ECE 476 – Power System Analysis Fall 2017 Homework 2

In-class quiz: Thursday, September 14, 2017

Problem 1. A three-phase line, which has an impedance of $(2 + j4) \Omega$ per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of $(30 + j40) \Omega$ per phase, and the other is Δ -connected with an impedance of $(60 - j45) \Omega$ per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of $120\sqrt{3}$ V (rms, line-to-line). Determine:

- 1. The current, real power, and reactive power delivered by the sending-end source.
- 2. The line-to-line voltage at the load.
- 3. The current per phase in each load.
- 4. The total three-phase real and reactive powers absorbed by each load and by the line.

Check that the total three-phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.

Problem 2. Two three-phase generators supply a three-phase load through separate three-phase lines. The load absorbs 30 kW at 0.8 power factor lagging. The line impedance is $(1.4 + j1.6) \Omega$ per phase between generator G1 and the load, and $(0.8 + j1) \Omega$ per phase between generator G2 and the load. If generator G1 supplies 15 kW at 0.8 power factor lagging, with a terminal voltage of 460 V line-to-line, determine:

- 1. The voltage at the load terminals.
- 2. The voltage at the terminals of generator G2.
- 3. The real and reactive power supplied by generator G2.

Assume balanced operations.

Problem 3. An unbalanced three-phase, Y-connected power system is shown in the figure below. The three phases have voltages $\overline{V}_a = 100\angle 0^\circ$ V, $\overline{V}_b = 100\angle -120^\circ$ V, $\overline{V}_c = 100\angle 120^\circ$ V. The impedances of loads A, B, C are $\overline{Z}_a = 10 \Omega$, $\overline{Z}_b = -j10 \Omega$, $\overline{Z}_c = j10 \Omega$.

- 1. What are the currents of each phase $\overline{I}_a, \overline{I}_b, \overline{I}_c$?
- 2. What is the current on the neutral line \overline{I}_n ?
- 3. What are the line voltages $\overline{V}_{ab}, \overline{V}_{bc}, \overline{V}_{ca}$?
- 4. Provide the phasor diagram of the phasors including the phase voltages, line voltages, phase currents and the current on the neutral line.