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Abstract— This paper considers the problem of decentralized
goal assignment and trajectory generation for multi-robot
networks when only local communication is available, and
proposes an approach based on methods related to switched
systems and set invariance. A family of Lyapunov-like functions
is employed to encode the (local) decision making among
candidate goal assignments, under which the agents pick the
assignment which results in the shortest total distance to the
goals. An additional family of Lyapunov-like barrier functions
is activated in the case when the optimal assignment may
lead to colliding trajectories, thus maintaining system safety
while preserving the convergence guarantees. The proposed
switching strategies give rise to feedback control policies which
are scalable as the number of agents increases, and therefore
are suitable for applications including first-response deploy-
ment of robotic networks under limited information sharing.
Simulations demonstrate the efficacy of the proposed method.

I. INTRODUCTION

Task (target) assignment problems in multi-agent systems
have received great interest within the robotics and controls
communities in the past couple of years, in part because they
encode the accomplishment of various objectives in, among
others, surveillance, exploration and coverage applications.

A common thread in such problems is the development
of algorithms which assign targets to agents by optimizing a
predefined criterion and while meeting certain performance
guarantees. The interest of researchers often focuses on
the optimization aspects of the problem and the associated
computational complexity under (quite) relaxed assumptions,
which may not be acceptable in realistic settings. For in-
stance, first-response or search-and-rescue missions using
robotic agents (such as aerial robots) typically involve mul-
tiple tasks that, on one hand, may need to be performed as
quickly as possible, yet on the other hand they typically can
be accomplished only when information sharing is available,
and under tight safety guarantees. In the interest of space,
here we can not provide an overview of relevant formulations
and approaches on target assignment problems in multi-robot
networks. A more detailed introduction and literature review
is provided in our previous work [1]; the reader is also
referred to [2]–[7] and the references therein.
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This paper builds upon our previous work [1] and proposes
algorithms which concurrently address the problems of:
(P1) Assigning goal locations (targets) to agents by minimiz-
ing a cost function, defined as the total distance to the goals.
(P2) Designing feedback control policies which guarantee:
(i) the convergence of the agents to their assigned goals,
(ii) that the resulting trajectories are collision-free. The key
specifications in the proposed formulation are: (S1) Agents
and goal locations are interchangeable, which means that the
mission is considered accomplished when each agent has
converged to some goal location. (S2) Information exchange
between a pair of agents is reliable only when they lie
within a certain communication range, which means that
the decision making on the optimal goal assignment can
be performed only locally, i.e., in a decentralized fashion.
(S3) Agents are modeled as non-point robots, which not only
means that avoiding collisions is a non-negligible objective,
but is of top priority even in the expense of resorting to
suboptimal paths, if necessary, to the goals.

To this end, we formulate the goal assignment and trajec-
tory generation problems into a control theoretic framework
which is related to switched systems theory [8]. More
specifically, we build our approach based on ideas and
tools that rely on multiple Lyapunov-like functions [9].
We first encode the decision making on the optimal goal
assignment (which in the sequel we call the Optimal Goal
Assignment (OGA) policy) as a state-dependent switching
logic among a family of candidate Lyapunov-like functions.
Each Lyapunov-like function encodes the cost-to-go under a
candidate goal assignment, that is, the sum of distances to
the goals. The switching logic dictates that, when (a subset
of) agents become(s) connected at some time instant t, they
decide to switch to the Lyapunov-like function of minimum
value at time t. We show that this decision making gives rise
to a Globally Asymptotically Stable (GAS) switched system
which furthermore does not suffer from Zeno trajectories.
Then, based on our recent work in [10], we build an
additional state-dependent switching logic which employs
a family of Lyapunov-like barrier functions encoding both
inter-agent collision avoidance and convergence to the goal
locations determined by the OGA policy. This control policy
(in the sequel called the Last Resort (LR) policy) provides
sufficient conditions on determining whether the OGA policy
is safe, and furthermore serves as a supervisor that takes
action only when safety under the OGA policy is in stake.
We show that the switching between the OGA policy and
the LR policy results in asymptotically stable and safe
trajectories for the multi-robot system, in the expense of



possibly resorting to suboptimal paths; this situation appears
only in the cases when the LR policy forces the agents to
deviate from their optimal paths to the goals, in order to
maintain system safety.

