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Abstract— This paper considers the problem of navigating
a differentially driven nonholonomic vehicle while maintaining
visibility with a (stationary) target by means of Model Predictive
Control (MPC). The approach combines the convergence proper-
ties of a dipolar vector field within a constrained nonlinear MPC
formulation, in which visibility and input saturation constraints
are encoded via recentered barrier functions. A dipolar vector
field offers by construction a global feedback motion plan to
a goal configuration, yet it does not ensure that visibility is
always maintained. For this reason, it is suitably combined with
recentered barrier functions so that convergence to the goal and
satisfaction of visibility and input constraints are both achieved.
The control strategy falls into the class of dual-mode MPC
schemes and its efficacy is demonstrated through simulation
results in the case of a mobile robot with unicycle kinematics.

I. INTRODUCTION

Control of underactuated mechanical systems which are
subject to additional state constraints is encountered in
various applications within the fields of robotics, ranging
from the classical motion planning problem to formation
and coverage control of multiple nonholonomic agents. State
constraints typically arise due to various reasons, for instance
due to the requirement of avoiding obstacles or due to
limited sensing/communication. Within the field of mobile
robotics in particular, the problem of controlling a (group of)
nonholonomic robot(s) so that it (each) maintains visibility
with a fixed or moving target has recently been of increasing
interest. Both single-agent [1]–[4] and multi-agent problems
have been addressed [5], [6]. In these contributions, the
problem of maintaining visibility is addressed either by
properly switching among state feedback controllers [1],
[3], or by planning feasible paths within optimal control
formulations [2], [4].

Nevertheless, the problem of designing state feedback con-
trollers for systems subject to complex dynamics, state and
input constraints remains inherently difficult and challenging.
In part due to this reason, as well as stimulated by the recent
technological advances which have resulted in powerful com-
putational platforms, Model Predictive Control (MPC) [7]–
[9] has become a very attractive tool for addressing motion
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planning problems in constrained environments. MPC-based
solutions for robot navigation in obstacle environments have
been presented, among others, in [10]–[15]. In the same
spirit, the problem of navigating a nonholonomic vehicle
while maintaining visibility with respect to (w.r.t.) to a target
can be formulated as a constrained nonlinear MPC problem.
To the best of our knowledge, there is not much work
towards this direction. A very recent paper has appeared
in [16], which considers the problem of obstacle avoidance
along with visibility maintenance for an unmanned aerial
vehicle; in this work the vehicle is forced to track a reference
trajectory, while quadratic costs encode the misalignment of
the vehicle’s orientation w.r.t. the line-of-sight in order to
handle visibility maintenance.

In this paper we consider the problem of navigating a
nonholonomic mobile robot with field-of-view constraints
while maintaining visibility w.r.t. a target of interest, and
propose a solution based on MPC. The approach combines
the notion of dipolar vector fields, developed in earlier work
of ours [17], along with a nonlinear MPC formulation which
handles both visibility and input constraints via recentered
barrier functions [18]. The dipolar vector field serves as a
global feedback motion plan to a goal configuration, yet the
resulting trajectories may violate the visibility constraints.
Thus, the MPC-based solution allows for both convergence
to a desired configuration and satisfaction of the visibility and
input constraints, since the control inputs are now generated
based on both the misalignment of the robot w.r.t. the dipolar
vector field and the constraints, over a prediction horizon.

The proposed algorithm falls into the class of dual-mode
MPC schemes [7]. The system trajectories are forced by the
model predictive controller into a suitably defined terminal
region Ω which contains the goal configuration. Once in Ω,
the system switches to the dipolar-based feedback controller,
which ensures the convergence of the system trajectories
to the goal configuration while not violating the visibility
constraints; in other words, the terminal region Ω is a-priori
determined such that the dipolar-based trajectories in Ω are
both convergent and safe.

Compared to relevant works for the visibility maintenance
problem which employ hybrid control solutions, see for
instance [1], [3], the proposed approach offers a way of
designing a control sequence that eliminates the need for
switching, as well as the possible appearance of chattering
when crossing the switching surfaces, and thus may be
preferable from an application standpoint. Furthermore, the
MPC formulation naturally allows for the straightforward in-
corporation of additional constraints which may encode, for



instance, the requirement of keeping more than one objects
in the camera field-of-view (f.o.v.), or other performance
criteria. Finally, let us mention that, although the problem
description is similar to [16], our approach differs in both
the problem formulation, since here we use recentered barrier
functions to encode the constraints into the running cost, and
the objectives, since here we consider the misalignment w.r.t.
the dipolar vector field, not the line-of-sight.

