Problem 1. (a) Find the (leading) symmetrical components, \(I_a^0 \), \(I_a^+ \), and \(I_a^- \), for \(I_a = 1 \), \(I_b = 10 \), and \(I_c = -10 \); (b) Check by sketching \(\vec{I}_a \), \(\vec{I}_b \), and \(\vec{I}_c \), as the sum of appropriate symmetrical components.

Problem 2. Find the symmetrical components of \(E_a = e^{j0} \), \(E_b = e^{-j\pi/2} \), \(E_c = e^{-j3\pi/4} \).

Problem 3. Refer to Fig. 1, and assume that \(E_a = 1 \), \(E_b = -1 \), \(E_c = j1 \). (a) Describe how you would use the method of symmetrical components to find \(I_a \), \(I_b \), and \(I_a \); (b) Carry out the procedure.

Problem 4. In Fig. 2, the source voltages are positive-sequence sets and \(Z_f = Z \). Using an appropriate interconnections of sequence networks, find \(I_f \) (in terms of \(Z \), and \(V_{a'g} \)).