The paper is organized as follows: Section II gives the
mathematical formulation of the problem. The proposed goal
assignment and trajectory generation policies, along with the
mathematical proofs which verify their correctness are given
in Sections III and IV. Simulation results to evaluate their
efficacy are included in Section V, while Section VI sum-
marizes our conclusions and thoughts on future research.1

II. PROBLEM FORMULATION

Assume N agents i and equal number of goal locations
Gi, i ∈ N = {1, 2, . . . ,N}. The motion of each agent i is
governed by single integrator dynamics:

ṙi = ui, (1)

where ri =
[
xi yi

]T
is the position vector of agent i

with respect to (w.r.t.) a global cartesian coordinate frame
G, and ui is its control vector comprising the velocities
uxi, uyi w.r.t. the frame G. We assume that each agent
i: (i) has access to its position ri and velocities ui via
onboard sensors, (ii) can reliably exchange information with
any agent j 6= i which lies within its communication region
Ci : {ri ∈ R2, rj ∈ R2 | ‖ri − rj‖ ≤ Rc}, where Rc is the
communication range. In other words, a pair of agents (i, j)
is connected as long as the distance dij = ‖ri − rj‖ ≤ Rc.

It should be noted that here we assume that all robots
have an initial goal assignment. This limits the approach to
requiring at least as many robots as goal locations where
some robots can instead have the command to remain sta-
tionary. While it may be possible to utilize virtual agents to
allow more goals than robots, this is beyond the scope of
this paper.

The task is considered completed as long as each agent
has converged to some goal location, i.e., that the goals are
interchangeable for each agent. This specification defines N!
possible goal assignments k ∈ {1, 2, . . . ,N!}.

Lemma 1: The position trajectories ri(t) of agent i are
Globally Exponentially Stable (GES) w.r.t. the k-th goal
assignment under the control law:

u
(k)
i = −λi

(
ri − r(k)gi

)
, (2)

where i ∈ {1, . . . ,N}, λi > 0. The proof is trivial, see [11].

III. THE OPTIMAL GOAL ASSIGNMENT POLICY

For simplicity, let us initially consider N = 2 agents i, j
which need to move to goal locations G1, G2, and let us
build a switching logic realizing the local decision making
on what we call the OGA.

Assume that the agents initiate at t0 = 0 so that dij(t0) ≤
Rc, or that at some time instant td > 0 they lie within

1In the interest of space, an extended version of this paper including also
an overview of the theoretical tools from switched systems theory which
are used throughout our analysis is available in [11].

distance dij(td) ≤ Rc under some goal assignment k ∈
{1, 2}. We say that the agents are involved in a meeting
event and a decision regarding on the goal assignment has
to be made. The agents:

1) Exchange information on their current positions ri(td),
rj(td) and goal locations rgi(td), rgj (td).

2) Compare the cost-to-go through the values of the Lya-
punov functions:

V (k)(r(td)) = V
(k)
i (ri, rgi)(td) + V

(k)
j (rj , rgj )(td),

for all possible assignments k ∈ {1, 2}, where:

V (k)
o = ‖ro − rgo‖, o ∈ {i, j}.

3) Move under: V (r(td)) = min
{
V (k)(r(td))

}
.

We refer to the decision making based on the logic described
above as to the OGA policy. In the sequel we denote V (r(td))
with V (td), to keep the notation compact.

For N > 2 agents the decision making on the optimal goal
assignment involves the Nc ≤ N connected agents at time
td. The agents exchange information on their positions and
goal locations at time td, compare the cost-to-go through the
Lyapunov functions V (k), k ∈ {1, 2, . . . ,Nc!}, and determine
the optimal assignment of robots to goals. The Nc! combi-
nations of robots to goals result in intractable enumeration
for all but the smallest problems but fortunately, there exists
the Hungarian Algorithm [12], a O(Nc

3) algorithm from
the Operations Research community which optimally solves
this problem in a centralized manner. Recent extensions [13]
modify this approach for distributed systems.

Problem 1: We would like to establish that the OGA
policy renders stable trajectories for the multi-robot system,
i.e., that each agent does converge to some goal location.

