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Abstract—Vision-based formation control of multiple agents,
such as mobile robots or fully-autonomous cars, has recently re-
ceived great interest due to its application in robotic networks and
automated highways. This paper addresses the cooperative mo-
tion coordination of leader-follower formations of nonholonomic
mobile robots, under visibility and communication constraints
in known polygonal obstacle environments. We initially consider
the case of N = 2 agents moving in L. — I fashion and propose
a feedback control strategy under which L ensures obstacle
avoidance for both robots, while I ensures visibility maintenance
with L. and inter-vehicle collision avoidance. The derived algo-
rithms are based on: set-theoretic methods to guarantee visibility
maintenance, dipolar vector fields to maintain the formation
shape, and the consideration of the formation as a tractor-trailer
system to ensure obstacle avoidance. We furthermore show how
the coordination and control design extends to the case of N > 2
agents, and provide simulation results which demonstrate the
efficacy of the control solutions. The proposed algorithms do
not require information exchange among robots, but are instead
based on information locally available to each agent. In this way,
the desired tasks are executed and achieved in a decentralized
manner, with each robot taking care of converging to a desired
configuration, while maintaining visibility with its target.

Index Terms—Path Planning for Multiple Mobile Robot Sys-
tems, Nonholonomic Motion Planning, Leader-Follower Forma-
tions, Visibility Maintenance

I. INTRODUCTION

Control of Leader — Follower (L —F) formations of au-
tonomous vehicles and robots has seen an increasing interest
during the past few years. Research in this area has in
part been stimulated by the recent technological advances
in communication and computation, which have allowed for
the development of multi-agent systems that accomplish col-
laborative tasks in an effective, robust and reliable fashion.
Within the field of mobile robotics, L — F formations arise
in various applications, from surveillance and monitoring to
exploration and coverage. From a practical point-of-view, the
case when robots are subject to limited sensing and commu-
nication is of particular interest. For instance, mobile robots
operating indoors typically lack access to global positioning
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measurements, while information exchange is either restricted
or obstructed by physical obstacles. Such limitations impose
various types of constraints to each robot, which naturally
extend to the whole multi-robot system. For the desired tasks
to be fulfilled, these constraints should be taken into account
during the motion planning, coordination and control design.

Vision-based sensing and localization has recently become
a popular and versatile means of controlling robot formations.
The authors in [1], [2] consider the cooperative formation
control of mobile robots and propose switching solutions
which change the formation shape, so that obstacle avoidance
is achieved. In [3] the authors approach the formation main-
tenance for nonholonomic mobile robots as a visual servoing
task for each one of the followers; the proposed solutions,
based on either the concept of Navigation Functions, or on the
locally linearized system dynamics, yield Leader-to-Formation
stability [4]. Vision-based localization, along with controllers
based on input-output linearization, for a formation of mobile
robots is addressed in [5], [6]. Vision-based controls for similar
formation tasks are also proposed in [7]-[9].

The common underlying assumption in the aforementioned
contributions is that the robots have omnidirectional (or pan-
controlled) cameras, and that the linear and angular velocities
of L are either communicated to, or estimated by F. However,
when communication between robots is absent and/or their on-
board sensors have limited capabilities (e.g. limited range and
angle-of-view), then the robots can typically stay connected if
and only if L is always visible to F. The latter specification
imposes a set of visibility constraints which should never be
violated, so that F' always maintains visibility with L.

Formation control under visibility constraints exhibits sim-
ilarities in terms of problem formulation to the control design
for a nonholonomic robot with field-of-view constraints which
needs to maintain visibility with a target, e.g. a fixed landmark
or an evader. For the fixed target case, hybrid control strategies
are presented in [10], [11], whereas optimal paths which
respect the field-of-view constraints are computed in [12],
[13]. In [14] visibility maintenance for a chain of Dubins-
like vehicles is addressed based on the notion of controlled
invariance. In [15], [16] the authors use a game-theoretic
formulation for the problem of tracking an omnidirectional
evader with a nonholonomic mobile pursuer of bounded speed.
These contributions, albeit significant and elegant, do not
consider the presence of physical obstacles.

Maintaining visibility in polygonal obstacle environments
has been mostly addressed with game-theoretic strategies for
one pursuer (observer) tracking one evader (target) in an
antagonistic fashion, see [17]-[20] and the references therein.



IEEE TRANSACTIONS ON ROBOTICS

The corresponding optimal control problems are defined in
terms of either the shortest path, or the minimum time, for the
evader to escape the visibility region of the observer. In [18],
[20] the authors further discuss the applicability of the derived
motion strategies in cooperative leader-following scenarios for
mobile robots; in these cases, the follower is assumed to have
full access on the leader’s configuration and velocities.

A. Problem Overview and Organization

This paper considers the cooperative motion coordination of
N > 2 mobile robots with unicycle kinematics in known obsta-
cle environments, using vision-based formation control. This
problem is relevant to various multi-agent applications, includ-
ing the exploration and surveillance of cluttered environments
with multiple robots of minimal sensing and communication
capabilities, as well as the navigation of autonomous vehicle
platoons towards fully automated highways.

The robots are assumed to move in L — F formation under
visibility and communication constraints in the following
sense: Every robot ¢ (except the leader of the formation) can
see at least one other robot j; we refer to a robot j being
visible from another robot ¢ as a L — F pair. The onboard
sensor systems are of limited range and limited angle-of-view,
defining thus a cone-of-view for each robot. We assume that
robot ¢ is localized with respect to (w.r.t.) robot j if and only
if 7 belongs into the cone-of-view of . We also assume that
communication among robots for exchanging information is
not available. Thus, robots j and ¢ can move as a L — F pair
if and only if j is always visible from ¢, or in other words,
if and only if ¢ always maintains visibility with j. The safe
and reliable navigation of the robots furthermore dictates that
inter-vehicle collisions and physical obstacles should always
be avoided. Consequently, the motion coordination and control
problem for the multi-robot system reduces into guaranteeing
that the objectives of visibility maintenance, collision/obstacle
avoidance and convergence to desired goals are always ac-
complished.

To this end, we initially consider N = 2 agents moving as
a L —F pair and propose a motion coordination and control
strategy, in which L is responsible for ensuring obstacle
avoidance for both robots while navigating towards a goal
configuration, and F is responsible for ensuring visibility
maintenance with L and inter-vehicle collision avoidance. This
strategy can be described as follows:

1) The first level involves the motion planning and con-
trol design for F (Section III). Inspired by set-theoretic
control methods and notions from viability theory [21],
we provide the necessary and sufficient conditions for
visibility maintenance in obstacle-free environments. We
also propose a state feedback control scheme for F' which
guarantees visibility maintenance and collision avoidance
w.r.t. L, based on dipolar vector fields [22].

