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Abstract— This paper addresses the problem of multi-
agent coordination and control under multiple objectives, and
presents a set-theoretic formulation which is amenable to
Lyapunov-based analysis and control design. A novel class
of Lyapunov-like barrier functions is introduced and used to
encode multiple, non-trivial control objectives, such as collision
avoidance, proximity maintenance and convergence to desired
destinations. The construction is based on the concept of
recentered barrier functions and on approximation functions.
A single Lyapunov-like function encodes the constrained set
of each agent, yielding simple, closed-form control solutions.

The proposed construction allows also for distributed control
design based on information locally available to each agent. The
scenario considered here involves nonholonomic vehicles, while
simulation results demonstrate the efficacy of the approach.

I. INTRODUCTION

Research in multi-agent robotic systems has seen increased

interest during the past decade, motivated in part by ap-

plications such as surveillance, patrolling, exploration and

coverage. Coordination and control in such casesl is naturally

dictated by the available patterns on sensing and information

sharing, as well as by physical/environmental constraints

and inherent limitations (e.g. motion constraints, obstacles,

unmodeled disturbances, input saturations etc). It is out of

the scope of this paper to provide an overview of the existing

methodologies; the reader is referred, for instance, to [1], [2].

The main objectives in a multi-robot network are pertinent

to inter-agent collision avoidance, convergence to spatial des-

tinations/regions or tracking of reference signals/trajectories,

maintenance of information exchange among agents and

avoidance of physical obstacles. Such objectives are en-

countered in flocking [3]–[6], consensus, rendezvous and/or

formation control [7]–[11]. Collision avoidance is an un-

negotiable requirement in such problems, and is often ad-

dressed with potential function methods and Lyapunov-based

analysis. It is worth mentioning that these contributions

give emphasis in some of, i.e., not in all at once, the

aforementioned control objectives. Furthermore, lately there

has been significant interest in the deployment of robotic

This work has been supported by Qatar National Research Fund under
NPRP Grant 4-536-2-199 and the AFOSR grant FA95501210193.

Dimitra Panagou is with the Coordinated Science Laboratory, College of
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA;
dpanagou@illinois.edu.
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networks for exploration, surveillance and patrolling of in-

accessible, dangerous or even hostile environments, such as

oil drilling platforms, nuclear reactors, border changes etc

[12]–[15], offering a plethora of formulations and solutions,

from combinatorial motion planning to optimization-based

and Lyapunov-based methods.

This paper is motivated in part by surveillance applica-

tions which bring in the need for multi-agent coordination

and control algorithms under multiple objectives, and intro-

duces a set-theoretic formulation [16] which is amenable to

Lyapunov-like analysis and control design. More specifically,

a novel class of Lyapunov-like barrier functions is introduced

and used to encode multiple, non-trivial control objectives,

such as collision avoidance, proximity maintenance and con-

vergence to desired destinations. The construction is based

on the concept of recentered barrier functions [17] and on the

approximation functions introduced in earlier work of the au-

thors’ [18]. One of the merits of the approach is that a single

Lyapunov-like function is used to encode the constrained set

of each agent, yielding thus simple, gradient-based, closed-

form control solutions. The proposed construction allows

for distributed control design based on information locally

available to each agent, which may be dictated by limited

sensing capabilities or given communication topologies. The

scenario considered here involves nonholonomic vehicles

with unicycle kinematics, while the derived control laws for

each agent require information exchange among neighbor

agents regarding on their positions only, i.e., the agents do

not need to exchange their full state (pose and velocities), as

often assumed in similar control designs.

The paper is organized as follows: Section II gives the

mathematical modeling and problem formulation and Section

III presents the objective encoding via the novel Lyapunov-

like barrier functions. The motion coordination and control

design is addressed in Section IV while simulation results

demonstrate the efficacy of our approach in Section V.

Conclusions and ideas on current and future research are

summarized in Section VI.