The paper is organized as follows: Section II presents
the mathematical modeling for the considered problem, and
Section III presents the formulation of the MPC strategy.
The efficacy of the proposed control scheme is demonstrated
in Section IV via simulation results. Our conclusions and
thoughts on future extensions are summarized in Section V.

II. MATHEMATICAL MODELING

Let us consider the motion of a mobile robot with unicycle
kinematics w.r.t. a global coordinate frame G described by:

q̇ = G(q)ν ⇒

ẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[u
ω

]
, (1)

where q =
[
x y θ

]> ∈ Q is the configuration (state)
vector comprising the position vector r =

[
x y

]>
and

the orientation θ of the robot w.r.t. G, Q ⊂ R3 is the
configuration (state) space, ν =

[
u ω

]> ∈ U is the vector
of control inputs, U ⊂ R2 is a compact, convex set denoting
the control space and u, ω are the linear and angular velocity
of the robot, respectively, w.r.t. the body-fixed frame B.

The motion of the robot is subject to state constraints
due to limited sensing; the available sensor suite includes
an onboard camera of limited angle-of-view a and two
laser pointers. The target of interest and the laser dots
projected on camera image plane are tracked via computer
vision algorithms, and this information is processed online to
provide the state (or pose) vector q ∈ Q of the robot w.r.t.
the global frame G, which lies on the center of the target
(Fig. 1). For a detailed description of the sensor system the
reader is referred to [19].
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Fig. 1. Modeling of the state constraints imposed by the sensor system

Consequently, for the sensor system to be effective:

• the target should always be visible in the camera f.o.v.,
that reads: [−yT , yT ] ⊆ [f2, f1] (Fig. 1), where 2yT > 0
is the width of the target.

• the distance ‖r‖ =
√
x2 + y2 of the robot w.r.t. the

target should not exceed a maximum range Rmax, so
that the laser dots on the image plane can be detected
by the computer vision algorithms.

These requirements impose a set of inequality constraints of
the form cj(x, y, θ) ≥ 0, which determine a subset K ⊂ Q
where the system trajectories q(t) should always evolve. The
analytical expression of the constraints is given as:

c1 : −y + x tan(θ − a

2
)− yT ≥ 0, (2a)

c2 : −yT + y − x tan(θ +
a

2
) ≥ 0, (2b)

c3 : R2
max − x2 − y2 ≥ 0, (2c)

and thus the admissible (safe) set K is defined as K =
{q ∈ Q | cj(q) ≥ 0, j ∈ {1, 2, 3}}. Therefore, the task
is to control the robot so that it converges to a goal state
qd =

[
xd yd θd

]> ∈ K, while the requirements on the
sensor system being effective are always met.

A. State feedback control using dipolar vector fields

A state feedback control solution for the convergence of
the unicycle to a goal state qd ∈ Q can be given using the
concept of dipolar vector fields [17]. A dipolar vector field
F : R2 → R2 is by construction non-vanishing everywhere
on R2 except for the origin (0, 0), which is the unique critical
point of dipole type [20]; this implies that all integral curves
begin and end at the origin (x, y) = (0, 0) of the global
frame G. The analytical form of F : R2 → R2 is:

F(r) = λ(p>r)r − p(r>r), (3)

where λ ≥ 2, p ∈ R2 and r is the position vector w.r.t.
G. The main characteristic of the vector field (3) is that the
integral curves are symmetric w.r.t. the axis of the vector p.
Then, choosing the vector p =

[
px py

]>
such that ϕp =

atan2(py, px) , θd, reduces the orientation control of the
unicycle into forcing it to align with the integral curves of
the dipolar vector field (3). Furthermore, if the vector p is
assigned on a desired position rd =

[
xd yd

]>
, then one

gets a dipolar vector field whose integral lines converge to
rd with the desired orientation ϕp , θd.

Thus, for λ = 3 and p =
[
1 0

]>
we define the 2-

dimensional vector field F(·) = Fx
∂
∂x + Fy

∂
∂y :

Fx = 2(x− xd)2 − (y − yd)2, (4a)
Fy = 3(x− xd)(y − yd), (4b)

which is non-singular everywhere in R2 except for the de-
sired position r = rd, and its integral curves converge to rd
with direction φ , atan2(Fy,Fx)→ ϕp , atan2(1, 0) = 0,
i.e. parallel to the xG axis.

