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Abstract— This paper presents a novel method on the motion
and path planning for unicycle robots in environments with
static circular obstacles. The method employs a family of 2-
dimensional analytic vector fields, which have singular points
of high-order type and whose integral curves exhibit various
patterns depending on the value of a parameter λ. More
specifically, for a known value of λ the vector field has a
unique singular point of dipole type and its integral curves
are suitable for steering the unicycle to a goal configuration.
Furthermore, for the value of λ that the vector field has
a continuum of singular points, the integral curves can be
used to define flows around circular obstacles. An almost
global feedback motion plan is then constructed by suitably
blending attractive and repulsive vector fields in a static obstacle
environment. The proposed motion planning and control design
is also extended to the multi-agent case, where each agent needs
to converge to a desired configuration while avoiding collisions
with other agents. The efficacy of the approach is demonstrated
via simulation results.

I. INTRODUCTION

Motion planning, coordination and control for robotic sys-
tems still remain an active research topic in many respects.
Research within the robotics community has attributed vari-
ous formulations and methodologies on the motion planning
problem, often specialized based on the control objectives
and the characteristics of the problems at hand. These
methodologies range from Lyapunov-based control methods,
to sampling-based planning, to combinatorial planning, see
for instance [1]–[3] and the references therein. Furthermore,
applications involving multi-robot systems have attracted the
interest of the control systems community as well. Emphasis
has been given in consensus (also called synchronization,
rendezvous or agreement), flocking and formation control
problems for multiple agents, see [4] for a very recent survey.

Plausibly, collision avoidance with respect to (w.r.t.) static
(stationary) or dynamic (moving) obstacles/agents is a re-
quirement of highest priority in motion planning and coordi-
nation problems. One of the most popular ways to formulate
and tackle such problems is based on Lyapunov-like scalar
functions, see for instance the Avoidance Functions in [5]
and the Artificial Potential Fields (APF) in [6]. A very recent
survey on addressing multi-agent problems with potential
functions’ methods is given in [7]. Scalar functions offer the
merit of using Lyapunov-based control design and analysis,
which not only yield solutions in closed-form, but also offer
certain guarantees regarding specified objectives [8].

A drawback of potential functions’ methods is the possible
appearance of local minima away from the goal point, i.e. of
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points in the state space other than the desired equilibrium
at which the gradient vector vanishes. This in principle may
result in system trajectories that get stuck away from the
goal. Certain forms of potential functions may overcome this
limitation; namely, navigation functions [9] and harmonic
functions [10]. The caveat in the former case is that the
Morse property (which guarantees the non-existence of local
minima) is rendered after a tuning parameter exceeds a
lower bound, which is not a priori known. In the latter
case, harmonic functions may be constructed with either
discrete or continuous approaches. The computational cost of
discrete methods is quite demanding though, yet continuous
approaches which employ the analogies of Laplace equation
with fluid mechanics may yield closed-form solutions for
certain dynamic environments [11]. A recent overview on
harmonic potential methods can be found in [12]. Stream
functions [13] combine the local-minima-free property of
harmonic functions along with hydrodynamic concepts to
yield streamlines that are smoother and possibly preferable
for second order systems. The method of vortex fields [14]
is also relevant to the context, since it uses the anti-gradient
of a scalar function to define flows around obstacles.

Attempting now to keep a unifying viewpoint regarding
on the use of scalar functions in motion planning and
coordination problems, one may argue that a common ground
is the resulting gradient vector field which, either directly
or indirectly, is employed in the control synthesis. More
specifically, a single (or multiple) scalar function is defined to
encode the environment (e.g. physical obstacles, neighboring
agents etc), yielding a gradient vector field which can be used
as feedback motion plan. In this sense, it may be plausible
as well to pursue to directly define vector fields encoding
the desired objectives, such as obstacle or collision avoid-
ance. Yet, to the best of our knowledge, there is not much
work addressing such problems with vector field approaches,
compared to the extent to which scalar functions have been
used. A notable exception is the recent work by Lindemann
and LaValle [15], in which simple smooth vector fields are
locally constructed in given convex cell decompositions of
polygonal environments, so that their integral curves are by
construction collision-free and, in a sequential composition
spirit, convergent to a goal point. The method presumes
the existence of a high-level discrete motion plan which
determines the successive order of the cells from an initial
to a final configuration. Recent work employing vector fields
for vehicles’ navigation is presented also in [16], which is
based on the virtual force field method [17], and in [18].