II. MODELING AND PROBLEM STATEMENT

Consider a network of N mobile agents with unicycle

kinematics, which is deployed in a known workspace (envi-

ronment) W with static obstacles. Each agent i ∈ {1, . . . , N}
is modeled as a circular disk of radius r0, and its motion

with respect to (w.r.t.) a global cartesian coordinate frame G
is described by:

q̇i =
[

cos θi sin θi 0
]T

ui +
[

0 0 1
]T

ωi, (1)



where qi =
[

xi yi θi
]T

∈ Qi is the configuration vector

of agent i, comprising the position ri =
[

xi yi
]T

∈ Ri

and the orientation θi ∈ S of agent i, Qi = Ri × S is the

configuration space of agent i, and νi is the vector of control

inputs, comprising the linear velocity ui and the angular

velocity ωi, expressed in the body-fixed frame Bi.

A. Network structure

We assume that each agent i has access to its own config-

uration qi ∈ Qi via onboard sensors, and that it can reliably

transmit this information to any agent j which lies within

a maximum distance 2R0 via wireless communication links.

In other words, a pair of agents (i, j) remains connected as

long as the distance dij remains smaller than 2R0.

We assign agent i = 1 to be the leader of the network. This

is actually realistic and relevant since typically, the leader of

a robotic group may be responsible for computing high-level

collision-free motion plans either for the whole group, or for

itself only, and for coordinating the motion of the remaining

agents (followers) according to the updated motion plans

and/or other objectives, etc.

B. Control objectives

The agents need to accomplish a set of control objectives

while operating in the environment W . The leader agent can

be seen as the agent of highest priority, which should:

(L1) converge to a goal destination or track a reference

trajectory,

(L2) remain in the proximity of the followers in order to

effectively broadcast updated motion plans,

(L3) while not deviating from its nominal motion plan or

trajectory.

Note that the leader is not assigned with the objective

of avoiding collisions with the remaining N − 1 agents.

Consequently, the followers should move while ensuring:

(F1) safety, which is realized as the guaranteed avoidance

of collisions among agents,

(F2) connectivity maintenance, which is realized as keeping

pairwise upper bounded distances, so that information

exchange remains reliable, and

(F3) convergence to, or tracking, goal destinations, so that

they ultimately surveil the area.

III. LYAPUNOV-LIKE BARRIER FUNCTIONS

In constrained optimization, a barrier function is a contin-

uous function whose value on a point increases to infinity

as the point approaches the boundary of the feasible region;

therefore, a barrier function is used as a penalizing term for

violations of constraints. The concept of recentered barrier

functions was introduced in [17] in order to not only regulate

the solution to lie in the interior of the constrained set, but

also to ensure that, if the system converges, then it converges

to a desired point.

A. Collision avoidance

Agent i ∈ {2, . . . , N} realizes agent j ∈ {1, . . . , N}, j 6=
i, as a physical obstacle. Therefore, agent i avoids collision

with agent j as long as the distance dij = ‖ri−rj‖ remains

greater or equal than a minimum separation distance d ≥ 2r0,

i.e., as long as:

cij = (xi − xj)
2 + (yi − yj)

2 − d2 ≥ 0. (2)

The inequality (2) is essentially a nonlinear inequality con-

straint which should never be violated. In the sequel, for all

i ∈ {2, . . . , N} and all j ∈ {1, . . . , N}, with j 6= i, we refer

to the resulting (N − 1)× (N− 2) constraints as to collision

avoidance constraints, while the constrained set encoding the

collision-free space of agent i w.r.t. agent j is denoted with

Kij = {ri ∈ Ri, rj ∈ Rj | cij(·) ≥ 0}.

In order to encode the collision avoidance constraints via

Lyapunov-like functions, we define the logarithmic barrier

function1 bij(·) : Ri ×Rj → R for the constraint cij(·) as:

bij(·) = − ln (cij(·)) ,

which tends to +∞ as cij(·) → 0. The gradient recentered

barrier function for the constraint cij(·) is given as [17]:

rij(·) = bij(ri, rj)− bij(rid, rj)−∇bij(rid, rj)
T δri, (3)

where: δri , ri − rid, rid =
[

xid yid
]T

is the goal

position of agent i, ∇bij =
[

∂bij
∂xi

∂bij
∂yi

]T

is the gradient

(column) vector of the function bij(·), and ∇bij(rid, rj)
T is

the transpose of the gradient vector (i.e., is a row vector, for

the dimensions to match) evaluated at the goal position rid.