Thus, the control for the unicycle reduces to designing
a feedback control law so that the unicycle aligns with the
dipolar vector field (4), and follows the integral curves until



converging to (xd, yd). This can be achieved via a state
feedback control law γ(q) : R3 → R2, given as:

u = −k1 sgn
(
(r − rd)>

[
cos θ
sin θ

])
tanh(||r − rd||2), (5a)

ω = −k2(θ − φ) + φ̇, (5b)

where k1, k2 > 0, and φ = atan2(Fy,Fx) is the reference
direction of the vector field at (x, y) (cf. [17]).

However, controlling the robot so that it tracks the vector
field (4) may result in trajectories q(t) which may force
the robot to lose visibility w.r.t. the target for some finite
time interval, i.e. may violate at least one of the visibility
constraints (2). In earlier work of ours [21] we addressed
a similar problem for an underactuated marine vehicle by
means of state-dependent switching control. Nevertheless,
using such a control strategy may suffer from the appearance
of chattering across the switching surface(s) during some
finite time, which in general is undesirable for this class
of mechanical systems. To overcome this limitation, in this
paper we propose a control solution that is based on MPC,
or receding horizon control [7].

III. PREDICTIVE CONTROL DESIGN

MPC relies on iterative, finite horizon optimization. At
each calculation time t, the current state q(t) is measured or
estimated, and a control law that optimizes a suitably selected
cost functional over a time interval [t, t + Tp) is computed,
where Tp is the prediction horizon. The obtained control
law is applied over a shorter finite horizon 0 < Tc < Tp
(control horizon), and the process is repeated at the new
state q(t+ Tc).

A. The Finite Horizon Optimal Control Problem

For the problem considered here, the open-loop, Finite
Horizon Optimal Control Problem (FHOCP) at time t with
initial state q(t) is formulated as:
Find:

min
ν̄(τ)

J(q(t), ν̄(·);Tp) (6)

where:

J(q(t), ν̄(·);Tp) =

∫ t+Tp

t

(L (q̄(τ), ν̄(τ))) dτ+

+M (q̄(t+ Tp)) (7)

subject to:

˙̄q(τ) = G(q̄(τ))ν̄(τ), q̄(t; q(t), t) = q(t) (8a)
ν̄(τ) ∈ U, q̄(τ) ∈ K, τ ∈ [t, t+ Tp] (8b)
q̄ (t+ Tp; q(t), t) ∈ Ω, (8c)

where L(q,ν) is a positive definite function denoting the
incremental (or running) cost, M(q) is a positive definite
function denoting the terminal cost (or cost-to-go), Tp is
the (fixed) finite prediction horizon and q̄( · ; q(t), t) is the
trajectory of (8a), starting at q(t) at time t and driven by
ν̄ : [t, t + Tp] → U . Note that we have used the notation
(q̄, ν̄) as in [8], to denote the internal variables in the model

predictive controller, i.e. the predicted states q̄ within the
controller ν̄, which need not and will not be the same as the
actual states q(t) of the real system.

The terminal inequality constraint (8c) forces the states at
the end of the finite prediction horizon to be in some set Ω
containing the goal state qd, called the terminal region [8].
For the problem considered here, the terminal region Ω is
chosen as:

Ω =

{
q ∈ K

∣∣ ‖r − rd‖ ≤ r0, |θ − φ(x, y)| ≤ ε1

|π − atan2(y − yd, x− xd)| ≤ ε2,

}
,

where r0, ε1, ε2 are positive parameters determined off-line,
so that Ω is a subset of the safe set K containing the goal
state qd. For the states q ∈ Ω the dipolar-based feedback
controller (5) guarantees the convergence of the system
trajectories q(t) to the goal state qd without violating the
visibility constraints (2). In other words, the closed-loop
trajectories q(t) ∈ Ω under (5) are both safe and convergent
to qd. Thus, when the system trajectories reach the terminal
region Ω, the system switches to the dipolar-based controller;
in this sense, the proposed state feedback control strategy
falls into the class of dual-mode MPC schemes.