2) The second level involves the motion planning and con-
trol design for the L-F formation in a known obstacle
environment, given a cell decomposition of the free space
and a high-level discrete motion plan for L (Section IV).
Inspired by the tractor-pulling-trailer paradigm [23] we

propose a hybrid feedback motion plan for L, which guar-
antees obstacle avoidance for both robots. We furthermore
extend this idea and control design to the case of chain
formations with N > 2 robots.
Our motion coordination and control design is characterized
as cooperative, in the sense that the robots are not thought
of as antagonistic pairs of one pursuer, one evader, with the
latter trying to escape the sensing area of the former, but on
the contrary are controlled so that each one always keeps its
target visible in its sensing area. The proposed algorithms
do not require communication between the robots regarding
on their states, but are instead based on information locally
available to each agent; only the upper bounds of the velocities
of L are assumed to be a priori known to F. In this way,
the tasks are executed in a decentralized manner, with each
robot taking care of converging to a desired configuration,
while maintaining visibility with its target. More specifically:
on one hand, F is localized w.r.t. L yet is aware neither
of its navigation plan, nor of its velocities at each time
instant. On the other hand, L is not aware of the state of
F, yet its motion ensures that both robots avoid physical
obstacles. The same logic applies also in chain formations of
N > 2 agents. The efficacy of our algorithms is demonstrated
and evaluated through simulation results in Section V, while
Section VI concludes the paper and presents our ideas on
future extensions of this work.

B. Contributions

To the best of our knowledge, this paper is the first contribu-
tion addressing the cooperative formation control of multiple
robots in obstacle environments under sensing (visibility) and
communication constraints, with guaranteed visibility and
safety maintenance. The proposed state feedback control strat-
egy ensures the safe navigation of the multi-robot formation
in known cluttered environments, using minimal vision-based
information only and without the need for exchanging or
estimating velocities online. More specifically:

Compared to earlier work on vision-based formation con-
trol in obstacle environments [1], [2], our method does not
require communication between robots, or state estimation
algorithms. Moreover, the onboard cameras are not assumed
to be omnidirectional or pan-controlled, but rather fixed and of
limited range and field-of-view. Finally, the consideration of
the tractor-trailer paradigm guarantees obstacle avoidance for
the formation via a hybrid control strategy for L. only, whereas
in [1], [2] the formation switching is based on a coordination
protocol involving information on the states of all robots.

The differences of our approach compared to other vision-
based formation control strategies [5]-[9] rely on the absence
of communication, the consideration of limited field-of-view
and range constraints, as well as the consideration of physical
obstacles. The latter specification is the main difference of
the current paper compared to other papers on maintaining
visibility problems involving robots with field-of-view con-
straints [10]-[16]. Finally, compared to [18], [20], here F is
not required to have full access on the state vector of L.

Part of this work has appeared in [24]. The current paper
additionally includes: (i) the proofs verifying the correctness
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of our control strategy, which were omitted in the conference
paper in the interest of space, and (ii) its extension for
N > 2 robots, along with illustrative simulation results.
Finally, compared to our recent work in [25], this paper is
different in the following aspects: Here, we consider a multi-
agent scenario in the presence of physical obstacles, while the
problem addressed in [25] considers neither multiple robots,
nor physical obstacles. Consequently, the current paper differs
in the adopted system modeling, considered constraints and
the derived control strategy.

II. MATHEMATICAL MODELING
A. Leader-Follower Kinematics

We first consider the case of N = 2 unicycle mobile robots
moving in L — F formation. The motion of each one of the
robots L, F w.r.t. a global frame G is described by:

T; cost; 0 .
g; = G(qi)vi = |yi| = [sinf; 0 Lf] ; (D

0; 0 1 '
where i € {L,F}, q; = [z ui Hi]T is the configuration
vector of robot 7, r; = [,Ti yi} T is the position vector and

0; is the orientation of ¢ w.r.t. frame G, u;, w; are the linear
and angular velocity of ¢ in the body-fixed frame Z € {£, F},
with £ being the leader frame and F being the follower frame.
To describe the motion of F w.r.t. the leader frame L,
consider the position vector r = [z y| of F w.r.t. £, given
as r = R(—0y) (rr — rL), and take the time derivative as:

r = R(—@L) (’PF - 'PL) + R(_QL) ("'“F - 'faL) ) (2)
where

R(—0) = |:COS(_9L) —sin(—OL)} _ [ cos O, sin@L] 3)

sin(—0r) cos(—0r) — sin 01, cos 6y,
is the rotation matrix of the frame £ w.r.t. frame G, and

R(—0L) = [_0 "] R(-0L). )

—wy, 0

Substituting (3), (4), (1) into (2) and after some algebra one
eventually gets:

| [-1 oy | |uL cos(fr — 0,)
[y} - [ 0 —x} [wJ + [sin(b’p —0L) ur- )
Define 8 = 0p — 0y; then differentiating w.r.t. time yields:
B =0p — L = wp — wr. (6)

Combining equations (5) and (6) yields the system equations:

& cosfp 0 -1 y
g| = [sing 0 [“F]+ 0 —z [“L] 7

3 0o 1| LYF 0 —1| t“"
f(a,vr) g(q,vL)
where ¢ = [z y B}T e C C R? is the state vector

.. .. T . .

comprising the position r = [:v y] and the orientation (3
of the follower F W.r.% the leader frame L, C is the state
space, vp = [up wF] € Uy is the vector of control inputs,

Up C R? is a compact set denoting the control space, and

Fig. 1. The L-F setup in an environment with obstacles.

g(g,vy) can be seen as a perturbation vector field, where
v, = [uL wL] e Uy, C R? is the vector of control inputs
of L. The perturbation is vanishing if and only if g(q, v,) = 0,
which occurs if and only if vy, = 0. Consequently, the motion
of L can be thought as a non-vanishing perturbation to the
motion of F.

B. Modeling of the visibility constraints

We assume that F is equipped with a fixed onboard camera
of limited angle-of-view 2o < . Furthermore, we assume
that F' can reliably detect objects which lie within a limited
region w.r.t. the forward-looking direction, as shown in Fig. 1.
The limited sensing region is modeled as a cone-of-view for
F, which essentially is an isosceles triangle in obstacle-free
environments. Finally, we assume that F is localized w.r.t. L,
i.e. that the distance » = /22 4 y2 and the bearing angle
¢ € [~a, a] are measured.! Consequently, F can detect L if
and only if L is in the cone-of-view, i.e. iff:

L cosa

|| <a and r <
cos ¢

; ®)
where L is the length of the equal sides of the cone-of-view.
These constraints define a closed subset K of C, given as:

where hy = |¢| — o and hy = 1 — Lgoc—s‘j)o‘, which we call
the visibility set K. The set K includes every configuration
g € C for which visibility is maintained. Controlling F, L so
that the resulting trajectories g(t) never escape K, implies that
visibility is always maintained.

