ECE 476 - Power System Analysis Fall 2017
 Homework 1

In-class quiz: Thursday, September 7, 2017

Reading: Chapters 1 and 2 of GS\&O

Problem 1. With $|V|=100 \mathrm{~V}$, the instantaneous power $p(t)$ into a network N has a maximum value 1707 W and a minimum value of -293 W .

1. Find a possible series $R L$ circuit equivalent to N.

Define $v(t)$ and $i(t)$ of the network N as

$$
\begin{aligned}
v(t) & =\sqrt{2} V \cos \left(\omega t+\theta_{V}\right), \\
i(t) & =\sqrt{2} I \cos \left(\omega t+\theta_{I}\right) .
\end{aligned}
$$

Then, the instantaneous power into N is

$$
\begin{aligned}
p(t)=v(t) i(t) & =2 V I \cos \left(\omega t+\theta_{V}\right) \cos \left(\omega t+\theta_{I}\right) \\
& =V I\left[\cos \left(\theta_{V}-\theta_{I}\right)+\cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)\right] .
\end{aligned}
$$

The maximum value of $p(t)$ occurs when $\cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)=1$ and, similarly, the minimum value of $p(t)$ occurs when $\cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)=-1$. So we have the following 2 equations:

$$
\begin{aligned}
P_{\max } & =V I \cos \left(\theta_{V}-\theta_{I}\right)+V I=1707 \mathrm{~W} \\
P_{\min } & =V I \cos \left(\theta_{V}-\theta_{I}\right)-V I
\end{aligned}=-293 \mathrm{~W} .
$$

Subtracting one from the other, we get

$$
2 V I=1707+293 \Longrightarrow V I=1000 \mathrm{~W} \Longrightarrow I=10 \mathrm{~A}
$$

and adding the two and substituting $V I=1000$ in, we get

$$
2 V I \cos \left(\theta_{V}-\theta_{I}\right)=2000 \cos \left(\theta_{V}-\theta_{I}\right)=1414 \Longrightarrow \theta_{V}-\theta_{I}=\cos ^{-1}\left(\frac{1414}{2000}\right)= \pm 45^{\circ}
$$

An inductive load causes current to lag the voltage, so we get $\theta_{V}-\theta_{I}=45^{\circ}$. Now we use $V=100 \angle \theta_{V}$ and $I=10 \angle \theta_{I}$ to get

$$
Z=\frac{V}{I}=\frac{100 \angle \theta_{V}}{10 \angle \theta_{I}}=10 \angle\left(\theta_{V}-\theta_{I}\right)=10 \angle 45^{\circ} \Omega
$$

Finally we obtain $R=\mathbb{R}(Z)=7.07 \Omega$ and $\omega L=\mathbb{I}(Z)=7.07 \Omega \Longrightarrow L=0.0188 \mathrm{H}$.
2. Find $S=P+j Q$ into N.

Using the voltage and current phasors from above, we get

$$
S=V I^{*}=\left(100 \angle \theta_{V}\right)\left(10 \angle \theta_{I}\right)^{*}=\left(100 \angle \theta_{V}\right)\left(10 \angle\left(-\theta_{I}\right)\right)=1000 \angle\left(\theta_{V}-\theta_{I}\right)=1000 \angle 45^{\circ} .
$$

So $S=P+j Q$, where $P=\mathbb{R}(S)=707 \mathrm{~W}$ and $Q=\mathbb{I}(S)=707$ Var.
3. Find the maximum instantaneous power into L and compare with Q.