B. Running and Terminal Costs

The objective functional (7) consists of a running cost
L (q̄(τ), ν̄(τ)), where τ ∈ [t, t+ Tp], to specify the desired
control performance, and the terminal cost M(q̄(t+Tp)), to
specify the states at the end of the prediction horizon. The
running L(·, ·) and terminal M(·) costs are defined as:

L(q,ν) =
1

2

(
z>Qz + ν>Rν

)
+Bq(q, qd) +Bν(ν),

(9a)

M(q) =
1

2
z>Pz, (9b)

where z =
[
x− xd y − yd θ − φ(x, y)

]>
, φ(x, y) is

the orientation of the vector field F(·, ·) at a point (x, y),
Q,P ∈ R3×3 and R ∈ R2×2 are positive definite weighting
matrices, and Bq(q, qd), Bν(ν) are suitably defined recen-
tered barrier functions [18], which are used to account for
the visibility (state) and input constraints, respectively.1 The
terminal cost M(·) is a quadratic function of the position
error e = ‖r−rd‖ and the orientation error s = θ−φ(x, y)
of the robot w.r.t. the vector field F, and can be used as a
Lyapunov-like function to establish convergence of system
trajectories q(t) to qd using the invariance principle [17].

C. Constraint embedding via recentered barrier functions

The concept of recentered barrier functions [18] has been
introduced in order to not only regulate the solution to lie in
the interior of the constrained set, but also to ensure that, if
the system converges, then it converges to a desired point.

1Note that, contrary to other relevant work that penalize the deviation
from a reference trajectory qr(t), in our formulation we penalize the
“misalignment” of the robot orientation θ w.r.t. the reference direction
φ(x, y) of the vector field F(·, ·) at (x, y), as well as the distance of the
robot w.r.t. (xd, yd)



For ensuring that the visibility constraints (2) are never
violated, we first define a barrier function bj(·) : R3 → R+

for each one of the constraints (2), as bj(·) = 1
cj(·) , which

tends to +∞ as cj(·)→ 0, j ∈ {1, 2, 3}. Then, the gradient
recentered barrier function [18] for each constraint cj(·) is
given as:

rj(q) = bj(q)− bj(qd)−∇bj(qd)>(q − qd),

and is positive everywhere, except for qd; this property
ensures that the cost functional L(·, ·) is positive everywhere
except for (q,ν) = (qd,0). The recentered barrier function
Bq(q, qd) which takes into account all visibility (state)
constraints is defined as:

Bq(q, qd) =

3∑
j=1

rj(q).

The function Bq(q, qd) tends to +∞ as cj(q) → 0 and
vanishes at qd only.

Likewise, for ensuring that the saturation constraints on
the controls u, ω are never violated, i.e. that −umax ≤ u ≤
umax and−ωmax ≤ ω ≤ ωmax, where umax, ωmax > 0, we
define the recentered barrier function Bν(ν) as:

Bν(ν) = − 2

umax
+

1

−u+ umax
+

1

u+ umax
−

− 2

ωmax
+

1

−ω + ωmax
+

1

ω + ωmax
,

which vanishes only at ν = 0 and goes to +∞ at the
boundary of U = [−umax, umax]× [−ωmax, ωmax].

D. Convergence under the MPC scheme

Convergence of our MPC-based algorithm is directly de-
rived via the sufficient conditions in [7]. First, note that the
system (1) satisfies the following assumptions, taken from
[8, Theorem 1] and presented in the original notation:
For the class of nonlinear systems described by:

ẋ = f (x,u) , x(0) = x0,

where u(t) ∈ U , ∀t ≥ 0, x(t) ∈ X , ∀t ≥ 0, assume that:
(A1) U ⊂ Rp is compact, X ⊆ Rn is connected and

(0, 0) ∈ X × U .
(A2) The vector field f : Rn×Rm → Rn is continuous

and satisfies f(0,0) = 0. In addition, it is locally
Lipschitz continuous in x.

(A3) The system has a unique continuous solution for
any initial condition in the region of interest and
any piecewise continuous and right continuous in-
put function u(·) : [0, Tp]→ U .

(A4) the running cost L : Rn×U → R is continuous
in all arguments with L(0,0) = 0 and L(x,u) ≥
0, ∀(x,u) ∈ Rn×U \ {0,0}.

(A5) The nonlinear FHOCP has a feasible solution for
t = 0.

Clearly, assumptions (A1–A3) are satisfied for the system
(1), with x = 0 corresponding to the desired configuration
q = qd. The construction of the running cost (9a) satisfies

assumption (A4), as explained in the previous subsection.
Finally, assumption (A5) depends on the prediction horizon
Tp. Therefore, Tp cannot be freely chosen; it is a tuning
parameter that should be chosen large enough as to guarantee
that the FHOCP (6)–(8) is feasible at t = 0.