Remark 1: Maintaining visibility for the L —F formation
described by (7) reduces thus into picking control inputs vg =
~r(+) for F, such that the visibility constraints (8) are met V¢ >
0, despite the non-vanishing perturbation g(q, v1,) induced by
the control inputs vr, = ~,(+) of L.

IThis essentially implies that F measures its pose vector (position and
orientation) w.r.t. frame £, which can be done with techniques as in [7].
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III. VISIBILITY MAINTAINING FORMATION CONTROL

Let us first consider the system (7) for L moving with
some uy, # 0, wy, # 0, in an obstacle-free environment. As
mentioned earlier, we assume that F' is localized w.r.t. L, i.e.
that F measures its position (z,y) and orientation 3 w.r.t. the
leader frame L. Yet, F does not have access to the navigation
plan or the velocities ur,(t), wy,(t) of L at each time instant
t. Thus, it is reasonable to assume that F' has some a priori
knowledge on the velocity bounds uf, wf of L, in the sense
that L is restricted to move with bounded velocities

0<up <up, |wy| <wi.

The task for F is to (ideally) keep a fixed distance 74 W.r.t.
L with angle ¢ = 0, where 2ry < rq < Lgcosa and 1y
the radius of the robots; in that way, L. gets centered in the
field-of-view of F. This requirement specifies a manifold M
. . T
of desired configurations gq = [za ya 04] for F:

za® +ya® = 14’

M= {Qd eC| 04 = atan2(yq, xq) + sign(yd)ﬂ'} '
Thus, the control design for F reduces into finding a feedback
control law ~r(-) so that F' converges to a configuration gq4 €
M, with the trajectories g(t) always satisfying the visibility
constraints (8).

However, since the perturbation g(q, vr,) is non-vanishing
Vq € C, none gq € M is an equilibrium point of (7). In that
case, the best one can hope for is that the system trajectories
g(t) are ultimately bounded [26]. Consequently, the task for
F reads as to converge into a ball B(r4,€,) of radius €, > 0
around a desired position 74 € M.

1) Ultimate boundedness of the system trajectories into a
ball B(rg4, €,): Building upon previous work of ours [22], we
propose a feedback control law yielding ultimate boundedness
of the trajectories q(t) of F into a ball around a desired
position r4 € M; to this end, we use a suitably defined dipolar
vector field as a feedback motion plan [27] for F.

In principle, a dipolar vector field F : R* — R? has integral
lines that all lead to the origin (0,0) of a global coordinate
frame G’ in R?, is non-vanishing everywhere in R? except for
the origin, and is analytically given as:

F(n) =A@ 'mn—pn'n), (10)

where A\ > 2, p € R? and n= [771 ny] T the position vector
w.r.t. G'. Tts characteristic property is that all integral lines
converge to the origin (0,0) parallel to the axis the vector p
lies on, see also Fig. 2. Consequently, picking a vector p =
[Pz Dy " Such that its orientation @, 2 atan2(py, ps) W.rt.
G’ coincides with a desired orientation 7),, has the effect of
reducing the orientation control for a unicycle vehicle into
forcing it to align with the integral lines of the dipolar vector
field while flowing towards the origin (0, 0). If the vector p is
assigned on a desired position g = [1z, 7y d}T, then one
gets a dipolar vector field whose integral lines converge to 1g
having by construction the desired orientation ¢, £ . there.

In order to get the analytic expression of a vector field F
with the desired convergence properties w.r.t. a configuration
ga € M in the leader frame £, take p = [p, py] T such that

©p = atan2(py, ps) £ ¢, and substitute n with r; £ 7 — rq
in (10), where 7y = [21 yl]T. The components F,, F, of
the vector field F along the unit directions {-2, -2} read:

9z dy
Fo = 2p,21% — povn® + 3pyriyn, (11a)
Fy =2p,11% — pya1® + 3paz1y1. (11b)

Having the vector field (11) at hand, we state the following
theorem regarding on the position trajectories r(t) of F:
Theorem 1: The position trajectories r(t) = [z(t) y(t)] i
of the perturbed system (7) enter and remain into a ball
B(ra, €,) around a desired position 74 € M, under the control

law vgp = [uF wp} where:

up = —kj sgn (r;r [E;’SED 71| — sgn(pr1)uf, (12a)

wp = —ka(B — ) + ¢, (12b)

ki, ko >0, 02 atan2(F,,F,) is the orientation of the vector
field (11) at (x,y), uf is the upper bound of the linear velocity
of L and €, > \/% The. proof is given in the Appendix A.

Remark 2: A conservative, yet safe (worst-case) €, can be
taken for the bound wy, of the angular velocity of L. Note also
that as wy, — 0, then ¢, — 0 as well.

2) Maintaining visibility: The necessary and sufficient con-
ditions ensuring that system trajectories q(t) never escape a
set of state constraints K are given by Nagumo’s Theorem
[21], [28]. Briefly, the main idea is that on the boundary 0K
of the set K, the system vector field ¢ € T,C, with T,C being
the tangent space of the state space C at the point g, should
be tangent to K, for bringing the solution q(t) back in the
interior of K.? Thus, for the visibility set K considered here,
the k-th constraint (8) is always maintained if and only if:

dh .
ZE — Vhy, ¢ 2 Vhy, (£(g,vr) + g(g, 1)) <0,

dt
V{q € C|hi(q) =0}, (13)

where Vhy = {% % %—}g‘} is the gradient of hy(-),

and k& € {1,2}. To see why, note that (13) implies that the
value of the constraint function hy(-) : R* — R is forced to
decrease, which in turn implies that the constraint function
hi(-) remains negative, or equivalently, that the resulting
trajectory g(t) is forced to lie in the interior of the visibility
set K. The necessary and sufficient conditions for maintaining
visibility when both constraints are active at the same time
are written using the Jacobian matrix Jp(q) of the map
h = (hi(-), ha(")) : R® = R? as:

Ohi  Ohi  Ohi
Jn(@)d <0, where Jn(q) = | gr,  oF. |- (4
Ox Oy ap

At this point, note that while the control law (12) does force
F to converge into a ball around a desired position rq4 € M —
which by definition belongs to the visibility set K — it does
not necessarily guarantee that the trajectories g(¢) do always
belong to the visibility set K. In other words, the resulting
paths for F as it moves towards qg may be such that L lies

2This tangency condition is realized via the concept of contingent cone
Tk (x) to a set K defined by inequality constraints [21], [29].
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Fig. 2. Determining the vector p and the desired position 4 on R?
B
Fig. 3. In an obstacle-free environment, the viability constraints are active

on the boundary of the cone of view (visibility at stake)

out of the visibility cone during some finite time intervals.
For the problem setup and control design considered here, this
primarily depends on the choice of the desired configuration
qq € M, which in turn dictates the choice for the vector
pE R? in the definition of the vector field (11), i.e. dictates
the reference orientation o(t) that F has to track via (12b).

