ECE 476 - Power System Analysis Fall 2017
 Homework 4

Reading: Chapter 5 from textbook.
In-class quiz: Thursday, September 28, 2017
Problem 1. A $500-\mathrm{km}, 500-\mathrm{kV}, 60-\mathrm{Hz}$ uncompensated three-phase line has a positive-sequence series impedance $\bar{z}=0.03+j 0.35 \Omega / \mathrm{km}$ and a positive-sequence shunt admittance $\bar{y}=j 4.4 x 10^{-6} \mathrm{~S} / \mathrm{km}$. Calculate:
(a) \bar{Z}_{c}
(b) (γd)
(c) The exact ABCD parameters for this line.

Problem 2. A $320-\mathrm{km} 500-\mathrm{kV}, 60-\mathrm{Hz}$ three-phase uncompensated line has a positive-sequence series reactance $\mathrm{x}=0.34 \Omega / \mathrm{km}$ and a positive-sequence shunt admittance $\mathrm{y}=4.5 \times 10^{-6} \mathrm{~S} / \mathrm{km}$. Neglecting losses, calculate:
(a) Its characteristic impedance \bar{Z}_{c}.
(b) The value of γd.
(c) The exact ABCD parameters for this line.
(d) The surge impedance loading in MW.

Problem 3. The per-phase impedance of a short three-phase transmission line is $0.5 \angle 53.15^{\circ} \Omega$. The threephase load at the receiving end is 900 kW at 0.8 p.f. lagging. If the line-to-line sending-end voltage is 3.3 kV , determine:
(a) The receiving-end line-to-line voltage in kV .
(b) The line current.
(c) The phasor diagram with the line current I, as reference.

Problem 4. To maintain a safe "margin" of stability, system designers have decided that the power angle $\theta_{12}:=\theta_{1}-\theta_{2}$, where θ_{1} is the phase angle of the sending-end voltage and θ_{2} is the phase angle of the receivingend voltage, cannot be greater that 45°. We wish to transmit 500 MW though a 300 -mile line and need to pick a transmission-line voltage level. Consider $138-, 345-$, and $765-\mathrm{kV}$ lines. Which voltage level(s) would be suitable? As a first approximation, assume that the voltage magnitudes on sending and receiving ends are equal, i.e., $V_{1}=V_{2}$ and the lines are loseless, i.e., $\gamma=j \beta$, with $\beta=0.002 \mathrm{rad} / \mathrm{mi}$.

Problem 5. Given a transmission line described by a total series impedance $\bar{Z}=\bar{z} d=20+j 80 \Omega$ and a total shunt admittance $\bar{Y}=\bar{y} d=j 5 \times 10^{-4} \Omega$.
(a) Find its characteristic impedance $\bar{Z}_{c}, \gamma d, e^{\gamma d}, \sinh \gamma d$, and $\cosh \gamma d$.
(b) Suppose that the line is terminated in its characteristic impedance \bar{Z}_{c}. Find the efficiency of the transmission line in this case, i.e., find $\eta=-P_{21} / P_{12}$, where P_{21} is the active power flowing from the receiving end to the sending end of the line, and P_{12} is the active power flowing from the sending end to the receiving end of the line.