This paper is in part motivated by [15] and presents a novel
method on the motion planning and collision avoidance in



environments with static and/or dynamic obstacles, yielding
feedback motion plans for kinematic nonholonomic agents.
The method employs a family of two-dimensional analytic
vector fields, which have high-order singular points. It is
shown that, except for a known value of a parameter λ, the
vector field has a unique singular point on R2, and moreover
that the pattern of the integral curves is suitable for steering
a unicycle to a goal configuration. Moreover, for the value
of the parameter λ which results in a continuum of singular
points, the vector field can be used to define tangential flows
around circular obstacles. Consequently, one may define
almost global feedback motion plans (i.e. convergent to the
goal configuration except for a set of initial conditions of
Lebesgue measure zero and collision-free by construction)
by blending attractive and repulsive vector fields. This in
turn results in simple feedback control laws which force the
system to flow along the vector field. The integral curves in
the vicinity of the (unavoidable) undesired singularities are
similar to those of saddle points, i.e., of unstable equilibria.
We furthermore illustrate how the analytic construction of
a feedback motion plan and the control design for a single
agent can be extended to the collision avoidance and dis-
tributed control for multiple nonholonomic agents.

The proposed method does not require to define Lyapunov-
like or potential functions encoding the collision avoidance
objective and does not suffer from the appearance of sinks
(stable nodes) away from goal point. Compared to potential
functions that are by construction free of local minima, the
approach presented here does not require any parameter
tuning to render the desired (almost global) convergence
properties; the values of the parameter λ involved in the
definition of the vector field are known a priori. Compared to
methods that rely on vector fields, such as [15], the proposed
method does not require any cell decomposition of the free
space or the existence of a high-level discrete motion plan,
and as thus, it is free of any computational complexity issues.
Furthermore, it addresses the motion planning and collision
avoidance for multiple agents in dynamic environments, and
is scalable as the number of agents increases. Note also that
the construction presented here is not the same with the one
used in earlier work of the author’s [19], while it extends the
method originally presented in [20] to obstacle environments.

The paper is organized as follows: Section II characterizes
the singular points of our vector fields w.r.t. the parameter
λ, while Section III presents the construction of the almost
global feedback motion plans and the underlying control
design. Section IV includes simulations for the static (sin-
gle agent among obstacles) and the dynamic case (colli-
sion avoidance in multi-robot system). Our conclusions and
thoughts on future work are summarized in Section V.

II. ROBOT NAVIGATION VIA VECTOR FIELDS

Consider the motion of a robot with unicycle kinematics
in an environmentW with N static obstacles. The equations
of motion read:

q̇ =
[
cos θ sin θ 0

]T
u+

[
0 0 1

]T
ω, (1)

where q =
[
x y θ

]T
is the configuration vector compris-

ing the position r =
[
x y

]T
and the orientation θ of the

robot w.r.t. a global cartesian coordinate frame G, u is the
linear velocity and ω is the angular velocity of the robot w.r.t.
the body-fixed frame B. The robot is modeled as a circular
disk of radius ρ, and each obstacle Oi is modeled as a disk of
radius ρoi centered at roi =

[
xoi yoi

]T
, i ∈ {1, . . . , N}.

We are interested in constructing a feedback motion plan
for steering the robot from (almost) any initial collision-free
configuration q0 to a final configuration qf .

A. A family of vector fields for robot navigation

In earlier work of ours’ [20] we introduced the class of
vector fields F : R2 → R2 given by:

F(r) = λ(pTr)r − p(rTr), (2)

where λ ∈ R is a parameter to be specified later on, r =[
x y

]T
the position vector w.r.t. the global frame G and

p =
[
px py

]T
, p 6= 0. The analytical form of the vector

field components Fx, Fy is:

Fx = (λ− 1)pxx
2 + λpyxy − pxy2, (3a)

Fy = (λ− 1)pyy
2 + λpxxy − pyx2. (3b)

Theorem 1: The origin r = 0 is the unique singular point
of the vector field F given by (2) if and only if λ 6= 1.