By construction, the recentered barrier function (3):

1) is non-zero everywhere within the constrained set Kij

except for the goal position rid of agent i, and

2) tends to +∞ at the boundary of the constrained set Kij ,

i.e., when the distance dij → d.

Motivated by these characteristics, the main idea here is

to employ the recentered barrier function (3) in order to

encode both collision avoidance of agent i w.r.t. agent j

and convergence of agent i to a goal position rid. In order

to ensure that we have an everywhere nonnegative function

encoding these objectives, so that it can be used in Lyapunov-

like control design and analysis according to [18], we define:

Vij(·) = (rij(·))
2, (4)

which now is a positive definite function Vij(ri, rj) : Ri ×
Rj → R

+ for agent i; more specifically, Vij(ri, rj) is zero at

the goal position rid, and tends to infinity as rij(·) → +∞,

i.e., on the boundary of the constrained set Kij .

B. Connectivity maintenance

Pairwise information exchange among agents i, j is reli-

able as long as the inter-agent distance dij remains less or

equal than a maximum distance 2R0. This requirement is

equivalent with ensuring that all N agents remain within a

circular region O of center r0 =
[

x0 y0
]T

and radius R0,

i.e., as long as the distance di0 = ‖ri − r0‖ remains always

less or equal than R0 − r0, which reads:

ci0 = (R0 − r0)
2 − (xi − x0)

2 − (yi − y0)
2 ≥ 0. (5)

1The choice of the logarithmic barrier function is not restrictive; one may
use other types of barriers, e.g. the inverse barrier function bij =

1

cij
.



In the sequel, for all i ∈ {1, . . . , N} we refer to the N con-

straints (5) as to proximity constraints, while the constrained

set encoding the circular region O, or the connectivity region,

for each agent i is denoted as Ki0 = {ri ∈ Ri | ci0(·) ≥ 0}.

Connectivity for the robotic network is then maintained as

long as the constraints (5) hold for all i ∈ {1, . . . , N}.

The proximity constraints are encoded following the idea

described earlier. For each agent i we define the logarithmic

barrier function bi0(·) : Ri → R of the constraint ci0(·) as:

bi0(·) = − ln (ci0(·)) ,

and the corresponding recentered barrier function as:

ri0(·) = bi0(ri, r0)− bi0(rid, r0)−∇bi0(rid, r0)
T δri, (6)

where: ∇bi0(rid, r0)
T is the transpose of the gradient vector

∇bi0 =
[

∂bi0
∂xi

∂bi0
∂yi

]T

of the inverse barrier function bi0(·),

evaluated at rid. The recentered barrier function ri0(·) van-

ishes at the goal position rid of agent i and tends to +∞ as

ci0(·) → 0, i.e., as the agent i approaches the boundary of

the constrained set Ki0. For encoding the proximity objective

for agent i by a nonnegative function we define:

Vi0(·) = (ri0(·))
2
, (7)

which yields the positive definite function Vi0(ri, rid, r0);
this function is zero at the desired position rid of agent i,

and tends to infinity as ri0(·) → +∞, i.e., on the boundary

of the connectivity region O.

C. Bounded barrier functions for collision avoidance, prox-

imity and convergence objectives

The analytical construction and properties of the squared

recentered barrier functions (4), (7) allow for handling the

collision avoidance, proximity and convergence objectives

via a single Lyapunov-like function Vi for each agent i.

Following previous work of ours’ [18], we encode the

accomplishment of all objectives for agent i by an approx-

imation of the maximum function (which also is a δ-norm

when δ takes integer values), of the form:

vi = ((Vi0)
δ
+

N
∑

j=1,j 6=i

(Vij)
δ
)

1

δ , (8)

where δ ∈ [1,+∞). The function vi vanishes when Vij =
Vi0 = 0, i.e., at the goal destination rid, and tends to +∞
as at least one of the terms Vij , Vi0 tends to +∞, i.e., as

the position ri of agent i approaches the boundary of the

constrained set Ki =
N
⋃

j=0,j 6=i

Kij .

Remark 1: The proposed encoding may easily incorporate

collision avoidance of agent i w.r.t. all or a subset of agents

j 6= i. For instance, one may take into account the “neighbor

agents” j only when defining (8), according to local sensing

limitations or given communication topologies.