A. Stability Analysis on the Switched Multi-robot System

To this end, we resort to control analysis tools for switched
systems. The closed-loop dynamics of the i-th agent read:

ṙi(t) = u
(k)
i = −λi

(
ri(t)− r(k)gi

)
. (3)

The OGA policy gives rise to switched dynamics for each
agent, in the sense that it may move under any of the N!
possible goal assignments k ∈ {1, 2, . . . ,N!}.

Denote r =
[
r1
T . . . rN

T
]T

the state vector of the
multi-robot system, governed by the switched dynamics:

ṙ(t) = fk(r(t)), (4)

where: fk =


u
(k)
1
...

u
(k)
N

 , k ∈ K = {1, . . . ,N!}.

Let us consider the sequence of switching times T =
{t0, t1, t2, t3, . . . , tn, . . .} and the switching sequence: Σ =
{r0; (k0, t0), (k1, t1), . . . , (kn, tn), . . .}, kn ∈ K, n ∈ N.

Theorem 1: The trajectories r(t) of the switched multi-
robot system (4) are GAS w.r.t. the goal assignment k.

Proof: We consider the candidate Lyapunov-like func-
tions V (k), k ∈ {1, . . . ,N!}, encoding the motion of the



agents under goal assignment k. Out of Lemma 1, each
individual k-th subsystem, i.e. the motion of the multi-robot
system under the k-th assignment, is GES. This implies that
each V (k) is decreasing on the time intervals that the k-th
subsystem is active. Furthermore, the OGA policy dictates
that at the switching times {t0, t1, t2, t3, . . . , } one has:

V (k0)(t0) > V (k1)(t1) > V (k2)(t2) > V (k3)(t3) > . . . ,

i.e., the value of each Lyapunov-like function V (k) at the
beginning of the time intervals when the k-th subsystem
becomes active satisfies the decreasing condition, i.e., the
switched system is Lyapunov stable.

To draw conclusions on the asymptotic stability, consider
any pair of switching times tk1 < tk2 when the k-th
subsystem becomes active, the corresponding time intervals
[tk1 , tk1+1), [tk2 , tk2+1) and note that:

V (k)(tk1) > V (k)(tk1+1),
since the subsystem k is

active on [tk1 , tk1+1) and GES

V (k)(tk1+1) ≥ V (l)(tk1+1), out of the OGA Policy, l 6= k

V (l)(tk1+1) ≥ V (k)(tk2), out of the OGA Policy

V (k)(tk2) > V (k)(tk2+1),
since the subsystem k is

active on [tk2 , tk2+1) and GES

which imply that: V (k)(tk2+1) < V (k)(tk1+1), i.e., that:

V (k)(tk2+1) = ρkV
(k)(tk1+1), 0 < ρk < 1. Then:

V (k)(tk2+1)− V (k)(tk1+1) = −(1− ρk) V (k)(tk1+1)

= −(1− ρk) ‖r(tk1+1)‖2 ,

where 1− ρk > 0. Therefore, the switched system is GAS.

B. Avoiding Zeno Behavior

Given the sequence T = {t0, t1, . . . , tn, . . . }, n ∈ N, of
switching times, a switched system is Zeno if there exists
some finite time tZ such that:

lim
n→∞

tn =

∞∑
n=0

(tn+1 − tn) = tZ .

In simpler words, Zeno behavior means that the switching
times have a finite accumulation point, i.e., that infinite
amount of switchings occurs in a finite time interval. In
general, the task of detecting possible Zeno trajectories and
extending them beyond their accumulation points is far from
trivial [8], [14] and depends on the problem at hand.

The proposed OGA policy dictates that a switch among
candidate subsystems fk may occur when ‖ri(t)−rj(t)‖ ≤
Rc, i.e., when the multi-robot system trajectories r(t) hit the
surface Sc(t) :

{
r ∈ R2 N | ‖ri(t)− rj(t)‖ = Rc

}
. Denote

td the time instant when the system trajectories lie on the
surface Sc(td) and the agents are involved in the decision
making, t−d , t+d the time instants before and after the decision
making, respectively, and k

(
t−d
)
, k
(
t+d
)

the assignment be-
fore and after the decision making, respectively. The decision
making on Sc(td) results in two different cases:

1) The agents decide to keep their goal assignment, i.e.
k
(
t−d
)

= k
(
t+d
)
, in which case no switching occurs.

