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Abstract— This paper addresses the problem of controlling
a leader-follower (L−F) formation of two unicycle mobile
robots moving under visibility constraints in a known obstacle
environment. Visibility constraints are realized as inequality
state constraints that determine a visibility set K. Maintaining
visibility is translated into controlling the robots so that system
trajectories starting in K always remain in K. We provide the
conditions under which visibility is maintained, as well as a
feedback control scheme that forces F to converge and remain
into a set of desired configurations w.r.t. L while maintaining
visibility. We also propose a cooperative control scheme for
the motion of the formation in a known obstacle environment,
so that both collision avoidance and maintaining visibility are
ensured. The proposed control schemes are decentralized, in the
sense that there is no direct communication between the robots.
The efficacy of our algorithms is evaluated through simulations.

I. INTRODUCTION

Control of leader-follower (L−F) formations has seen an

increasing interest during the past few years, stimulated in

part by the recent technological advances in communications

and computation, which have allowed for the development of

multi-agent systems that accomplish tasks effectively and re-

liably. Within the field of mobile robotics in particular, L−F
formations arise in applications ranging from surveillance

and inspection to exploration and coverage. From a practical

point of view, the case when limited sensing and/or limited

communication among the robots are imposed is of particular

interest; for instance, a very likely scenario for mobile robots

operating in indoor environments is that global state feedback

is not available to all robots, or that communication among

them is restricted. These specifications impose various types

of constraints to each robot, extending to the whole system,

and should be taken into account during the control design.

This paper considers the case of two mobile robots with

unicycle kinematics that operate in a known environment

with obstacles while communication between them is not

available. Assume that one of the robots (the leader L) is

given a high-level motion plan for moving from an initial to a

goal state in the free space. The task for the second robot (the

follower F) is to move while keeping a fixed distance and

orientation with respect to (w.r.t.) L, using the information

from an onboard camera only, while also avoiding collisions.
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The problem of maintaining formations using vision-based

control is quite popular [1]–[3]; in these contributions the

robots are assumed to have omnidirectional cameras and that

the velocities of L are either communicated to, or estimated

by F. However, when communication is absent and the

onboard sensors have limited capabilities (e.g. limited range

and angle-of-view), the robots can stay connected if and only

if L is always in the field-of-view (f.o.v.) of F. The latter

specification imposes a set of visibility constraints, which

should never be violated so that F maintains visibility with

L. The problem of controlling a nonholonomic robot so that it

maintains visibility with a fixed or moving target has been of

increasing interest, see [4]–[7]. Moreover, when the robots

operate in obstacle environments, avoiding collisions with

obstacles, as well as between robots should be guaranteed.

This paper proposes a feedback control solution for a

L−F formation of two unicycle mobile robots, that move

in a known obstacle environment under visibility constraints

and without explicit communication between them. Visibility

constraints are realized as nonlinear inequalities in terms

of the system states, that determine a closed subset K

of the state space called the visibility set K . Maintaining

visibility can thus be translated into controlling the robots

so that system trajectories starting in K always remain in K

(Section II). Inspired by ideas from viability theory [8], we

provide the necessary conditions for visibility maintenance,

as well as a control scheme that forces F to converge

and remain into a set of desired configurations w.r.t. L
while maintaining visibility (Section III). We also propose a

cooperative control scheme for the L−F motion in a known

obstacle environment, so that both collision avoidance and

maintaining visibility are ensured (Section IV). The proposed

control schemes are decentralized, in the sense that there is

no direct communication between the robots; the follower is

localized w.r.t. L, however is aware neither of the leader’s

navigation plan, nor of its velocities at each time instant,

while the leader is not aware of the follower’s state. The

efficacy of our algorithms is evaluated via simulation results.

