ECE 476 – Power System Analysis Fall 2017 Homework 9

Reading: Sections 11.1 – 11.3 in Chapter 11 of textbook. **In-class quiz:** Thursday, November 30, 2017.

Problem 1. Given a turbine-generator unit rated 100 MVA with a per unit inertia constant, H = 5 sec.

- (a) Calculate the kinetic energy stored at synchronous speed (3600 rpm).
- (b) Compare the answer from (a) with the kinetic energy of a 10-ton truck going at 60 mph.
- (c) Suppose that the generator is delivering 100 MW and then at t = 0, the line circuit breakers open. Calculate the shaft acceleration in rad/sec².

 $m\frac{d^2x}{dt^2} + a\frac{dx}{dt} + \sin x = f(t)$

(d) At this rate, how long does it take for δ to increase from δ^0 to $\delta^0 + 2\pi$ radians.

Problem 2. Consider the spring-mass system shown in Fig. 1.

Figure 1: Spring-mass system for Problem 2.

- (a) For t < 0, f(t) = 0.5. Find the steady-state x^0 .
- (b) For $0 \le t$, $f(t) = 0.5 + \Delta f(t)$, where $\Delta f(t)$ is small. Find a linear differential equation that describes $\Delta x = x x^0$ in terms of $\Delta f(t)$.
- (c) Find the natural frequencies of the linearized system found in part (b) with m = 1.0 and a = 0.01. Suppose that $\Delta f(t) = 0.1u(t)$, where u(t) is the unit step function. Roughly sketch x(t) for $t \ge 0$, showing the initial value, final value, frequency, and decay of the lightly damped oscillatory component.

Problem 3. Consider the single-machine infinite-bus system shown in Fig. 2. The generator is described by the classical model, with $X'_d = 1.0$ p.u., and delivers steady-state power $P_G = 0.5$ p.u. to an infinite bus through a transmission line with reactance $X_L = 0.4$ p.u. Assume that |E| = 1.8 p.u., $V_{\infty} = 1 \angle 0^\circ$ p.u., H = 5 sec,

Figure 2: Single-machine infinite-bus system for Problem 3.

- 1. Find the two possible steady-state (equilibrium) values of power angle δ that lie in the interval $[0, 2\pi]$.
- 2. Which of these two equilibrium values are we likely to observe in practice? *Hint:* Linearize around the equilibrium value and consider the natural frequencies found from linear differential equation in $\Delta \delta$.

Problem 4. Suppose that in Problem 3 at t = 0, the line circuit breakers open. $P_M^0 = 0.5$ p.u. remains constant. Calculate δ and $\dot{\delta}$ at the end of 1 sec under two assumptions and compare:

- (a) D = 0
- (b) D = 0.001

Problem 5. Refer to Fig. 3 and assume that $P_M = 1.0$ p.u., |E| = 1.5 p.u., and $X'_d = 0.9$ p.u.

Figure 3: System for Problem 5.

- (a) At t = 0 the circuit breakers open and remain open. Determine if the transient is stable.
- (b) Repeat (a) for $X'_d = 0.6$ p.u.