ECE 476 – Power System Analysis Fall 2017 Homework 10

Reading: Section 8.1 in Chapter 8 of textbook, and Sections 9.1–9.4 in Chapter 9 of textbook. **In-class quiz**: Thursday, December 7, 2017

Problem 1. (a) Find the (leading) symmetrical components, \overline{I}_a^0 , \overline{I}_a^+ , and \overline{I}_a^- , for $\overline{I}_a=1$, $\overline{I}_b=10$, and $\overline{I}_c=-10$; (b) Check by sketching \overline{I}_a , \overline{I}_b , and \overline{I}_c , as the sum of appropriate symmetrical components.

Problem 2. Find the symmetrical components of $\overline{E}_a = e^{j0}$, $\overline{E}_b = e^{-j\pi/2}$, $\overline{E}_c = e^{-j3\pi/4}$.

Problem 3. Refer to Fig. 1, and assume that $\overline{E}_a = 1$, $\overline{E}_b = -1$, $\overline{E}_c = j1$. (a) Describe how you would use the method of symmetrical components to find \overline{I}_a , \overline{I}_b , and \overline{I}_a ; (b) Carry out the procedure.

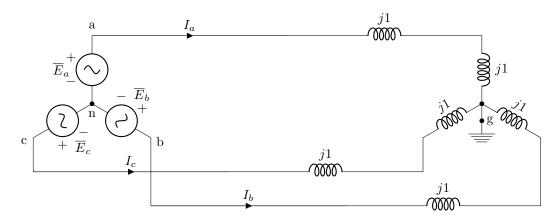


Figure 1: Power system diagram

Problem 4. In Fig. 2, the source voltages are positive-sequence sets and $\overline{Z}^f = \overline{Z}$. Using an appropriate interconnections of sequene networks, find \overline{I}^f (in terms of \overline{Z} , and $\overline{V}_{a'g}$).

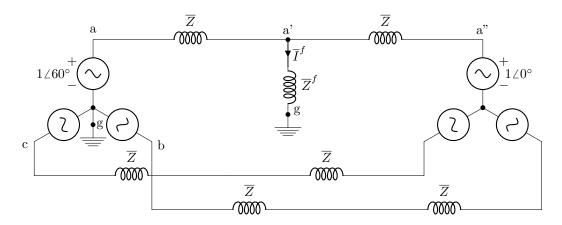


Figure 2: Power system diagram 2