2) The agents decide to swap goals, i.e. k
(
t−d
)
6= k

(
t+d
)

and a switching occurs.
Theorem 2: The switched multi-robot system (4) under

the OGA policy does not suffer from Zeno behavior.
Proof: We employ the results in [15], Theorem 2. Let

us assume that the switched system (4) has a Zeno point r̄.
Then it holds that: r̄ ∈ Sc(td) and r̄ is an accumulation point
of the set S = {r ∈ Sc(td) : fk

(
t−d
)

= fk
(
t+d
)
}, where

Sc(td) is the switching surface at the decision and switching
time td. The OGA policy dictates that at least one pairwise
goal swap occurs at time td, since if the agents decided to
keep the goals they had at time t−d , then td would not have
been a switching time, a contradiction. Since at least one
pair of agents (i, j) switches goal locations, denoted as rGi ,
rGj , the condition fk

(
t−d
)

= fk
(
t+d
)

on the switched vector
fields holds true only when rGi = rGj (see also the detailed
analysis of Theorem 4 in [11]), which is a contradiction by
construction. Thus, the set S = ∅, which furthermore implies
that the set of its accumulation points is empty, implying that
no Zeno points can be contained there. Thus, the switched
multi-robot system (4) does not exhibit Zeno behavior.

IV. A SWITCHING LOGIC ON COLLISION AVOIDANCE

The OGA policy does not ensure that inter-agent collisions,
realized as keeping dij(t) ≥ 2r0, ∀t ∈ [0,∞), are always
avoided. A simple scenario verifying this is given in [11].

Problem 2: We would like to establish (sufficient) condi-
tions under which the OGA policy is collision-free.

A. Detecting Conflicts

Recall that we are referring to time t > td, i.e. after
Nc ≤ N connected agents have decided on a goal assignment
k based on the OGA policy, and move towards their goal
locations r(k)gi . In the sequel we drop the notation ·(k), in the
sense that the goal assignment k is kept fixed.

We would first like to identify a metric (a “supervisor”)
determining online whether the OGA policy results in colli-
sions. Let us consider the collision avoidance constraint:

cij(ri, rj) = (xi − xj)2 + (yi − yj)2 −∆2 > 0, (5)

encoding that the inter-agent distance dij = ‖ri−rj‖ should
always remain greater than ∆.

To facilitate the analysis using Lyapunov-like approaches,
we first need to encode the constraint (5) as a Lyapunov-like
function. Inspired by interior point methods we first define
the logarithmic barrier function bij(·) : R2×R2 → R for
the constraint (5) as:

bij(ri, rj) = − ln (cij(ri, rj)) , (6)

which tends to +∞ as cij(·) → 0, i.e. as dij → ∆. The
recentered barrier function of (6) is defined as [16]:

rij = bij(ri, rj)− bij(rg, rj)−∇bijT
∣∣
rg

(ri − rg), (7)

where rg =
[
xg yg

]T
is a desired set-point (i.e., goal

location in our problem) within the collision-free space,



bij(rg, rj) is the value of (6) evaluated at rg , ∇bij =[
∂bij
∂xi

∂bij
∂yi

]T
is the gradient vector of the function bij(·),

and ∇bijT
∣∣
rg

is the transpose of the gradient vector evalu-
ated at the goal position rg . By construction, the recentered
barrier function (7):

(i) is non-zero everywhere except for the goal location rg ,
(ii) tends to +∞ as the distance dij tends to ∆.