In this respect, note that not all possible desired positions
rq € M for F belong to its cone-of-view at each time instant
t. For instance, see Fig. 2 and assume that ¢ = 0: the desired
positions r4 € R? belong to the circle ¢ = {r e R? | 22 +
y2 = rdQ}, centered at L; however, only the positions on the
arc V shown in bold belong to the cone-of-view of F. Thus,
one needs to pick some rg4 € V, which furthermore guarantees
that visibility is always maintained.

A sufficient option is to choose the position 4 € V which
lies on the line that connects the two robots. To see why, let us
illustrate the necessary and sufficient visibility conditions (14)
for the boundary configurations of the system shown in Fig. 3.
The first visibility constraint is active when hq(q) =0 < ¢ =
+a; in this case, L lies on either the side AF, or the side BF
of the cone-of-view. The second visibility constraint is active
when ha(q) = 0 & r = L2295 in this case, L lies on the

Scos¢?’

side AB. Worst case, the visibility constraints are both active

Fig. 4. In an obstacle environment, viability constraints are active on the
boundary of the cone-of-view (visibility at stake) and on the boundary of the
inflated obstacles (safety due to collisions at stake)

when L lies on either point A or point B. Then, visibility is
maintained under the proposed control law (12) as long as the
condition (14) holds. The analytical expression of the visibility
conditions and a sufficient tuning of the control gains &y, ko
so that these conditions always hold, are given in Appendix B.
With this at hand, we may now state the following theorem.

Theorem 2: The control law (12) with the control gains k1,
ko satisfying (23), (24), guarantees that the follower F:

« converges and remains into the ball B(rg4,€,),
o maintains visibility w.r.t. the leader L, and
o avoids collision with L.

Proof: The first two arguments were proved in Appendix
A and Appendix B, respectively. For the third argument, let us
consider the Lyapunov function V; = % (z1% + y1%) encoding
the squared distance between F and its goal position r4, and
recall from the analysis in Appendix B that its time derivative
V; is negative out of the ball B(rq, €, ). This implies that the
distance ||r1]] of F to its goal r4 € V is always forced to
decrease, until its value becomes lower than ¢,.. Furthermore,
by definition the goal position r4 for F is always picked to
lie between the two robots, see Fig. 2. Let us assume that
for some initial configuration go € K, the proposed control
strategy forces F to collide with L; then, this implies that
the distance ||r1|| should increase, which is inconsistent for
the system trajectories under (12). Therefore, inter-vehicle
collision avoidance is always guaranteed. [ ]

IV. MOTION PLANNING IN OBSTACLE ENVIRONMENTS

The L —F formation is assumed to move in a structured
workspace W C R? with known obstacles, e.g. in an indoor
corridor environment. For ensuring the safe and reliable mo-
tion of the robots one should take into account that:

1) obstacles may obstruct visibility (Fig. 4), and therefore if
L is not visible to F, then sensing is not effective,
2) the trajectories gr,(t), gr(t) should be collision-free.

The robots are represented as circular disks of radius rg. This
radius is added to the obstacles as shown in Fig. 4. Thus, the
dark grey region around obstacles reduces the free space of
the robots, while it does not affect visibility; F can still detect
L through this region, but both F, L should not enter into it.
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A. Motion Coordination in a Corridor Environment

Controlling F' via (12) essentially yields the desired forma-
tion shape along with guaranteed visibility maintenance. For
the navigation of the formation through a corridor environment
we further need a motion plan for L. To this end, we first
decompose the free space into cells as described in Appendix
C. We also assume that L is given a high-level discrete motion
plan indicating the sequence of cells that it has to go through,
in order to converge to a goal configuration.

With these at hand, we are now pursuing a control strategy
for L such that its motion guarantees obstacle avoidance for
both robots; recall that the motion of F already guarantees the
maintenance of the formation shape and visibility with L.

1) Defining local feedback motion plans for L: Given the
sequence of cells i@ € {1,2,..., Ny} that L has to go
through, the motion planning for L follows the spirit presented
in [30]. More specifically, in each cell ¢ we define a dipolar
vector field Fy,; (10) which serves as a local feedback motion
plan for L in the following sense: the integral curves of the
vector field Fy,; in cell ¢ point into the interior of the successor
cell 7 + 1 on the exit face of the cell 4, and into the interior
of the cell 7 on each one of the remaining faces (Fig. 5).

The difference compared to [30] is that here the vector fields
defined in each cell ¢ are dipolar and thus their integral curves
converge by construction to the midpoint of the exit face of
cell 7. This is ensured by assigning the dipole moment vector
pr; of the vector field Fy,; on the exit point of the cell i.

The feedback motion plan for L can then be defined as to
orient with and flow along the integral curves of the vector
field F'y,; in each cell <.

Lemma 1: Let us assume that, worst case, L initiates on the
boundary of a cell ¢, with orientation pointing into the interior
of the cell. Then L performs collision-free motion throughout

the successive cells ¢,7 + 1, ..., under the control inputs:
ur, = const < uf, (15a)
wy, = —kL(0L — ¥L4) + PLi, (15b)

where ¢y, ; is the orientation of the vector field Fp,; in cell 4,
and kr, > 0.

Proof: Since each vector field Fy,; by definition points
into the interior of the free space, it follows that obstacle
avoidance for L is ensured. [ |

Remark 3: The motion and resulting trajectories qu,(t) of L
essentially dictate the desired position trajectories rq(t) € V
(see Fig. 2) that F has to track at each t. Clearly, rq(t) should
always lie in the free space. To see if this is always the case,
let us first consider the motion of the formation when both
robots lie in the same cell :.

Lemma 2: Let us assume that L, F start in the same cell
i, at some initial distance r > r4 and so that the visibility
constraints are not violated. We furthermore assume that when
initiating on the boundary of the cell, the orientations of L, F
point into the interior of the cell. Then under the control laws
(15), (12) the motion of the L. — F formation in cell 7 remains
collision free.