Proof: It is straightforward to verify that r = 0 is a
singular point of F. Let us write the vector field components
(3) of F in matrix form as:[

Fx
Fy

]
=

[
(λ− 1)x2 − y2 λxy

λxy (λ− 1)y2 − x2
]

︸ ︷︷ ︸
A(λ,r)

[
px
py

]
. (4)

One has that det(A(λ, r)) = −(λ−1)(x2+y2)2, i.e.A(λ, r)
is nonsingular away from the origin x = y = 0 if and only if
λ 6= 1. Then, for λ 6= 1 and r 6= 0, one has that F = 0 if and
only if p = 0. Since p 6= 0 by definition, we conclude that
the vector field F given by (2) is nonsingular everywhere but
the origin r = 0, as long as λ 6= 1.

The Jacobian matrix of F is singular at r = 0, which
implies that r = 0 is a high-order (nonlinear) singularity.

B. Attractive vector fields

In order to visualize the behavior of the integral curves of
F around the singular point r = 0, we first consider the case
for λ = 2. Let us take the vector p =

[
1 0

]T
and write the

vector field components as:

Fx = x2 − y2, (5a)
Fy = 2xy. (5b)

Following [21], the critical point r = 0 of (5) is a dipole.
Dipoles fall into the class of critical points with only elliptic
sectors in their neighborhoods; this implies that all integral
curves begin at, and end at, the critical point. Furthermore,
one may verify out of the phase portrait of the vector field
(2) that the integral curves are symmetric w.r.t. the axis of
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Fig. 1. The vector field F for λ = 2 and λ = 1.

the vector p ∈ R2, see in Fig. 1(a) the integral curves of (2)
for λ = 2, p =

[
1 1

]T
. The proofs are available in [22].

In that sense, any of the integral curves of F offers a path
to r = 0, while the vector p dictates the orientation of the
integral curves w.r.t. the global frame G. Thus, constructing
a feedback motion plan for steering the unicycle to the origin
has been based on the following simple idea: Pick F out of
(2) with λ = 2 and p =

[
px py

]T
such that the orientation

of the vector p is zero: ϕp , atan2(py, px) = 0. In this way,
the integral curves serve as a reference to steer the orientation
trajectories θ(t) to zero.

In the sequel, we call the class of vector fields (2) for
λ = 2 as attractive vector fields (or flows) to a configuration
q ∈ R2×S.

C. Repulsive vector fields

Let us now investigate the case λ = 1, i.e. the case when
the vector field (2) has multiple singular points. The vector
field components read:

Fx = pyxy − pxy2, (6a)

Fy = pxxy − pyx2. (6b)

To visualize the behavior of the integral curves, let us take
p =

[
1 0

]T
to get the vector field depicted in Fig. 1(b).

One has out of (6) that F vanishes on the set V = {r ∈
R2 | y = 0, x ∈ R}. The equation of the integral curves can
be computed for y 6= 0 (i.e. away from the singularity set)
as: dxdy = y2

−xy = y
−x ⇒ x2+y2 = c2 for some c ∈ R, which

implies that the integral curves are circular arcs centered
at the origin r = 0. The phase portrait of F furthermore
indicates that the integral curves are symmetric w.r.t. the
axis y = 0, i.e., w.r.t. the singularity set V , and also that
the singularity set is dictated by the orientation ϕp = 0 of
the vector p. The proofs on the symmetric properties of the
vector fields are available online in [22].

What is of main interest in this case is that the signum of x
dictates whether the integral curves escape the singularity set
V (see the half-plane x > 0) or converge to the singularity
set V (see the half-plane x < 0). We say that the singular
point r = 0 of the vector field (6) is of center type; this
means that no integral curve reaches the singular point.1

1This is slightly inconsistent with standard notation, since the critical
point r = 0 is not isolated.

One may also note that the departing behavior of the
integral curves away from the singularity set V resembles
the pattern of a fluid flow around a cylinder. This actually
motivates us to employ (6) in order to define tangential vector
fields locally around circular obstacles.

In the sequel we call the class of vector fields (2) for λ = 1
as repulsive vector fields (or flows) around a point r ∈ R2.