These characteristics of recentered barrier functions (7)
are suitable for encoding both collision avoidance of each
agent i w.r.t. an agent j 6= i, and convergence of agent i to
its assigned goal rgi . To ensure that we have a nonnegative
function encoding these objectives, so that it can be used as
a Lyapunov-like function, for each agent i we define [10]:

wij(·) = (rij(ri, rj , rgi))
2
, (8)

which now is a positive definite function. To furthermore en-
code that the position trajectories of agent i remain bounded
in a prescribed region (for reasons that will be explained in
the technical analysis later on), for each agent i we define
the “workspace” constraint:

ci0(ri, r0) = R2
0 − (xi − x0)2 − (yi − y0)2 > 0, (9)

which encodes that the position ri should always lie in the
interior of a circle of center r0 =

[
x0 y0

]T
and radius

R0 > Rc. This can be thought as the workspace where the
agents operate. Then, in the same reasoning followed before,
we define the barrier function:

bi0(ri, r0) = − ln (ci0(ri, r0)) , (10)

and its corresponding recentered barrier function:

ri0 = bi0(ri, r0)− bi0(rgi , r0)−∇bi0T
∣∣
rgi

(ri−rgi), (11)

which vanishes only at the goal location rgi and tends to
infinity as the position ri tends to the workspace boundary.
To get a positive definite function we consider:

wi0(·) = (ri0(ri, r0, rgi))
2
. (12)

Therefore, an encoding that agent i stays ∆ apart w.r.t. all
of its neighbor agents, while staying within the bounded
workspace, can be now given by an approximation of the
maximum function of the form [10]:

wi = ((wi0)δ +
∑
j∈Nc

(wij)
δ)

1
δ , (13)

where δ ∈ [1,∞), and Nc ⊆ N is the set of neighbor
agents j 6= i of agent i. Finally, to ensure that we have a
Lyapunov-like function for agent i which uniformly attains
its maximum value on constraints’ boundaries we take:

Wi =
wi

1 + wi
, (14)

which is zero for wi = 0, i.e., at the goal position rgi of
agent i, and equal to 1 as wi →∞. For more details on the
analytical construction the reader is referred to [10].

The Lyapunov-like function (14) can now be used as
a (sufficient) criterion on determining whether the control

inputs ui, uj of the OGA policy jeopardize safety. Let us
consider the time derivative of (14):

Ẇi =
[
∂Wi

∂xi
∂Wi

∂yi

] [
ẋi
ẏi

]
+
∑
j∈Nc

([
∂Wi

∂xj
∂Wi

∂yj

] [ẋj
ẏj

])
=

= ζi
Tui +

∑
j∈Nc

(
ζij

Tuj

)
, (15)

where ζi ,
[
∂Wi

∂xi
∂Wi

∂yi

]T
, ζij ,

[
∂Wi

∂xj
∂Wi

∂yj

]T
. The

evolution of the time derivative Ẇi along the trajectories
of agent i depends not only on its own motion (through ui),
but also on the motion of its neighbor agents j 6= i through
their velocities uj . This time derivative provides sufficient
conditions on establishing that the OGA policy is safe. To
see how, let us consider the following Lemma.

Lemma 1: If the control inputs ui, uj , where j ∈ Nc,
out of the OGA policy satisfy the following condition for all
i ∈ {1, . . . ,N}:

ζi
Tui +

∑
j∈Nc

(
ζij

Tuj

)
< 0, (16)

then the OGA policy is asymptotically stable w.r.t. the current
goal assignment k and furthermore collision-free.

Proof: To verify the argument, consider the properties
of the Lyapunov-like function (14) and denote the con-
strained set for each agent i as Ki = {r ∈ R2 N | cij(·) ≥ 0},
where j ∈ Nc ∪ {0}. The set Ki is by construction compact
(i.e., closed and bounded), with the level sets of Wi being
closed curves contained in the set Ki. Then, the condition
(16) implies that the system trajectories ri(t) under the OGA
control input ui evolve downwards the level sets of Wi, i.e.
always remain in the interior of the constrained set Ki, which
furthermore reads that the inter-agent distances dij(t) never
violate their critical value ∆.

Problem 3: We need to establish a LR policy ensuring
that inter-agent distances dij remain greater than a critical
distance ∆, and will be active only when the OGA policy is
about to result in colliding trajectories.

B. Resolving Conflicts
The condition (16) gives rise to furthermore determining

a LR control policy in the case that the OGA policy is about
to violate it. Let us denote the switching surface:

Qi = ζi
Tui +

∑
j∈Nc

(
ζij

Tuj

)
. (17)

Then for Qi < 0 one has out of Lemma 1 that the OGA
policy is both GAS and collision-free. For Qi > 0 one has
Ẇi > 0, which implies that the position trajectories ri(t)
evolve upwards the level sets of the Lyapunov-like function
Wi. This condition may jeopardize safety and dictates the
definition of an additional, LR policy, which will ensure that
the trajectories ri(t) remain in the constrained set Ki.