The remaining ingredients (terminal cost, terminal region,
local controller) that are required to establish convergence
guarantees, should satisfy the sufficient conditions in [7]:

(B1) Ω ⊂ K, Ω closed, qd ∈ Ω,
(B2) γ(q) ∈ U, ∀q ∈ Ω,
(B3) Ω is positively invariant under q̇ = G(q)γ(q),
(B4) M(·) is a local control Lyapunov function.

Condition (B1) for Ω is satisfied by construction. Satisfaction
of condition (B2) is achieved by tuning the gains k1, k2 of
the local, dipolar vector field based control law γ(q), given
by (5). The terminal cost M(·) is a quadratic function of the
position error e = ‖r − rd‖ and the orientation error s =
θ − φ(x, y) of the robot w.r.t. the vector field F(·), and can
be used as a Lyapunov-like function to establish convergence
of system trajectories q(t) ∈ Ω to qd, as shown in [17];
thus condition (B4) is also satisfied. Finally, satisfaction of
condition (B3) trivially follows from the construction of Ω
and the control law (5), since the system is forced to align
with and flow along a safe integral curve of F.

IV. SIMULATION RESULTS

The performance of the resulting system trajectories is
evaluated through various simulation scenarios. To highlight
the effectiveness of the MPC strategy over using the dipolar
vector field based control law only, both controllers have
been simulated for the same initial and final conditions.

The robot initiates at q(0) =
[
−8 −10 π

4

]>
while the

goal state is set as qd =
[
−1 0 0

]>
. The angle-of-view

is set to a = 60 deg, yT = 0.2 m, and Rmax = 13 m. For the
MPC simulations, the sampling time has been set to δ = 1,
the prediction horizon to Tp = 30 time steps, and the control
horizon to Tc = 5 time steps.

Fig. 2(a) illustrates the path followed under (5), which
forces the robot to align with the dipolar vector field F
while moving towards the goal position; clearly, the visibility
constraints are violated. Fig. 2(b) illustrates the path obtained
from the MPC scheme, for the robot starting at the same
initial condition. As expected, the robot avoids to track
the integral curves of the vector field F that would result
in losing visibility with the target (note the resulting path
for −10 < y < −4), while it aligns with them as it
gets closer to the goal position, where the integral curves
are by construction such that visibility with the target is
maintained, see also Fig. 3. Under the MPC strategy, the
robot converges into the terminal region Ω. Once in Ω, the
system switches to the dipolar-based control law (5) (which
by design renders the region Ω a positively invariant set), and
the robot converges to qd. Note that the switch between the
MPC inputs and the dipolar-based inputs is designed to be
continuous, i.e. no jumps occur in the linear and the angular
velocities at the time instant of switching, as also indicated
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(a) The robot is controlled to track the dipolar vector field (4) on its
way to qd, but loses visibility w.r.t. the target for some finite time
interval.
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(b) The robot is controlled under the proposed MPC scheme, and
converges to the terminal region Ω, while respecting the visibility
constraints. Once in Ω, the system switches to the dipolar-based
controller and the robot converges to qd.

Fig. 2. Comparison of the paths resulting from (5) and the MPC scheme.

in Fig. 4. The point in R2 where the system switches is
indicated by the blue square in Fig. 2(b). The resulting
control inputs u(t), ω(t) are shown in Fig. 4. Fig. 5 illustrates
the paths followed by the robot for various initial conditions,
while Fig. 6 shows the evolution of the constraint functions
cj(·), j ∈ {1, 2}, for each one of the cases considered.

V. CONCLUSIONS

This paper presented an MPC-based solution to the prob-
lem of navigating a nonholonomic mobile robot while
maintaining visibility w.r.t. a target. The proposed approach
combines the convergence properties of a dipolar vector
field, along with a constrained nonlinear MPC formulation
using recentered barrier functions, which take into account
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Fig. 3. The value of the constraint function c1(·) is positive under the
MPC scheme, implying that visibility is always maintained. In this scenario,
the constraints c2(·), c3(·) are trivially satisfied and thus not depicted.

the visibility constraints and the saturation of control in-
puts. The control strategy falls into the class of dual-mode
MPC schemes, i.e. the system trajectories are forced by the
model predictive controller into a suitably defined terminal
region containing the goal configuration; in this region, the
trajectories resulting by tracking the dipolar vector field by
construction do not violate the visibility constraints. The
efficacy of the proposed approach was demonstrated through
simulation results.

Future work can be towards the consideration of systems
subject to dynamic (i.e. second order) nonholonomic con-
straints, such as underactuated marine vehicles, as well as
towards the treatment of external disturbances and moving
targets within the MPC framework.
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