The instantaneous power into L is

$$
\begin{aligned}
p_{L}(t)=v_{L}(t) i(t)=L \frac{d i}{d t} i(t) & =-L \sqrt{2} \omega I \sin \left(\omega t+\theta_{I}\right) \sqrt{2} I \cos \left(\omega t+\theta_{I}\right) \\
& =2 \omega L I^{2} \sin \left(\omega t+\theta_{I}\right) \cos \left(\omega t+\theta_{I}\right) \\
& =\omega L I^{2} \sin \left(2 \omega t+2 \theta_{I}\right) .
\end{aligned}
$$

The maximum value of $p_{L}(t)$ occurs when $\sin \left(2 \omega t+2 \theta_{I}\right)=1$, and at this point,

$$
p_{L, \max }=\omega L I^{2}=2 \pi 60(0.0188)\left(10^{2}\right)=707 \mathrm{~W},
$$

which is equal to Q.
Problem 2. A certain 1ϕ load draws 5 MW at 0.7 power factor lagging. Determine the reactive power required from a parallel capacitor to bring the power factor of the parallel combination up to 0.9 .

With the current power factor of 0.7 lagging, we solve the following for the current Q :

$$
\tan \left(\cos ^{-1}(0.7)\right)=\frac{Q_{c u r}}{P}=\frac{Q_{c u r}}{5} \Longrightarrow Q_{c u r}=5.101 \mathrm{MVar}
$$

To reach a power factor of 0.9 lagging, we solve the following for the desired Q :

$$
\tan \left(\cos ^{-1}(0.9)\right)=\frac{Q_{\text {des }}}{P}=\frac{Q_{\text {des }}}{5} \Longrightarrow Q_{\text {des }}=2.422 \mathrm{MVar}
$$

Therefore, the reactive power required from a parallel capacitor to bring the power factor to 0.9 is

$$
Q_{c a p}=Q_{c u r}-Q_{\text {des }}=5.101-2.422=2.679 \mathrm{MVar}
$$

Problem 3. A 3ϕ load draws 200 kW at a PF of 0.707 lagging from a $440-\mathrm{V}$ line. In parallel is a 3ϕ capacitor bank that supplies 50 kVAr . Find the resultant power factor and current (magnitude) into the parallel combination.

In each phase, the load draws $200 / 3 \mathrm{~kW}$ at a PF of 0.707 lagging. So we solve for the reactive power that the load draws in each phase as follows:

$$
\tan \left(\cos ^{-1}(0.707)\right)=\frac{Q_{\text {load }, 1 \phi}}{P_{\text {load }, 1 \phi}}=\frac{Q_{\text {load }, 1 \phi}}{200 / 3} \Longrightarrow Q_{\text {load }, 1 \phi}=66.69 \mathrm{kVar} .
$$

With the capacitor bank in parallel, the combined reactive power drawn becomes

$$
Q_{\text {combo }, 1 \phi}=Q_{\text {load }, 1 \phi}-Q_{\text {cap }, 1 \phi}=66.69-50 / 3=50.02 \mathrm{kVar} .
$$

So the power factor of the combination is

$$
\cos \left(\tan ^{-1}\left(\frac{50.02}{200 / 3}\right)\right)=0.7999 \approx 0.8 \text { lagging }
$$

The current magnitude into the combination is

$$
\left|I_{c o m b o, 1 \phi}\right|=\frac{\left|S_{\text {combo } 1 \phi}\right|}{|V|}=\frac{\sqrt{P_{1 \phi}^{2}+Q_{c o m b o, 1 \phi}^{2}}}{|V|}=\frac{\sqrt{(200 / 3)^{2}+50.02^{2}}}{440}=189 \mathrm{~A} \text {, per phase }
$$

Problem 4. A 1ϕ load draws 10 kW from a $416-\mathrm{V}$ line at a power factor of 0.9 lagging.

