Lecture 22
Motion Planning II

Katie DC
Modern Robotics Ch 10.2-10.5
Admin

• No office hours (unless by appointment) or homework parties during fall break

• Final Projects
 • “Presentations” are the week after break
 • Videos due Monday 12/2 at midnight
 • Final report Monday 12/16 at midnight

• No class on Tuesday 12/10

• Quiz 4: decision-making, planning, and final
 • Required: Thu Dec 5 to Sat Dec 7
 • Re-take: Mon Dec 9 to Wed Dec 11
 • Practice Exam will be posted soon
Who is Nancy Amato?

- Head of the CS department and expert in motion planning
- Her paper on probabilistic planning is one of the most important papers in PRM, the first to not use uniform sampling in the configuration space
- She wrote a seminal paper with one of her students that shows how robot planning can be applied to protein motions (folding)
 - This line of work started a new research area in computational biology
Motion Planning Review
Graphs and Trees
Graphs and Trees
Graph Search Methods

A* search algorithm.
Graph Search Methods

A* search algorithm.

Dijkstra’s algorithm.

Credit: Subh83 on Wikipedia
Grid-World Example
A simple roadmap: visibility graph
A simple roadmap: visibility graph
Sampling Based Planners: Probabilistic Roadmaps
Reachability Tree for Dubin’s Car

Credit: Steven LaValle, Planning Algorithms
Algorithm 10.3 RRT algorithm.

1: initialize search tree T with x_{start}
2: while T is less than the maximum tree size do
3: $x_{\text{samp}} \leftarrow$ sample from \mathcal{X}
4: $x_{\text{nearest}} \leftarrow$ nearest node in T to x_{samp}
5: employ a local planner to find a motion from x_{nearest} to x_{new} in the direction of x_{samp}
6: if the motion is collision-free then
7: add x_{new} to T with an edge from x_{nearest} to x_{new}
8: if x_{new} is in $\mathcal{X}_{\text{goal}}$ then
9: return SUCCESS and the motion to x_{new}
10: end if
11: end if
12: end while
13: return FAILURE
Rapidly Exploring Random Trees (RRT)

Algorithm 10.3 RRT algorithm.

1. initialize search tree T with x_{start}
2. while T is less than the maximum tree size do
3. $x_{samp} \leftarrow$ sample from X
4. $x_{nearest} \leftarrow$ nearest node in T to x_{samp}
5. employ a local planner to find a motion from $x_{nearest}$ to x_{new} in the direction of x_{samp}
6. if the motion is collision-free then
7. add x_{new} to T with an edge from $x_{nearest}$ to x_{new}
8. if x_{new} is in X_{goal} then
9. **return** SUCCESS and the motion to x_{new}
10. end if
11. end if
12. end while
13. **return** FAILURE
RRT: Lunar Lander

Check out Steven Lavalle’s RRT Gallery: http://msl.cs.uiuc.edu/rrt/gallery.html
Summary

• Given an initial state and a desired final state, motion planning provides us with tools to find a time horizon and a sequence of actions to find a trajectory that reaches the goal without collisions.

• A roadmap path planner uses a graph representation of free space, which can then provide a trajectory using search algorithms.

• The basic RRT algorithm is a sampling-based method that grows a single search tree from start to find a motion to goal:
 • Uses a local planner to find a motion from the nearest node to the sampled node.
Course Recap