III. ALMOST GLOBAL FEEDBACK MOTION PLANS

Given the class of attractive and repulsive vector fields,
the idea on defining an almost global feedback motion plan
F? on the collision-free space F is now simple: we pursue to
combine an attractive-to-the-goal vector field Fg with (local)
repulsive vector fields Foi around each obstacle Oi, so that
the integral curves of F?: 1) converge to the goal qg , and
2) point into the interior of F on the boundaries of the
obstacles Oi. The vector field F? can then serve as a safe
feedback motion plan in W . Blending the vector fields Fg ,
Foi should be done in a careful way, so that F? does not
have any undesired singularities on F .

Remark 1: In the sequel, when we refer to Fg , Foi we
assume the corresponding normalized unit vector fields, i.e.,
the vector fields Fg

‖Fg‖ , Foi

‖Foi‖ , with ‖·‖ denoting the standard
Euclidean norm.

We assume without loss of generality that the goal con-
figuration is the origin, qg = 0. The attractive-to-the-goal
vector field Fg may then be taken out of (2) for λ = 2,
pg =

[
1 0

]T
, so that ϕp = 0, yielding the vector field (5).

Let us now define a repulsive vector field Foi in a region
Zi around an obstacle Oi. The region Zi is defined as a
circular disk centered at roi with radius ρZi = ρoi+ ρε+ ρ,
where ρε ≥ 0; this parameter is the minimum distance that
the robot will keep w.r.t. the boundary of the obstacle Oi,
see Fig. 2. A repulsive vector field w.r.t. the point roi can
then be defined out of (6) for λ = 1 as:

Foxi = pyi(x− xoi)(y − yoi)− pxi(y − yoi)2, (7a)

Foyi = pxi(x− xoi)(y − yoi)− pyi(x− xoi)2, (7b)

where pxi , cosφi, pyi , sinφi, φi , atan2(−yoi,−xoi)+
π. Note that the vector pi is picked to lie on the line
connecting the center (xoi, yoi) of the obstacle with the goal
point (0, 0). By doing so, we impose the set of singular
points of (7) to lie on this line. Furthermore, the integral
curves of (7) depart from the singularity set in the region
Ai = {r ∈ R2 |pTi (r − roi) ≥ 0} (see also the red vectors
around the set Vi in Fig. 2), and converge to the singularity
set in the region Bi = {r ∈ R2 |pTi (r − roi) < 0} (the
corresponding vectors have not been drawn in Fig. 2).

The pattern of the (departing) integral curves in the neigh-
borhood of the singularity set Vi in region Ai is desirable,
since it renders safe, tangential reference paths around the
obstacle Oi. However, the pattern of the integral curves
around the singularity set in region Bi is undesirable, since it
may trap the system trajectories r(t) away from the origin.
This limitation is overcome by defining a vector field (2) for
λ = 0 and pi as before, in region Bi; the resulting integral
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Fig. 2. Defining a repulsive vector field Foi around the obstacle Oi. Take
the vector field (2) with λ = 1 in region Ai and with λ = 0 in region Bi.

curves for λ = 0 are co-linear with, while pointing to the
opposite direction w.r.t. pi, see Fig. 2.

In summary, the vector field Foi around an obstacle Oi is
picked out of the family of vector fields (2) as:

Foi =

{
F
∣∣
λ=1

(δri), for pTi (δri) ≥ 0;

F
∣∣
λ=0

(δri), for pTi (δri) < 0,
(8)

where pi =
[
cosφi sinφi

]T
, φi , atan2(−yoi,−xoi)+π,

δri , r−roi. Note that the transition of the integral curves
between regions Ai, Bi is smooth, since the vectors at the
points pTi (r − roi) = 0 coincide.

The effect of the repulsive vector field Foi (8) should be
restricted into the region Zi, while away from Zi the effect
of the attractive vector field Fg should drive the robot to the
goal. To encode this requirement, we first define the obstacle
function βi(·) : R2 → R as:

βi = ρ2oi − (x− xoi)2 − (y − yoi)2, (9)

which is positive in the interior of the obstacle Oi, zero on
the boundary of the obstacle, and negative everywhere else.
The value of the constraint function βi on the boundary of Zi
is: βiZ = −2ρoi (ρ+ ρε)−(ρ+ ρε)