Finally, for ensuring that all objectives are encoded by a

single function which uniformly attains its maximum value

on the boundary of the constrained set Ki,
2 we define:

Vi =
vi

1 + vi
=

(
∑N

j=0,j 6=i (Vij)
δ
)

1

δ

1 + (
∑N

j=0,j 6=i (Vij)
δ
)

1

δ

, (9)

which is zero for vi = 0, i.e., at the goal position rid of

agent i, and equal to 1 as vi → +∞, i.e., on the boundary

of the constrained set Ki.

IV. MOTION COORDINATION

All agents initiate in the region O, so that reliable wireless

communication links can be established. The leader i = 1
is responsible for guiding the followers j 6= i through the

environment by communicating a goal position rjd to each

agent j. We assume for now that the goal positions rjd,

j ∈ {1, . . . , N}, as well as the center r0 of the region O are

static, which yields: d
dt
rjd = 0 and d

dt
r0 = 0, respectively,

and that there are no physical obstacles in the region O.

A. Control laws for agent j = 1

Proposition 1: The leader agent converges globally to its

desired destination r1d while remaining in the region of

connectivity O under the control law:

u1 = k1 tanh(‖r1 − r1d‖), (10a)

ω1 = −λ1(θ1 − φ1) + φ̇1, (10b)

where φ1 , arctan
(

−∂V1

∂y1

,−∂V1

∂x1

)

, V1 is the Lyapunov-like

function (9) for j = 0, δ ≥ 1 and k1, λ1 > 0. The proof is

straightforward and omitted here in the interest of space.

B. Control laws for agents j ∈ {2, . . . , N}

In order to design control strategies for the follower agents

j 6= 1 one may employ the function Vj given by (9) as a

suitable candidate Lyapunov-like function for each agent j.

Proposition 2: Each agent j ∈ {2, . . . , N} converges

almost globally to its desired destination rjd, while avoiding

collisions w.r.t. agents k 6= j and while remaining in the

region of connectivity O, under the control law:

uj = kj tanh(‖rj − rjd‖), (11a)

ωj = −λj(θj − φj) + φ̇j , (11b)

where φj , arctan
(

−
∂Vj

∂yj
,−

∂Vj

∂xj

)

, δ ≥ 1 and kj , λj > 0.

Proof: Let us consider the candidate Lyapunov-like

function (9) for agent j, written as:

Vj(rj , rjd, rk) =
(
∑

k 6=j Vjk
δ)

1

δ

1 + (
∑

k 6=j Vjk
δ)

1

δ

, (12)

where k ∈ {0, 1, . . . , N}, k 6= j. The function Vj encodes

proximity (or connectivity maintenance) for k = 0, collision

avoidance w.r.t. the leader for k = 1, and collision avoidance

w.r.t. the remaining followers for k 6= j. Its time derivative

along the trajectories of agent j as:

V̇j = ζT
j

[

cos θj
sin θj

]

uj +

N
∑

k=1,k 6=j

(

ζjk
T

[

cos θk
sin θk

]

uk

)

, (13)

2The reason for requiring this property is justified in Lemma 2.



where ζj ,

[

∂Vj

∂xj

∂Vj

∂yj

]T

, ζjk ,

[

∂Vj

∂xk

∂Vj

∂yk

]T

. Assume

that the orientation trajectories θj(t) of agent j are controlled

at a much faster time scale via the control law (11b) com-

pared to the position trajectories rj(t). The system dynamics

of agent j can then be decomposed into two subsystems, with

the dynamics along the position trajectories rj(t) serving as

the reduced (slow) subsystem, and the orientation dynamics

serving as the boundary-layer (fast) subsystem. In order

to employ a singular perturbations argument, consider the

sufficiently small parameter εj ,
1

λj
, and rewrite the closed-

loop boundary-layer (fast) dynamics as:

εj θ̇j = −(θj − φj) + εj φ̇j . (14)

Lemma 1: The orientation θj of agent j is globally expo-

nentially stable to φj , arctan
(

−
∂Vj

∂yj
,−

∂Vj

∂xj

)

.