1. Find $S=P+j Q$.

At power factor 0.9 lagging, the complex power drawn is solved as

$$
\tan \left(\cos ^{-1}(0.9)\right)=\frac{Q}{P}=\frac{Q}{10} \Longrightarrow Q=4.84 \mathrm{kVar} .
$$

Then, $S=10+j 4.84 \mathrm{kVA}$.
2. Find $|I|$.

$$
|I|=\frac{|S|}{|V|}=\frac{\sqrt{10^{2}+4.84^{2}} \times 1000}{416}=26.7 \mathrm{~A}
$$

3. Assume that $\angle I=0$ and find the instantaneous power $p(t)$.

$$
\begin{aligned}
p(t)=v(t) i(t) & =\sqrt{2} V \cos \left(\omega t+\theta_{V}\right) \sqrt{2} I \cos (\omega t) \\
& =2 V I \cos \left(\omega t+\theta_{V}\right) \cos (\omega t) \\
& =V I \cos \theta_{V}+V I \cos \left(2 \omega t+\theta_{V}\right) \\
& =P+V I\left[\cos (2 \omega t) \cos \theta_{V}-\sin (2 \omega t) \sin \theta_{V}\right] \\
& =P+V I \cos \theta_{V} \cos (2 \omega t)-V I \sin \theta_{V} \sin (2 \omega t) \\
& =P+P \cos (2 \omega t)-Q \sin (2 \omega t) \\
& =P(1+\cos (2 \omega t))-Q \sin (2 \omega t) \\
& =10(1+\cos (2 \omega t))-4.84 \sin (2 \omega t) \mathrm{kW}
\end{aligned}
$$

Problem 5. A small manufacturing plant is located 2 km down a transmission line, which has a series reactance of $0.5 \Omega / \mathrm{km}$. The line resistance is negligible. The line voltage plant is $480 \angle 0 \mathrm{~V}$ (rms), and the plant consumes 120 kW at 0.85 power factor lagging. Determine the voltage and power factor at the sending end of the transmission line by using:

1. A complex power approach.

The load draws 120 kW at 0.85 power factor lagging. We solve for the reactive power drawn by the load as

$$
\tan \left(\cos ^{-1}(0.85)\right)=\frac{Q_{\text {load }}}{P_{\text {load }}}=\frac{Q_{\text {load }}}{120} \Longrightarrow Q_{\text {load }}=74.37 \mathrm{kVar} .
$$

Therefore, the complex power drawn by the load is $S_{l o a d}=120+j 74.37 \mathrm{kVA}$. We can now solve for the current into the load as

$$
I=\left(\frac{S_{\text {load }}}{V_{\text {load }}}\right)^{*}=\left(\frac{120+j 74.37}{480 \angle 0^{\circ}}\right)^{*}=294.1 \angle\left(-31.79^{\circ}\right) \mathrm{A} .
$$

The loss in the line can be computed as

$$
S_{\text {line }}=V_{\text {line }} I_{\text {line }}^{*}=Z_{\text {line }} I_{\text {load }} I^{*}=j 2(0.5) 294.1^{2}=j 86.51 \mathrm{kVA} .
$$

Thus, the complex power supplied by the source is

$$
S_{\text {source }}=S_{\text {load }}+S_{\text {line }}=120+j 74.37+j 86.51=120+j 160.88 \mathrm{kVA}=200.7 \angle 53.28^{\circ} \mathrm{kVA} .
$$

So the power factor at the sending end is $\cos \left(53.28^{\circ}\right)=0.598$, lagging.
Finally, the voltage at the sending end is

$$
V_{\text {source }}=\frac{S_{\text {source }}}{I^{*}}=\frac{200.7 \angle 53.28^{\circ}}{294.1 \angle 31.79^{\circ}}=682.4 \angle 21.5^{\circ} \mathrm{V} .
$$

2. A circuit analysis approach.

Using KVL, we have

$$
V_{\text {source }}=Z_{\text {line }} I+V_{\text {load }}=j 1\left(294.1 \angle\left(-31.79^{\circ}\right)\right)+480=682.4 \angle 21.5^{\circ} \mathrm{V}
$$

And the power factor is $\cos \left(\theta_{V}-\theta_{I}\right)=\cos \left(21.5^{\circ}+-31.79^{\circ}\right)=0.598$, lagging.