Lemma 2: The LR control policy for agent i, realized via:

uib =

[
−kiWi−

∑
j∈Nc

∂Wi
∂xj

ujx
∂Wi
∂xi

−kiWi−
∑
j∈Nc

∂Wi
∂yj

ujy
∂Wi
∂yi

]T
,

(18)



where ki > 0, renders the trajectories of the multi-robot
system collision-free in the set Qi > 0.

Proof: To verify the argument, consider that the time
derivative of the Lyapunov-like function (15) under the
proposed control inputs (18) reads: Ẇi = −kiWi, which
reads that the position trajectories ri(t) move downwards
the level sets of the Lyapunov-like function (14).

C. Treating an ill-conditioned case

The recentered barrier function (7) is undefined in the case
that an agent j lies in the vicinity of the goal location of agent
i. This situation may occur throughout the system evolution
and renders both the condition (16) and the control law (18)
undefined. Thus, an additional control policy is needed to
take action in such cases. To this end, first we modify (7)
by canceling out the bij(rgi , rg) term, to get:

rij
m = bij(ri, rj)−∇bijT

∣∣
rg

(ri − rg), (19)

and following the same steps described above we construct
the function Wi

m. This function is not positive definite w.r.t.
the goal location rgi and thus can not be used as a (gener-
alized) Lyapunov-like function for establishing convergence
to the goal location, yet it encodes that agent i should stay
∆ apart from any neighbor agent j 6= i and also stay within
the workspace boundary. This gives rise to the control law:

uib =

[
−kiWi

m−
∑
j∈Nc

∂Wi
m

∂xj
ujx

∂Wi
m

∂xi

−kiWm
i −

∑
j∈Nc

∂Wi
m

∂yj
ujy

∂Wi
m

∂yi

]T
,

(20)

which yields: Ẇi
m

= −kiWi
m, implying thus that the

trajectories ri(t) evolve within the constrained set Ki of
agent i. This control law is activated only when (16) becomes
ill-conditioned. We call this policy the modified LR policy.

D. Ensuring both Stability and Safety

The switching between the OGA policy and LR policy
across the switching surface Qi = 0, as well as the switching
between the LR policy and modified LR policy when equation
(16) becomes ill-conditioned give rise to dynamics with
discontinuous right-hand side for each agent i:

ṙp(t) = v
(p)
i , (21)

Consider the switching sequence of times T =
{τ1, τ2, τ3, . . . , τn, . . . , }, where the time interval τn − τn−1
is finite ∀n ∈ N, excluding thus any sliding-like behavior
(chattering), and the switching sequence:

Σ? = {ri(τ0); (p0, τ0), (p1, τ1), . . . , (pn, τn), . . . , },

where τ0 > td, q ∈ N and pn ∈ P . Note that the switch-
ing between the three candidate policies is not necessarily
periodic.

Problem 4: We finally need to establish that the proposed
switching strategy Σ? between the OGA policy, the LR policy
and the modified LR policy renders the multi-robot trajecto-
ries stable w.r.t. to the assigned goals and also collision-free.
This switching strategy makes it rather difficult to check
Branicky’s decreasing condition on the “switched-on” time

intervals of each individual subsystem. For this reason we
resort to results that remove this condition in order to draw
conclusions on (asymptotic) stability.

Theorem 3: The trajectories of the switched multi-robot
system under the switching logic Σ? are (i) collision-free,
and (ii) asymptotically stable w.r.t. the assigned goals.