- **Weeks 01-03**: Perception + State Estimation
- **Weeks 04-11**: Kinematics + Control
- **Weeks 12-13**: Planning + Decision-Making
- **Weeks 14-15**: Projects
<table>
<thead>
<tr>
<th>If you liked...</th>
<th>Try this!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td></td>
<td>ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>If you liked...</td>
<td>Try this!</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Everything! | ABE 424 Principles of Mobile Robotics
 | ECE 498 Principles of Safe Autonomy |
| Linear Algebra | MATH 415 Applied Linear Algebra
<pre><code> | ECE 515 / ME 540 Control System Theory and Design |
</code></pre>
<p>| Probability | ECE 313 Probability with Engineering Applications |</p>
<table>
<thead>
<tr>
<th>If you liked...</th>
<th>Try this!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td></td>
<td>ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 415 Applied Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Probability</td>
<td>ECE 313 Probability with Engineering Applications</td>
</tr>
<tr>
<td>Sensing and State Estimation</td>
<td>ECE 310 / 417 Signal Processing</td>
</tr>
<tr>
<td></td>
<td>ECE 437 Sensors and Instrumentation</td>
</tr>
<tr>
<td></td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td>If you liked...</td>
<td>Try this!</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td></td>
<td>ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 415 Applied Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Probability</td>
<td>ECE 313 Probability with Engineering Applications</td>
</tr>
<tr>
<td>Sensing and State Estimation</td>
<td>ECE 310 / 417 Signal Processing</td>
</tr>
<tr>
<td></td>
<td>ECE 437 Sensors and Instrumentation</td>
</tr>
<tr>
<td></td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td>Robot Kinematics</td>
<td>ECE 489 / ME 446 / GE 422 Robot Dynamics and Control</td>
</tr>
<tr>
<td>Rigid Body Motion</td>
<td>SE 598 Soft Robotics</td>
</tr>
<tr>
<td>If you liked…</td>
<td>Try this!</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td></td>
<td>ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 415 Applied Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Probability</td>
<td>ECE 313 Probability with Engineering Applications</td>
</tr>
<tr>
<td>Sensing and State Estimation</td>
<td>ECE 310 / 417 Signal Processing</td>
</tr>
<tr>
<td></td>
<td>ECE 437 Sensors and Instrumentation</td>
</tr>
<tr>
<td></td>
<td>ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td>Robot Kinematics</td>
<td>ECE 489 / ME 446 / GE 422 Robot Dynamics and Control</td>
</tr>
<tr>
<td>Rigid Body Motion</td>
<td>SE 598 Soft Robotics</td>
</tr>
<tr>
<td>Control</td>
<td>ECE 486 Control Systems(or equivalent in your department)</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>If you liked...</td>
<td>Try this!</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics
 ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 415 Applied Linear Algebra
 ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Probability</td>
<td>ECE 313 Probability with Engineering Applications</td>
</tr>
<tr>
<td>Sensing and State Estimation</td>
<td>ECE 310 / 417 Signal Processing
 ECE 437 Sensors and Instrumentation
 ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td>Robot Kinematics</td>
<td>ECE 489 / ME 446 / GE 422 Robot Dynamics and Control</td>
</tr>
<tr>
<td>Rigid Body Motion</td>
<td>SE 598 Soft Robotics</td>
</tr>
<tr>
<td>Control</td>
<td>ECE 486 Control Systems (or equivalent in your department)</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Decision-Making</td>
<td>Artificial Intelligence / Reinforcement Learning
 ECE 448 Introduction to AI
 CS 446 Machine Learning</td>
</tr>
<tr>
<td>Planning</td>
<td>CS 498 Intelligent Robotics
 AE 483 Unmanned Aerial Vehicle Navigation and Control</td>
</tr>
<tr>
<td>If you liked...</td>
<td>Try this!</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Everything!</td>
<td>ABE 424 Principles of Mobile Robotics ECE 498 Principles of Safe Autonomy</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 415 Applied Linear Algebra ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Probability</td>
<td>ECE 313 Probability with Engineering Applications</td>
</tr>
<tr>
<td>Sensing and State Estimation</td>
<td>ECE 310 / 417 Signal Processing ECE 437 Sensors and Instrumentation ABE 424 Principles of Mobile Robotics</td>
</tr>
<tr>
<td>Robot Kinematics</td>
<td>ECE 489 / ME 446 / GE 422 Robot Dynamics and Control</td>
</tr>
<tr>
<td>Rigid Body Motion</td>
<td>SE 598 Soft Robotics</td>
</tr>
<tr>
<td>Control</td>
<td>ECE 486 Control Systems(or equivalent in your department)</td>
</tr>
<tr>
<td></td>
<td>ECE 515 / ME 540 Control System Theory and Design</td>
</tr>
<tr>
<td>Decision-Making</td>
<td>Artificial Intelligence / Reinforcement Learning</td>
</tr>
<tr>
<td></td>
<td>ECE 448 Introduction to AI CS 446 Machine Learning</td>
</tr>
<tr>
<td>Planning</td>
<td>CS 498 Intelligent Robotics AE 483 Unmanned Aerial Vehicle Navigation and Control</td>
</tr>
<tr>
<td>Labs</td>
<td>GE/SE 423 Introduction to Mechatronics</td>
</tr>
</tbody>
</table>