Proof: The roots of the boundary-layer subsystem are

given for εj = 0; out of (14) one has that the roots of the fast

subsystem lie on the manifold θj = φj . Denote ηj = θj−φj

and take the dynamics:

dηj

dt
=

d

dt
(θj − φj)

(14)
= −

1

εj
(θj − φj) = −

1

εj
ηj ⇒

εj
dηj

dt
= −ηj , which further reads:

dηj

dτ
= −ηj ,

where dτ
dt

, 1

εj
. The origin ηj = 0 of the boundary-

layer subsystem is thus globally exponentially stable, which

implies that θj is globally exponentially stable to φj .

Lemma 2: The control law (11) renders the constrained

set Kj a positively invariant set for the dynamics (1) of agent

j. This in turn implies that collision avoidance and proximity

for agent j are guaranteed.

Proof: Since the Lyapunov-like function Vj has com-

pact level sets by construction, Kj is a compact (i.e., closed

and bounded) set. Furthermore, on the boundary of the set Kj

the negated gradient vector field −ζj points by construction

into the interior of Kj ; this is ensured since Vj is uniformly

maximal on the boundary of Kj . Thus, forcing the orientation

θj of agent j to globally exponentially track the orientation

φj = arctan(−
∂Vj

∂yj
,−

∂Vj

∂xj
) via the angular velocity control

law (11b) essentially has the effect of forcing agent’s j

system vector field to point into the interior of the safe (i.e.,

collision-free and connectivity preserving) compact level sets

of Vj . At the same time, the control law (11a) renders

an always positive linear velocity uj , which ensures that

agent j always moves in the same direction with the safe

gradient vector field dictated by the Lyapunov-like function

Vj . Consequently, a straightforward application of Nagumo’s

theorem [16] implies that, for suitably selected control gains

kj (see Remark 3), the position trajectories rj(t) starting in

Kj never escape Kj , which in turn implies that the objectives

of collision avoidance and proximity for agent j are always

accomplished.

For studying the (almost global) convergence to the de-

sired destination rjd, let us go back to the derivative of the

Lyapunov-like function Vj for the reduced (slow) subsystem,

evaluated at the equilibria θj = φj , θk = φk of the boundary-

layer (fast) subsystems:

V̇j = ζT
j

[

cosφj

sinφj

]

uj +

N
∑

k=1,k 6=j

(

ζT
jk

[

cosφk

sinφk

]

uk

)

. (15)

Note that φj and φk are by definition the orientations of

the vectors −ζj and −ζk respectively. Thus, one can write:

−
∂Vj

∂xj
= ‖ζj‖ cosφj , −

∂Vj

∂yj
= ‖ζj‖ sinφj , where ‖·‖ stands

for the standard Euclidean norm; this holds accordingly for

subscript k. Substituting into (15) yields:

V̇j = −‖ζj‖uj −

N
∑

k=1,k 6=j

(

ζT
jkζk

‖ζk‖
uk

)

. (16)

The control laws (10a), (11a) dictate that all N agents move

with bounded positive linear velocities, i.e., 0 ≤ uj <

max{kj} for all j ∈ {1, . . . , N}, which vanish only at the

corresponding desired destinations rjd. Clearly, the motion

of agents k 6= j can be seen as a perturbation to the position

trajectories rj(t) of agent j. The perturbation term involving

the velocities uk for k 6= j is, in general, indefinite, and

depends on the agents’ configurations qk (through the vectors

ζjk , ζk) and their destinations rkd (through the control laws

for uk). Thus, V̇j may be even increasing, depending on

the signum of the second term including the effect of the

other agents’ velocities uk. One way to deal with the issue

is to use differential inequalities to establish a sufficient

condition for accomplishing the objectives, as proposed in

[19]. Yet, finding a suitable comparison system for bounding

the solutions of the considered system is not trivial. In order

to bound the time derivative of Vj let us write:

V̇j ≤ −‖ζj‖uj +

N
∑

k=1,k 6=j

‖ζjk‖uk. (17)

Then, sufficiently away from the boundary of the constrained

set Kj one can take:3 µ1 ∈ (0, 1) and µ2 > 1 so that: µ1Vj <

‖ζj‖,
N
∑

k=1,k 6=j

‖ζjk‖ < µ2Vj , respectively. Thus, (17) reads:

V̇j ≤ −µ1Vjkj tanh(‖rj − rjd‖) + max
k 6=j

{uk}µ2Vj .