Proof: Worst case, both robots start on the boundary of
the free space so that at least one of the visibility constraints

Pyisny

-3.5 -2 -1.5 -1 -0.5 0 0.5

Fig. 5. L moves through the successive cells ¢, ¢ + 1 under (15), tracking
the vector fields shown in the free space. The resulting trajectory qr,(t) will
likely force F' to eventually collide with obstacles. Thus, L, F' should move
with minimum turning radii Ry,, Ry around corners.

is active. Then out of Lemma 1 one has that L. moves into
the interior of cell 7. Furthermore, out of Theorem 2 one has
that the inter-agent distance r decreases, implying thus that F
is forced to move into the interior of the cell i. Thus, both
robots avoid static obstacles. Inter-robot collision avoidance is
also guaranteed out of Theorem 2. Consequently, the motion
of the L — F formation in cell ¢ is collision-free. ]
Let us now consider the transition when L enters cell ¢ + 1
while F is still in cell 7. In this case, it is likely that the
trajectory qr,(t) will force the desired position 4 to eventually
enter the obstacle space. To see how, consider Fig. 5: L is
forced to track the vector field in cell i + 1 after exiting cell ¢
and thus moves in the free space but very close to the obstacle,
forcing F to eventually collide with the obstacle.

2) Considering the formation as a Tractor-Trailer system:
This remark essentially implies that L. should move with a
minimum turning radius Ry, when entering into cell ¢ + 1, so
that the trajectories gr(t) do not enter the obstacle space. A
sufficient way to ensure this is to think of the L — F formation
as a tractor (L) pulling a trailer (F) with axle-to-axle hitching
of length r4 [23] when turning around corners.’

Lemma 3: 1f L starts moving along a circle of center C' and
radius Ry, then F will move on a circle of the same center C'
and radius Ry = V RL.? — r42.

Proof: Tt trivially follows out of the kinematics of a
tractor-trailer system, see [23]. |
Thus, if Ry, Ry can be picked so that they dictate collision-
free paths for the tractor-trailer system, then it naturally
follows that the trajectories of both L and F are collision-free.

Theorem 3: Assume that L is at the midpoint M; of a cell
i—driven there by (15)— and starts moving in cell 741 along
a circle of radius Ry,, whereas F is in cell 7, at a distance rq4

3Equivalently, the formation can be kinematically seen as a front-wheel
driven car, where 8 = Op — 0y, is the steering angle and 74 is the wheelbase.
Note that this assumption is valid since, after F has converged into B(rg, €,)
where €, — 0, it is guaranteed to remain there and also to keep a relative
angle ¢ — 0 w.r.t. L.
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Fig. 6. After exiting cell 7, L should move in cell ¢ + 1 along a circle of
radius Ry, that satisfies (16).

w.r.t. L. If the turning radius Ry, satisfies:

2 2 Wy 9 w1-2
rq® + Rp,” < Rp, < w1 +Rr, —+1\/74* — , (16)
27“,1 4

where w;, w;41 are the lengths of the exit faces of the cells
1, 1 + 1, respectively, rg is the radius of the robots and

2
) 2
(2 vrory/raz= ) 48 3 0)

- ] 2 ] 2
wi [ oo wi?  wirg (V3 _ _m\/ 2_wi (V3
Wi frg2 -t 0 (2 ) e e it (2

Ry » A7)

w

then the trajectories qr,(¢), gr(t) are collision-free.

Proof: Let us consider Fig. 6 and denote with ¢* the time
instant when L is at the midpoint M; of the cell 7. L. moves
in cell 7 + 1 along a circle of center C' and radius Ry,. Since
F behaves kinematically as a trailer, one has out of Lemma 3
that it moves along a circle of the same center C' and radius
RF =V RL2 — ’l"dz.

In the depicted scenario, Ry is drawn to actually be the
smallest critical value R . for which the trajectories gr(t)
remain collision-free. Furthermore, this corresponds to the
worst case, with F starting/being on the boundary of the free
space.* The position coordinates of F w.r.t. a coordinate frame
L* attached on the midpoint M; of the exit face of cell 7 are:

o 2 wj _ w;
I, = —\/Td” — 4 y YR, 77
2 w;?
TaT T w;
COS(ﬂW) = y ) Sln(ﬂw) = 27‘;'

Furthermore, the center of rotation C' is constant and its
position w.r.t. £* is:
ro = xp, + Rrsin(By), yo = yr, — Rr cos(By),

4Clearly, this Ry ¢ corresponds to L making a right turn. Similarly one
can treat the case for a left turn.

whereas the coordinates of the critical point Z w.r.t. £* are:

ro\/i w; Toﬂ
—r _ _ "
B) 05 Yz B) B)

RF,cr = \/(ZEC - zZ)2 + (Z/C - yZ)2'

Ty7 = — 1. Thus,

(18)

Substituting the expressions above into (18) and after some
algebra one can verify that the analytical expression for the
worst-case safe turning radius Ry, = Ry, is given by (17).5 It
follows that if L, moves into cell ¢+ 1 with turning radius Ry, >

\/Ta2 + Ry 2, then the trajectories of F in cells i, i + 1 are
collision-free. This proves the left inequality in condition (16).
The right inequality is trivially derived out of the geometry
of Fig. 6 by requiring R1, < CE, in order to ensure that the
motion of L along the arc M; E in the cell i+1 is collision-free
as well. In summary, picking a turning radius Ry, satisfying
the condition (16) guarantees that the transition of the L — F
formation between cells % and 7 4 1 is collision-free. [ ]
Remark 4: The condition (16) is rather conservative, in the
sense that Ry is computed for the worst-case scenario, since
we assumed that L has no information on the position of F.
Thus, given rg4, 79 and the cell decomposition, it is easy to
a priori check whether a safe Ry, exists for each one of the
transitions between cells that are realized as turning around
corners. Given that a safe Ry, exists, the motion of the L — F
formation is dictated by the following control strategy:

1) Both robots initiate and move in the same cell 7, according
to the assumptions and control laws in Lemma 2.

2) L reaches a ball of arbitrarily small radius around the
midpoint M; of the exit face of cell i: Then, L (i) orients
with the tangent vector to the radius C'M;, whose direc-
tion 1s computeq as: \; = —f,géf:) = _ZFF:th: 322@3,
and (ii) moves into cell 7 + 1 with linear velocity given
by (15a) and angular velocity w{ = sign(wr,) 5=, where
wr, 1s given by (15b). Then L travels arbitrarily close to
the circle of radius C' and radius Ry..

3) L reaches a ball of arbitrarily small radius around the
point E' (Fig. 6). Then F has already entered safely in the
cell i + 1. The angular velocity control for L switches
to (15b) and L tracks the vector field in cell 7 + 1 on its
way to the exit face of this cell.

4) L reaches a ball of arbitrarily small radius around the
midpoint of the exit face of cell 7 + 1. Then L switches
to the control strategy described in Step (2), and so on.