2. Thus, one equivalently
has: Zi = {r ∈ R2 | βiZ ≤ βi(r) ≤ 0}.

Consequently, the repulsive vector field Foi should be
defined for βi(r) ≥ βiZ , while the effect of the attractive
vector field Fg should be restricted in the region exterior
to Zi, i.e. for βi(r) < βiZ . To encode this, we define the
smooth bump function σi(·) : R2 → [0, 1] as:

σi =


1, for βi(r) ≤ βiF ;
aβi

3 + bβi
2 + cβi + d, for βiF < βi(r) < βiZ ;

0, for βiZ ≤ βi(r);
(10)

where βiZ is the value of the constraint (9) on the boundary
of Zi, βiF is the value of the constraint (9) at some distance
ρFi > ρZi, and the coefficients a, b, c and d have been
computed as: a = 2

(βiZ−βiF )3 , b = − 3(βiZ+βiF )
(βiZ−βiF )3 , c =

6βiZβiF
(βiZ−βiF )3 , d =

β2
iZ(βiZ−3βiF )
(βiZ−βiF )3 , so that (10) is a C2 function.

Having this at hand, and inspired by [15], one may now
define the vector field:

F = σiFg + (1− σi)Foi, (11)

which is: (i) attractive to the goal qg sufficiently away
from Oi via the effect of Fg (i.e. for βi ≤ βFi, where
one has σi = 1), and (ii) repulsive w.r.t. the obstacle
Oi in the region Zi via the effect of Foi (i.e. for
βZi ≤ βi, where one has σi = 0). To check whether
singularities occur in the region where βZi < βi < βFi,
let us consider the blending of Fg with Foi in the
exterior of the region Bi. The norm of F reads: ‖F‖ =√
σ2
i ‖Fg‖2+(1−σ1)2‖Foi‖2+2σi(1−σi)[ Fx Fy ]

[
Foxi

Foyi

]
. Given

that we consider the normalized unit vector fields this further
reads: ‖F‖ =

√
−2σi(1− σi) + 1 + 2σi(1− σi) cosα,

where α the angle between the vectors Fg , Foi at some point
(x, y). After some more algebra, we have that the norm ‖F‖
vanishes at the points r ∈ R2 where σi is the solution of the
quadratic equation: 2(cosα−1)σ2

i −2(cosα−1)σi−1 = 0;
yet, this equation does not have any real solutions. The
same procedure can be done for the blending of Fg , Foi
in the exterior of the region Ai, with the caveat that here
the vector field Foi has by construction a singularity set.
Then, away from the singularities of Foi one eventually
gets the same result as above, while for the points where
Foi = 0 one eventually has: ‖F‖ = σi 6= 0. Consequently,
the blending of Fg , Foi does not result in any singularities
in the blending region βZi < βi < βFi.

It is now easy to extend the proposed vector field design
in the case of N static obstacles and define an almost global
feedback motion plan in F as:

F? =

N∏
i=1

σiFg +

N∑
i=1

(1− σi)Foi, (12)

where Fg is the attractive vector field (5), Foi is the repulsive
vector field (8) around an obstacle Oi, i ∈ {1, . . . , N}, and
σi is the bump function (10) defined in terms of the obstacle
function βi (9). The first term in (12) cancels the effect of the
attractive vector field Fg everywhere that at least one of the
bump functions σi = 0, i.e. in the corresponding region Zi
around the obstacle Oi, while at the same time the second
term shapes the corresponding vector field Foi in Zi. In
other words, the attractive vector field Fg is activated through
(12) only when βi < βZi ∀i ∈ {1, . . . , N}, i.e. outside the
regions Zi.

For F? being an everywhere collision-free feedback mo-
tion plan, the clearance among obstacles should be suffi-
ciently large so that the repulsive flows do not overlap. This
means that the distance dij = ‖roi − roj‖ among every
pair of obstacles Oi, Oj should be at least ρZi + ρZj ,



or equivalently, that the minimum distance between the
boundaries of two obstacles should be at least 2(ρ + ρε).
Note that this clearance is not conservative or restrictive in
practice, since the parameter ρε can be chosen arbitrarily
close to zero, or even equal to zero, assuming that the robot
is allowed to touch the obstacle. In this case the minimum
clearance is equal to 2ρ, i.e., to the diameter of the robot.

