ECE 476 - Power System Analysis Fall 2017
 Homework 6

Reading: Chapter 6.
In-class quiz: Tuesday October 17, 2017
Problem 1. Compute the elements of the third row of $Y_{b u s}$ for the power system in Example 6.9 of textbook.
Problem 2. Given the impedance diagram of a simple system as shown in Figure 1, draw the admittance diagram for the system and develop the 4×4 bus admittance matrix $Y_{b u s}$ by inspection.

Figure 1: System diagram for problem 2.
Problem 3. A load L consuming 1 p.u. of active power and 0.5 p.u. of reactive power is connected to a generator $G 1$ through a short transmission line with $Z^{\prime}=0.02+j 0.06 \mathrm{p} . \mathrm{u}$. Also, there is a capacitor connected to the load bus with admittance $Y_{c a p}=j 0.25 \mathrm{p} . \mathrm{u}$. The generator voltage is voltage $V_{G 1}=1 \angle 0$.
a) Draw the one line diagram of this system indicating clearly all the elements referenced above.
b) Write the admittance matrix $Y_{b u s}$ for this system.
c) Write the power flow equations for this system. DO NOT SOLVE!

Problem 4. Solve the following equation by the Newton-Raphson method:

$$
\begin{gathered}
2 x_{1}^{2}+x_{2}^{2}-8=0 \\
x_{1}^{2}-x_{2}^{2}+x_{1} x_{2}-4=0
\end{gathered}
$$

Start with an initial guess of $x_{1}=1$ and $x_{2}=1$.
Problem 5. Assume a $1+j 0.5$ per unit load at bus 2 is being supplied by a generator at bus 1 through a transmission line with series impedance of $0.05+j 0.1$ per unit. Assuming bus 1 is the swing bus with a fixed per unit voltage of $1.0 \angle 0$, use the Newton-Raphson method to calculate the voltage at bus 2 after two iterations.