Remark 5: The worst-case computation of safe Ry, Rp
does not need to be done for L exiting at the midpoint M;
of the exit face of cell :. One may tune the proximity of the
resulting trajectories g, (t), gr(t) to the obstacles by sliding
the exit point of L along the exit face of cell ¢. This is further
illustrated in the extension discussed below.

SNot surprisingly, the critical turning radius for F depends on the radius
ro of the robots, the distance 74 between them and the width w; of cell 7.
Furthermore, one may easily verify that (17) is always well-defined (positive),
since the denominator is positive for the worst case, i.e. for w; = ro and
rq = 2ro.

Actually F enters safely in the cell 7 + 1 when L lies on the point S.
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B. Motion Coordination for N > 2 robots

The tractor-pulling-trailers paradigm can be used to extend
the proposed motion planning and coordination control in the
case of N > 2 robots that move in a chain formation of one
global leader L and N —1 followers F;, j € {1,...,N—1}.
In such formation, F;. serves as a local leader to F(k+1), SO
that F(;,1 1) is localized w.r.t. Fy, k € {1,...,N—-2}.

The feedback motion plan for L follows the idea presented
above: given a decomposition of convex cells and a high-level
discrete motion plan, the motion of L in a cell ¢ is dictated
by a local dipolar vector field Fy,;, defined so that its integral
curves converge to some point N; on the exit face of cell i;
the determination of this exit point is given later on.

To ensure the collision-free transition of all followers F;
from cell 7 to cell 7 + 1, one may pick a turning radius Ry,
for L (tractor) such that the trajectories of the last follower
(trailer) F( _1) remain collision-free. Let us denote the worst-
case safe turning radius for F(y _1) with Rp,; this corresponds
to F(x_1) being on the boundary of cell 7 at the time instant
that F(y _9) exits cell <.

Given that under (12) each follower F, acts as a local leader
(i.e. tractor) to F (1), it follows out of the kinematics of a
tractor-trailer system [23] that the turning radii Rp, of each
follower Fy, k € {1,...,N —2} satisfy:

Rpy_,° =Rp,” +rd°, (192)
Rpy 42 =Ry, " +r1d’, (19b)
Rp,? = Rp,” +14°, (19¢)
Rp,? = Rp,” +14°, (194)

and similarly the turning radius of L is given as Ry,? = Rp, 24
r42. Substituting (19) into this expression yields:

Ri? = (Rp,? + (N =2)rg?) 4714 = Rp, >+ (N —1)r4? (20)

with Rp, computed for Fy_1) being on the boundary of the
cell ¢ at the time instant when F(y_5) exits cell 4. The exit
point for Fy_o) is picked by the designer and it does not
need to coincide with the midpoint of the exit face. Following
the pattern in Theorem 3, one may compute the position
coordinates of the last follower Fy_1, the center C' and the
critical point Z w.r.t. a global frame attached to this exit point,
and derive the worst-case Ry, out of (18), which reads:

i o= )+ (o 28]

Rp. =
2 (yr, — F,) (7“0 - %) + 2 yr, TR,

w

21

The derivation of Ry, is straightforward and omitted here in
the interest of space. Having (20), (21) at hand, it is now
easy to compute the coordinates of the exit point N; for L
on the exit face of ¢. Consider Fig. 7, depicting the worst-
case exit scenario for F(y _2), F(x_1). At this time instant, L
already lies in cell 7 + 1 traveling along the circle of center
C' and radius Ry,. The coordinates of the exit point N; for L
are computed by applying the law of cosines for the triangle
(Ni F(x—2) C) to compute the length of the side (N; F(n_2)).

L should move along the safe Ry, until reaching the safe point
S, so that F enters safely in cell ¢+ 1, i.e. so that F reaches the
critical point Z. The coordinates of S are a priori computed
using (19), see Fig. 7 the case of N = 4 agents. Clearly, the
coordinates of S should lie in the interior of cell ¢ + 1.
Therefore, the control strategy for L in the case of N > 2
agents reads: While in cell ¢, LL tracks a dipolar vector field
(10) defined with its dipole moment vector py,; assigned on
the exit point NV;. For the transition from cell ¢ to cell ¢ + 1,
L is controlled as described in the previous section with Ry,
given by (20) until reaching the point S, while each F; is
controlled via (12). The turning radius Ry, (20) ensures the

Fig. 7. Computing the exit point of L on the exit face of cell = when N > 2.

(worst-case) turning radius Ry, for the last follower F(y _1)
is safe, i.e. that the transition of the chain formation between
cells 7, 2 + 1 is collision-free.

C. Motion Coordination in Complex Polygonal Environments

The proposed control strategy for L is not restricted to
rectangular cells, but can rather be applied in general polyg-
onal obstacle environments. Given a cell decomposition of
convex polygonal cells (Appendix C) L may track a local
dipolar vector field in cell 7, defined in the sense described
above. The tractor-pulling-trailers paradigm can be used for the
computation of turning radii Ry, Ry, that realize the worst-
case, yet safe, transition from cell ¢ to cell ¢+ 1. This becomes
evident in Fig. 6, 7, 13: the turning radii around corners
are essentially computed by embedding circles (i.e. paths)
consistent with the tractor-trailer kinematics. Thus, given that
cell decomposition is known, one can compute the worst-case
safe Ry, Rp, for any transition between successive cells.

V. SIMULATION RESULTS

The efficacy of the proposed motion planning and coor-
dination strategy is evaluated through computer simulations.
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A decomposition of the free space into polygonal cells (see
Appendix C) and a high-level discrete motion plan is given to
L. All robots initiate so the corresponding visibility constraints
are satisfied, while initial conditions with the robots being in
different cells should be avoided, in the sense that they may
by definition violate the safe curvatures around corners.

The scenario depicted in Fig. 9 involves N = 4 robots, one
leader L (in red) and three followers F;, j € {1,2,3}, and
demonstrates the collision-free motion of the formation during
the transition between cells ¢ and ++1. All robots initiate in cell
1, positioned on the boundaries of the obstacles. The cones-of-
view are not illustrated, to avoid getting the figure congested.
F1 (resp. Fa, F3) is localized w.r.t. to L (resp. Fq, Fa), yet is
neither aware of its motion plan, nor of its velocities at each
time ¢. The system parameters are picked as: rg = 0.25 m,
a=30deg, rg = 0.6 m, w; =0.75 m, w;+; = 0.625 m.

L starts moving with constant linear velocity ur, < uj, and
tracks a dipolar vector field in cell ¢ on its way to the point
N; on the exit face of ¢, which is marked in Fig. 9(0). The
position coordinates of NV, are dictated by the pre-computed
safe Ry,, Ry, (Section IV-B). Here the worst-case safe turning
radius for the last follower F3 is derived out of (21) equal to
Rp, = 0.451509 m. Thus out of (20) one has Rp, = 1.13308
m. At the same time, F'; (resp. F'a, F'3) moves under the control
law (12) and converge into a neighborhood around the desired
configuration w.r.t. L (resp F;, Fs), yielding thus the chain
formation.

