ECE 476 - Power System Analysis Fall 2017
 Homework 7

In-class quiz: Tuesday, October 24, 2017
Problem 1. Problem 6.38 of GS\&O, $6^{\text {th }}$ Edition
Problem 2. Problem 6.39 of GS\&O, $6^{\text {th }}$ Edition
Problem 3. Problem 6.40 of GS\&O, $6^{\text {th }}$ Edition
Problem 4. Write a MATLAB script to solve the following system of equations via Newton-Raphson:

$$
\begin{aligned}
2 x_{1}^{2}+x_{2}^{2} & =8 \\
x_{1}^{2}-x_{2}^{2}+x_{1} x_{2} & =4
\end{aligned}
$$

Turn in the code and the output.
Problem 5. This problem requires you to compute a solution in MATLAB again. Consider the system shown in Figure 1, which was discussed in class. First suppose $V_{1}=1, \theta_{1}=0^{\circ}, V_{2}=0.95, P_{2}=1.5$, and $X_{l}=0.2$ (all in p.u.). Iterate θ_{2} until it converges using the Newton-Raphson MATLAB code. Use initial guess of $0^{\circ}, 60^{\circ}$, and 90° for θ_{2} and comment on the results. Note that this is a scalar case of Newton Raphson. Finally, note that in a realistic load bus, the voltage is a variable and is not fixed.

Now consider the more realistic case of having only V_{1} is fixed and V_{2} being a variable. The other parameters are same as above and $Q_{2}=0.15$. Find θ_{2} and V_{2} with initial guesses of 0° and 1 , respectively, using MATLAB (this is a vector case of $\mathrm{N}-\mathrm{R}$). Turn in the MATLAB code and the outputs.

Figure 1: System diagram.

