

d

dt
g(x(t)) =

∂g

∂x
ẋ = A(x)ẋ = 0.

I If no such g exists, the constraints are called non-holonomic.



Velocity constraints
I Consider a rolling disk on the plane. Described by (x , y , θ, φ).

I The coin rolls without slipping: its always goes in the
direction (cosφ, sinφ) with speed r θ̇:(

ẋ
ẏ

)
= r θ̇

(
cosφ
sinφ

)
.

I Set [q1 q1 · · · q4] = [x y φ θ], we have the Pfaffian
constraints (

1 0 0 −r cos q3
0 1 0 −r sin q3

)
q̇ = 0.

I These are not holonomic: intuitively, no decrease in dimension
of C-space.



How to check for non-holonomy of constraints

I A necessary condition for non-holonomy: if there exists g
such that ∂g

∂x = A, then Aij = ∂gi
∂xj
.

I Using equality of the mixed derivatives, we obtain the
necessary condition:

∂Aij

∂xk
=
∂Aik

∂xj
.

I Consider a rolling disk on the plane. Described by (x , y , θ, φ).

I These are not holonomic: mathematically, no g with ∂g
∂q = A

exists: no equality of mixed derivatives!

I If such g exists and is twice differentiable, then ∂2g
∂x∂y = ∂2g

∂y∂x .

I Here, ∂g1
∂q4

= −r cos q3 and thus ∂2g1
∂q4∂q3

= r sin q3.

I Similarly, ∂g1
∂q3

= 0 and thus ∂2g1
∂q3∂q4

= 0⇒ contradiction.