When L reaches the exit face of cell i, it is forced to follow a
bounded curvature within cell ¢+ 1 to move around the corner
under the angular velocity w] = sign(wr,) T, Where wy, is the
angular velocity (15b) dictated by the dipolar vector field in
cell 7+ 1. At the same time, the followers behave like trailers
under their corresponding control laws (12), and thus start
moving along circles of radii Rg; > Ry, which are guaranteed
to be collision-free (Section IV-B). As soon as L reaches the
point S, it continues moving under the angular velocity wr,
(15b) dictated by the vector field in cell 7 + 1, until it reaches
the exit face of the cell 7+ 1, and so on. Fig. 9(0) demonstrates
that the resulting paths for all agents are collision-free. Finally,
Fig. 8 demonstrates the system response during the motion of
the formation throughout a corridor environment under the cell
decomposition described in Appendix C. The initial conditions
are those depicted in Fig. 9, while the exit points /V; on the
exit faces of cells 7 are marked with green and have been a
priori computed as described in Section IV-B.

VI. DISCUSSION

This paper presented a motion coordination and control
strategy for L — F' formations of nonholonomic vehicles, under
visibility and communication constraints in known obstacle
environments. Visibility constraints arise due to the limited
vision-based sensing of the robots and define a visibility cone
for each robot 7.7 A robot 7 is localized w.r.t. a robot j if and
only if j belongs into the visibility cone of <. Thus, j and 7 can

"The assumption on the sensor footprint being an isosceles triangle is not
restrictive, since the conditions (13) on maintaining visibility apply to any
closed convex footprint, described by k inequalities hy(-) < 0.

Fig. 8. The robots initiate on the boundary of the cell ¢, so that the second
visibility constraint is additionally active for Fi.

move as a L — F pair if and only if j is always visible from
1. Inter-vehicle collisions and avoidance of physical obstacles
should also be ensured. For the guaranteed accomplishment
of those multiple objectives, ideas from set-theoretic methods
in control were combined with feedback motion planning via
dipolar vector fields and the consideration of the formation as
a tractor-trailer system, to the derivation of a hybrid control
strategy. The proposed algorithms are decentralized, in the
sense that they are dependent on local information only, which
is online or a priori available to each robot, without the need
for exchanging information.

It is worth noting that the computation of the safe turning
radius for L is done for the worst-case scenario, i.e. for the last
follower exiting cell 7 on the boundary of the obstacle. As thus,
the consideration of the formation as a tractor-pulling-trailers
system serves not only as one of the main contributions of this
work, but also eliminates the need for communication among
agents (i.e. the followers do not need to communicate their
current positions to the leader for safely coordinating their
motion, since the safe turning radii for the leader and the last
follower are a priori computed for the worst-case condition).
In this sense, this may be also seen as a robustness feature
against communication failures, which may be relevant in
other formation/communication topologies and similar multi-
agent coordination problems in constrained environments, and
is therefore an open direction for future investigation.

Our ongoing work and plans for future extensions are re-
lated to investigating switching control designs that may offer
enhanced reliability and robustness in the case of malfunc-
tioning, for instance against agent failures and measurement
noise. As far as mechanical failures are concerned, let us note
that the current approach does offer guarantees in terms of
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Fig. 9. Four robots initiating in cell ¢ move in (chain) formation using local information only.
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Fig. 10. The resulting paths under the effect of zero mean gaussian noise.

avoiding collisions, since each agent is always guaranteed to
keep a fixed distance w.r.t. the agent moving in front of it.
Thus, if a robot ¢ accidentally stops moving, then its follower
1+ 1 will keep a fixed distance w.r.t. the robot 7 by remaining
around its target point, forced there by proposed controllers.
Of course, this implies that the formation will unavoidably
break; for these reason, an interesting direction for further
investigation is towards adding additional, “recovery control”
modes into the existing hybrid system, which will become
active in the case that an agent needs to pick a new (local)
leader and coordinate its motion around a failed robot. Finally,
the adoption of the nominal system so far, i.e. under the
assumption of zero noise, is not restrictive in extending and
generalizing the proposed control design, since the ideas and
the mathematical framework can incorporate the effect of
measurement noise and additive disturbances. Keeping in mind
that the problem at hand involves wheeled robots operating
in indoor environments, we ran some preliminary simulations
with the position measurements of each robot corrupted by
zero mean noise; this captures in spirit the observation noise
expected in vision-based sensing and estimation, while the
process noise in such environments for is typically not that
great and thus was neglected. The simulations indicate that the
current controller works well for relatively small estimation
errors in position (of order 1 — 2%, see Fig. 10), while
hysteresis-like techniques [31] on the orientation control offer
enhanced robustness against larger position errors (of order
10 — 15%, see Fig. 11 a scenario with N = 3 robots).
The conditions which couple the admissible noise/disturbance
characteristics with the safe turning radii, the environmental
clearance and the robots’ control gains require an extensive
analysis which is out of the scope and the limits of the current
paper, and is currently ongoing work.

-6 -5 -4 -3 -2 -1 0 1 2 3

Fig. 11. The resulting paths under the effect of zero mean gaussian noise
and a hysteresis technique on the orientation control.
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APPENDIX A
PROOF OF THEOREM 1
Proof: Let us consider the continuously differentiable

function V' in terms of the position errors 1 = = — zq,
y1 =y — yq and the orientation error n =  — ¢, as:

1 1 1
V:V1+§(ﬂ—<ﬂ)2 =3 (z1* + 117) +§(ﬂ—‘ﬁ)2,

and take its time derivative along the system trajectories as:

v 2 21 (up cos B — ur, + ywr,) + y1 (up sin f — zwy,)+
+ (8= ) we —wr, —§) = [ 0] [ 28] upt

—ur+yw .
(o pme] | Zmn |+ (8- @) (wr —¢) =
(12b) 0s
2] 58] wr + al 9@, 00) ~ka(8 - )%

P(q1)

where r1 = [:101 yl}—r, q1 = [TI B — (p:l—r. The dynamics
of the orientation error n = f—pread: 1) = f—¢p = 1 = wp—
wr, — @ =1 = —kon —wr. If wy, =0, it follows that n — 0
exponentially, i.e. that 5 — . However, wy, is not in general
equal to zero. Let us assume that wr, is slowly-varying, i.e.
that wy, is continuously differentiable and ||wy,|| is sufficiently
small [26]. Then, w;, can be treated as a frozen parameter,

and the frozen system 0 = —kon — wr, has a continuously

differentiable isolated root 7 = —wy, = h(wy), for which
n s

I 8(251 I = % is bounded. To analyze the stability properties

of the frozen equilibrium z = n + Lawp, take 2 = —ko(z —
ka

%wL) — wy, = —koz. Then, z is exponentially stable, i.e.