Similarly, one may pick: ν1 ∈ (0, 1) so that: ν1 tanh(‖rj −
rjd‖) < Vj , to further write:

V̇j ≤ −µ1ν1kj tanh
2(‖rj − rjd‖) + max

k 6=j
{uk}µ2,

which implies that Vj is a ISS local Lyapunov function

for the position error ej(t) , rj(t) − rjd on a compact

subset of the constrained set Kj . This further implies that,

as t increases, ej(t) is bounded by a class K function of

supt>t0
(maxk 6=j{uk(t)}). Furthermore, one has out of the

ISS property that if maxk 6=j{uk(t)} converges to zero as

t → +∞, so does the error ej(t), i.e., rj(t) → rjd [20].

To check whether the perturbation signal maxk 6=j{uk(t)}
converges to zero as t → +∞, note first that uk(t) is by

3The argument “sufficiently away from the boundary” is to ensure that
‖ζj‖, ‖ζjk‖ are bounded.



definition a class K function of the position error ek(t) =
rk(t)− rkd, see (11a). Nevertheless, the dynamics of ek(t)
are governed by the signals ul(t) of the l 6= k remaining

agents. In other words, the ISS subsystems governing the

evolution of the agents’ position trajectories are feedback

interconnected. This may tempt one to pursue sufficient

conditions on the stability of the overall system with analysis

techniques such as small-gain theorems. For such complex

systems, however, such techniques in principle require non-

trivial, ad-hoc bounding of the derivatives, which may be

intractable or may lead to very conservative gain estimates.

Thus, for studying the convergence of the agents’ trajecto-

ries with the Lyapunov-like functions considered here, let us

note that the control law (11) essentially forces each agent

j to perform gradient-descent along the level sets of Vj . It

is expected that Vj has critical points other than the goal

destination rjd, i.e., points r̄j at which the gradient vanishes,

∇Vj

∣

∣

r̄j
= 0. Here the linear velocity controller uj (11a)

does not depend on ∇Vj , but instead vanishes at the desired

destination rjd only; thus, system trajectories rj(t) can not

identically stay on a point where ∇Vj = 0, except for the

singleton rjd. Yet, the type of a critical point essentially

dictates the behavior of the negated gradient vector field

(which here is used as reference through (11b)) in the vicinity

of it. A saddle point is reached by at most two streamlines

in its neighborhood, while a local minimum is reached by

all streamlines in its neighborhood [21]. Then, tracking the

gradient vector field via (11) in the vicinity of a possible

local minimum r̄j 6= rjd will trap the trajectories rj(t)
around it. In fact, it is known that the best one may achieve

when resorting to gradients of scalar functions in constrained

environments is to ensure that their critical points away from

the desired destination are saddles, i.e., unstable equilibria;

then, convergence to the goal is ensured almost everywhere,

i.e., except for a set of initial conditions of measure zero.

Let us now argue that the parameter δ of the Lyapunov-like

function Vj essentially works in an analogous way as the

tuning parameter κ of a navigation function in the Rimon-

Koditschek sense [22], which implies that all undesired local

minima of Vj disappear as δ increases.4 Expecting that

the parameter δ should be “large enough” is furthermore

consistent with earlier results of the authors’ [18] as well,

where multiple objectives encoded via an approximation

function similar to, but not the same with, the Lyapunov-like

function (9) are accomplished after the parameter δ exceeds

a lower bound. Obtaining sufficient lower bounds for δ in

closed form is naturally depended on the characteristics of

the problem at hand and is currently ongoing work.

Under this caveat, one has that for δ sufficiently large the

critical points of the function Vj for each agent j are saddle

4This argument is based on the fact that Vj is smooth, polar and uniformly
maximal —i.e., fulfills by construction three of the four properties of a
Navigation Function in the Rimon-Koditschek sense [22]— and on the
similarity in the use of the δ-th and the κ-th root function, which under
proper tuning renders the Morse property in the case of a Navigation
Function. Nevertheless, the identification of sufficient closed forms on the
bound of the parameter δ is ongoing work.

points (except for the goal destinations rjd), which further

implies that the agents’ trajectories rj(t) converge almost

everywhere to their destinations rjd, i.e., except for a set of

initial conditions of measure zero.