The sets of singular points Vi, i ∈ {1, . . . , N} are located
in the regions Ai around the obstacles Oi, as shown in Fig.
2. Take the singular point in Vi which lies on the boundary
of Zi, and let us consider the pattern of the integral curves
around this point. The integral curves around Vi are departing
the set, except for one integral curve that may converge to
Vi; it is easy to see that this may happen in the case when the
goal orientation θg is co-linear with the line the singularity
set Vi lies on. This in turn happens only if the obstacle is
positioned such that the direction of the vector pi coincides
with the direction of the vector pg . In this case, the set of
initial conditions that converge to the singularity sets of F?

is of Lebesgue measure zero. In any other case, then: 1) if
ρε 6= 0, then the singular points are confined in the region
Zi on a line segment of length ρε, and correspond to the
initial conditions from which solutions are not defined, 2) if
ρε = 0, then the (unique) singular point lies on the boundary
of Zi and is reached by no integral curve.

With this at hand, the control design for the unicycle (1)
is now straightforward. We use the control law:

u = ku tanh(x
2 + y2), (13a)

ω = −kω(θ − ϕ) + ϕ̇, (13b)

where ϕ , arctan(F?y,F
?
x) is the orientation of the vector

field F? at a point (x, y), and kω, ku > 0, so that the
orientation θ of the unicycle is globally exponentially stable
to the orientation ϕ. Then, the vehicle flows along the integral
curves of F?, until converging to the goal point qg = 0.

IV. SIMULATION RESULTS

The efficacy of the proposed motion planning and control
design in environments with static obstacles, as well as for
the collision avoidance in multi-agent systems, is demon-
strated via simulation results.

The vector field F? in an environment populated with
N = 10 static obstacles is depicted in Fig. 3 with the goal
point being the origin, qg = 0. The resulting path under
the control law (13), with the control gains picked equal
to ku = 0.1, kω = 1, is depicted in red color. Note that
the pattern of the integral curves of Foi in the regions Ai
around obstacles forces the robot to approach close to the
obstacles and then perform a sharp maneuver in order to
follow the tangential direction and avoid collision. Although
this in practice is plausible for unicycle-type vehicles (e.g.
differentially driven mobile robots), it might not be desir-
able for input-constrained vehicles, such as car-like vehicles
and aircrafts. Thus, our current work focuses in encoding
curvature constraints via the family of vector fields (2).

Following the same spirit the proposed control design (13)
can be employed for avoiding collisions in the multi-agent
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Fig. 3. Collision-free motion of a unicycle in a obstacle environment.

case as well. Let us consider the case of N circular agents i
that have to move to goal configurations qgi while avoiding
collisions among them. Clearly, each agent j 6= i serves as
an obstacle to agent i. A vector field F?i can be constructed
for each agent i, where the repulsive term Foj around agent
j is replaced with a repelling node. This is to ensure that the
repelling vector field always points into the interior of the
free space Fi of each agent i.

In the scenario depicted in Fig. 4 four agents are moving
towards their goal destinations, while avoiding collisions.
Here we have assumed that there is bidirectional communi-
cation and information exchange among every pair of agents
(i, j), to argue that each agent i always knows the positions
of all other agents j 6= i. Nevertheless, this assumption is
not restrictive regarding on the proposed control design, as
illustrated in [22]; the same vector field construction and
control design can be used in the cases of limited sensing or
given communication topologies for each agent.

V. CONCLUSIONS

This paper presented a novel methodology for the path
and motion planning of nonholonomic (unicycle) systems in
environments with obstacles, with extensions to the collision
avoidance in multi-agent systems. The method is based on
a family of vector fields whose integral curves exhibit either
attractive or repulsive behavior, depending on the value
of a parameter λ. It was shown that attractive-to-the-goal
and repulsive-around-obstacles vector fields can be suitably
blended in order to yield almost global feedback motion
plans in environments with circular obstacles. The case of
collision avoidance in multi-agent scenarios can be treated
with the same logic as well. Thus, seeking for Lyapunov-like
functions encoding the avoidance objective is not required,
while no parameter tuning is needed in order to avoid
local minima (stable nodes). Current work focuses on the
definition of vector fields encoding input constraints, such
as curvature bounds, which may be more appropriate for
aircraft and car-like vehicles.
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Fig. 4. Collision-free motion of 4 nonholonomic agents under the proposed control strategy.
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