n— —%wL. The term P(q;) in V then reads:

(12a) ,
P(q) ="~k ’TI [Z?EEH [l

—sgn(p r1) up v] [52] +algla.vw),
where g g(q,vr) = —z1ur, + [=1 w1 ][ Y Jwn — (B — p)wr.
For n = —k%wL one has: qi'—g(q,vL) = —qug, + %wLQ,

since [z1 v1][ Y ] = 0. This is further written as:

’U}L2
ko

To check the signum of P(q;), consider the following cases:
Cl.sgn(p'ry) = —1 and r{ [C"Sﬂ} < 0. Then:

2
—u wr, *
q, 9(q,vL) = [#1 1] [ OL] + T < v uf +

sin 8
Pla) = = [r] [S28]| Galrall + i) + ¢/ g(a.v0)
T | cosp * * ’LUL2
< el [ @25 ]] Gallrall o) + e st +
The term P(q;) is < 0 if:
T | cos k * * wL2
T1 | Gng || (Fullrall +ug) > [lraflug + T =
2 * * wL2
Fallra|® + llraflug, > flraflut + 57 =
2
2 WL |we|
2> 2 = > . (22)
Il > = = Il >

13

Note that (22) is sufficient, not necessary.
C2.sgn(p'ry) = —1and r{ {Zﬁfg > 0.

This case corresponds to configurations such that L is not
visible to F, and thus we may drop it since it is not relevant

to the problem considered here.

C3.sgn(p'r1) =1 and r{ [Z?Sﬂ > 0. Then:

Pla) = = |r [228]] Gallrall + i) + al gla,vv).

and the analysis for ensuring that P(q;) < 0 follows the same
pattern as in Cl1, yielding the sufficient condition (22).

C4. sgn(p'ry) = 1 and r{ [Zi’;g < 0. This case can be
dropped for the same reasoning in C2.

In summary, one has P(q;) < 0 for any 74 that satisfies (22)
yielding V = P(q) — k2(8 — )? < 0. Consequently, for any
initial 71 (0) and any 0 < ¢, < ||r1(0)| that satisfies (22), V
is negative in the set {ry | ¢,2 < V(||lr1]) < %||r1(0)|2%,
which verifies that 71 (¢) enters the set {'rl ‘ Vir) < %ETQ
or equivalently, 1 () enters the ball B(0, ¢,). Equivalently, if
€, is chosen to satisfy (22), the system trajectories r(t) enter

and remain into the ball B(rq, €, ). [ |

>

APPENDIX B
WHEN BOTH VISIBILITY CONSTRAINTS ARE ACTIVE

Let us assume that the system starts on an initial configu-
ration so that L lies at point A (Fig. 3) where: ¢ = a,

2 +y? = L2 y= Lysin(f+a), = Lycos(B + a).

The derivative 7, (+) of the first visibility constraint reads:

= [t = 1|
_up . yur,
_7x2+y2(a:smﬁ—ycosﬁ)—wp—i-r_i_y?

After some algebra, condition (13) for k£ = 1 reduces into:

up sin B—zwy,

uF cos B—ur+ywL
WF — W1,

—up sinatan a + ug, sin(f + a) tan a < wpLs tana. (23)

The derivative hg() of the second visibility constraint reads:
Ls cos atan ¢ —si

(7o) [smg] + s 1wl [00]) +

__yLscosatané
22 +4y2 cos ¢

; up
h2 = V2142
_ Lscosatang _ UL T
¢ we Va2 4y?

cos

After some algebra, condition (13) for k£ = 2 reduces into:

—ur,(cos(f + a) — sin(f + a) tan a)+

+ up(cos a — tan asin ) < wr Ly tan a. (24)

Then, visibility is maintained as long as the gains ki, ko in
(12) are chosen so that both (23), (24) hold. These reduce into:
ur, f(B,a) ur g(a) —ug, f(B,a)

>, > )
r g(a) wr L tan o

where:
f(B,a) £ cos(B + a) —sin(B + a) tan a,
g(a) £ cosa — sin atan a.

Take 0 < a < §, which yields g(«) > 0, and denote f(5*, a)
the maximum (positive) value of the function f (-, «), obtained
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for the worst-case initial orientation 5*. Note also that the
values of the control laws (12) for the system initiating at
point A are: up = k1(Ls — rq) + u}, wp = kaocv. Then:

* f(ﬁ*-,a) _
UL ( 9(@) 1) ey > ki(Ls —ra)g(a) — up f(B*, )

k1 > ,
! Ly—r1y alLgtan o

Similarly one can treat the case for a > 7, as well as for the
system initiating on the point B (Fig. 2).

Remark 6: The conditions (23), (24) refer to the worst-case
initial configurations (i.e. on the boundary of the visibility
set K where both constraints are active). Therefore, their
satisfaction is sufficient for ensuring visibility maintenance
from any other initial configuration in K as well.

APPENDIX C
CELL DECOMPOSITION

We perform a cell decomposition into convex polygonal
cells by extending the boundaries of each static obstacle until
intersecting with another obstacle or the external boundary of
the workspace, see Fig. 12(a). For the corridor environment
considered here the resulting cells are rectangular.

Given an initial and a final configuration for L, marked with

“0” and “x” respectively, one may find or define a high-level
discrete motion plan indicating the sequence of cells 7 that L X

has to go through; here we have ¢ € {1,2,...,11}, while the

goal destination lies in cell 12 (Fig. 12(a)).

On the common face between two successive cells 7, ¢ + 1 v
we draw the orthogonal vector pointing into cell 7+ 1, see the 2 6
red vectors in Fig. 12(a). These denote the desired direction

8
7
A
— 3 A
of motion of L. when transiting from cell ¢ to cell 7 + 1. v
To reduce the number of cells we merge successive cells 4 5
whose red vectors are parallel; thus, cells 2,3 in Fig. 12(a)

are merged into cell 2 in Fig. 12(b), and so on. In the
sequel, we work with the cell decomposition depicted in Fig. 13. The considered cell decomposition in polygonal environments.
Fig. 12(b). The same logic applies also in more complex

0 - -
L 1 - p H
9
b : :
B 1 7 T e L
5
2 i 4 3
j' B 3 e A 2 [
1 1
0
(a) The initial cell decomposition. (b) Reducing the number of cells.

Fig. 12. The considered cell decomposition in corridor environments.

polygonal environments, i.e. in the case of obstacles with
arbitrary convex shape (Fig. 13).