Proof: The first argument is proved in Lemmas 1, 2
and in Section IV-C. The second argument can be verified
by applying [17, Theorem 3.9]. Lemmas 1, 2 imply that
the functions Vi, Wi for each agent i serve as general-
ized Lyapunov-like functions for the individual subsystems
p ∈ {1, 2}, respectively. The stability condition [17, (5) in
Theorem 3.9] for each subsystem p is satisfied out of the
boundedness of the solutions ri(t) within the constrained set
Ki, which is by construction closed and bounded. Therefore,
the switched system is stable. To furthermore establish
asymptotic stability, it should hold that for at least one of
the individual subsystems p, the value of the corresponding
generalized Lyapunov-like function decreases along the se-
quence of switching times. Let us assume that this is not the
case; then this would imply that the closed-loop switched
vector fields v(p)i , p ∈ {1, 2}, “oppose” each other and
cancel out on the switching surface Qi, forcing the system
trajectories to get stuck there. Note that the vector field
v
(2)
i = uib is by construction parallel to the gradient vector

of the function Wi, which is by construction transverse to the
boundary of the constrained set Ki.2 Then, this assumption
would furthermore imply that the vector field v(1)i = ui
of the OGA policy forces the system trajectories of agent i
towards a goal on an intersecting path w.r.t. the neighbor
agent; a contradiction, since the OGA does not result in
intersecting paths [1]. For the subsystem p = 3 we consider
the generalized Lyapunov function Xi = ‖ri − rgi‖2. The
modified LR policy dictates that agent i is repelled from agent
j, only when agent j lies on the goal position rgi . This
implies that the value of the Lyapunov-like function Xi on
the corresponding time interval increases. By construction,
one has that this growth is bounded from above, since the
trajectories ri(t) are confined within the compact constrained
set Ki. To ensure asymptotic stability for the switched multi-
robot system, we furthermore need to ensure that the system
will switch to either p = 1 or p = 2. This is ensured
since agent j eventually leaves the goal location rgi , moving
towards its own goal location rgj , which implies that the
modified LR policy is no longer needed and the system
switches either to p = 1 or p = 2, depending on the condition
(16). Under this caveat, i.e. that agent j is stuck on rgi for
some reason is highly unlikely, one has that the switched
multi-robot system under Σ? is asymptotically stable.

V. SIMULATION RESULTS

Simulation results are provided to evaluate the perfor-
mance of the switched multi-robot system under the proposed
switching logic and control policies. Let us here consider a

2This is ensured since the function Wi takes uniformly its maximum
value on the boundary of the constrained set Ki.



typical scenario involving N = 10 agents with initial and goal
locations in very close proximity such that the OGA policy
is not sufficient to ensure there are no collisions, see Fig.
1. The agents start from the initial conditions marked with
red squares towards goal locations that do not necessarily
correspond to the optimal assignment. The paths from the
starting locations to the initially assigned goals are depicted
as the blue lines. Communications range is denoted by the
cyan ring around each agent and in this case Rc = 5R
During this simulation, at least one subgroup of robots using
using the LR control policy for 21% of the duration of the
simulation. Fig. 2 shows the minimum clearance between
any two robots. As this is always positive, there is never a
collision between any robots.

The number of re-plan operations depends greatly on
the number of robots, the communications range, initial
distribution, and quality of initial assignments. The time for
a re-plan operation also directly depends on the number
of agents in the connected component. Planning times on
simulated teams of robots using a single computer take
approximately 10−7Nc

3 seconds such that a component of
100 robots takes about 0.1 seconds to plan. This is more than
sufficient for the proposed applications.

Fig. 1. A simulation with N = 10 robots. The paths followed are straight
when in the OGA segments, but are potentially curved when using the LR
control law.
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Fig. 2. The minimum clearance between any two robots for a simulated
trial with N = 10, where clearance is defined as the free space between
robots. Note that as this is always positive, there were never any collisions
between robots.

VI. DISCUSSION AND CONCLUDING REMARKS

We presented a switched systems approach on the decen-
tralized concurrent goal assignment and trajectory generation
for multi-robot networks, which guarantees safety and global
stability to interchangeable goal locations. The proposed
switching logic relies on multiple Lyapunov-like functions
which encode goal swap among locally connected agents,
avoidance of inter-agent collisions and convergence to the
assigned goal locations. As such, the proposed methodology
renders feedback control policies with local coordination
only, and is therefore suitable for applications such as
first-response deployment of robotic networks under limited
information sharing. Our current work focuses on the consid-
eration of agents with more complicated dynamics, as well
as the robustness of our algorithms under communication
failures and uncertainty.
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