Remark 2: If the region O is populated with M static

(circular) obstacles centered at positions pm−N , where m ∈
{N + 1, . . . , N +M}, then one can encode collision avoid-

ance for agent i ∈ {1, . . . , N} w.r.t. the obstacle m by

incorporating M squared recentered barrier functions Vim

of the form (2) into the Lyapunov-like function (8).

Remark 3: In the case that non-mutual collision avoidance

is essentially required, as in the case of an agent j 6= 1
avoiding the leader, then the linear velocity control gain kj
in (11a) should be selected in a careful way ensuring that

the agent pursuing avoidance moves faster than the agent

to be avoided. This is implied by Nagumo’s necessary and

sufficient conditions on the boundary of the constrained set

Kj , i.e., when the corresponding constraint becomes active,

i.e., when cj1 = 0: at this point, one should ensure that
d
dt
cj1 < 0. It is easy to analytically verify that, under the

angular velocity control law (11b), Nagumo’s condition leads

to u1 < uj , as actually expected from physical intuition.

V. SIMULATIONS

The efficacy of the proposed control algorithms is demon-

strated through some representative computer simulations.

We consider a scenario of N = 4 agents (one leader,

three followers) and M = 1 static obstacle in the operating

environment. All agents i initiate within the region of con-

nectivity O and need to move to their destinations rid ∈ O.

Each agent knows the geometry of the obstacle (i.e., the

center p1 and radius of the obstacle) and its own desired

destination rid. The communication pattern among agents

is picked as follows: Agent 1 is the leader, i.e., does not

receive/take into account any information on the position of

the followers. Agent 2 knows the position of agent 1, agent

3 knows the position of agents 1 and 2, and agent 4 knows

the position of agents 1, 2 and 3.

The agents’ initial positions are set as r1n = [−5 − 1]
T

,

r2n = [−2 4]T , r3n = [−2 − 2]T , r4n = [−2 − 4]T ,

their destinations as r1n = [0 0]
T

, r2n = [−4 − 3]
T

,

r3n = [−6 0]
T

, r4n = [−4 3]
T

, the obstacle is positioned

at p1 = [−3 − 1]
T

, the parameter δ is set equal to 1.5 and

all agents’ and obstacle radii are equal to .

The resulting agents’ paths are illustrated in Fig. 1. The

agents converge to their final destinations while always

remaining in the circular region of connectivity, depicted as

the external black circle. Agents 2, 4 as well as the leader 1
avoid the static obstacle, denoted as agent 5. It is also worth

noting that the distributed communication pattern imposed in

the scenario plausibly affects the resulting paths; for instance,

agent 1 performs collision avoidance maneuvering w.r.t. the

static obstacle only, agent 2 maneuvers to avoid both the

static obstacle and agent 1, agent 3 maneuvers to avoid agent

1, while agent 4 has to take into account and avoid all other

agents, and this results in a more complicated path.
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Fig. 1. The resulting paths of the agents under the control laws (10), (11).
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Fig. 2. The collision avoidance constraints cij remain always ≥ 0,
verifying that collisions are always avoided.

To illustrate that all collisions (inter-agent and w.r.t. the

static obstacle) are always avoided, Fig. 2 depicts the evo-

lution of the collision avoidance constraints (2). The value

of all constraint functions remains strictly positive, which

verifies that collisions are avoided.

VI. CONCLUSIONS

This paper presented a set-theoretic formulation for multi-

objective control problems encountered in the motion coor-

dination of multiple agents, and introduced a novel class of

Lyapunov-like barrier functions to encode the agents’ con-

strained sets. The proposed Lyapunov-like functions encode

objectives such as collision avoidance, proximity and conver-

gence to desired destinations, and are amenable to distributed

control formulations and Lyapunov-based control design and

analysis. The efficacy of the approach and its relevance to

surveillance missions using multiple nonholonomic vehicles

is illustrated via non-trivial simulations. Our current work

focuses on the use of Lyapunov-like barrier functions to

encode vision-based sensing constraints, which are pertinent

to surveillance and coverage problems with robotic vehicles.
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