II. MATHEMATICAL MODELING

A. Leader-Follower Kinematics

Consider two unicycle mobile robots moving in L−F
formation. The motion of each one of the robots L, F, w.r.t.

a global frame G is described by

q̇i = G(qi)vi ⇒





ẋi

ẏi
θ̇i



 =





cos θi 0
sin θi 0
0 1





[
ui

wi

]

, (1)
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Fig. 1. The system setup in an obstacle environment

where i ∈ {L,F}, qi =
[
xi yi θi

]
T is the configuration

vector of i, ri =
[
xi yi

]
T is the position vector and θi is

the orientation of i w.r.t. frame G, ui, wi are the linear and

angular velocity of i in the body-fixed frame (L or F ).

Following [7], we describe the motion of F w.r.t. the leader

frame L; consider the position vector r =
[
x y

]
T of F

w.r.t. L, r = R(−θL) (rF − rL), and take the time derivative

ṙ = Ṙ(−θL) (rF − rL) +R(−θL) (ṙF − ṙL) , (2)

where

R(−θL) =
[
cos(−θL) − sin(−θL)
sin(−θL) cos(−θL)

]

=
[

cos θL sin θL
− sin θL cos θL

]
(3)

is the rotation matrix of the frame L w.r.t. frame G, and

Ṙ(−θL) =
[

0 wL
−wL 0

]
R(−θL). (4)

Substituting (3), (4), (1) into (2) and after some algebra one

eventually gets

[
ẋ

ẏ

]

=

[
−1 y

0 −x

] [
uL

wL

]

+

[
cos(θF − θL)
sin(θF − θL)

]

uF. (5)

Define β = θF − θL; then differentiating w.r.t. time yields

β̇ = θ̇F − θ̇L = wF − wL. (6)

Combining (5) and (6) yields the system of equations





ẋ

ẏ

β̇



 =





cosβ 0
sinβ 0
0 1





[
uF

wF

]

︸ ︷︷ ︸

f(q,vF)

+





−1 y

0 −x

0 −1





[
uL

wL

]

︸ ︷︷ ︸

g(q,vL)

, (7)

where q =
[
x y β

]
T ∈ C is the state vector, including the

position r =
[
x y

]
T and orientation β of F w.r.t. the leader

frame L, C is the state space, vF =
[
uF wF

]
T ∈ UF is the

vector of control inputs and g(q,vL) ∈ R
3 can be seen as a

perturbation vector field, where vL =
[
uL wL

]
T ∈ UL is

the vector of control inputs of L. Note that the perturbation

is vanishing if and only if g(q,vL) = 0, which occurs if

and only if vL = 0. Consequently, the motion of L can be

thought as a non-vanishing perturbation to F.

B. Visibility constraints

F is assumed to have an onboard camera with angle-of-

view 2α < π, and that it can reliably detect objects which

are within a maximum range Ls as shown in Fig. 1. These

specifications define a “cone-of-view” for F, which essen-

tially is an isosceles triangle (in obstacle-free environments).

Assume also that F is localized w.r.t. L, i.e. that the distance

‖r‖ =
√

x2 + y2, as well as the bearing angle φ ∈ (−π, π]
are measured. Consequently, at each time instant t, F can

detect L if and only L is in the cone-of-view, i.e.

|φ| ≤ α and r ≤ Ls(φ) =
Ls cosα

cosφ
. (8)

These constraints define a closed subset K of C, given as

K = {q ∈ C | hk(q) ≤ 0, k = 1, 2} , (9)

where h1 = |φ| − α and h2 = r−Ls(φ), which we call the

visibility set K . The set K includes every configuration q

for which visibility is maintained. Then, controlling F, L so

that the resulting trajectories q(t) never escape K , implies

that visibility is always maintained.

Consequently, the problem of maintaining visibility re-

duces into finding control inputs vF ∈ UF for F, such that

the visibility constraints (8) are met ∀t ≥ 0, despite the (non-

vanishing) perturbation g(q,vL) that is induced by L.

III. CONTROL DESIGN FOR THE PERTURBED SYSTEM

Consider the perturbed system (7), where L is moving

with uL 6= 0, wL 6= 0 in an obstacle-free environment. F is

localized w.r.t. the L, i.e. the position (x, y) and orientation

β w.r.t. the leader frame L is available to F; however F
is neither aware of the leader’s navigation plan, nor of the

velocities uL(t), wL(t) at each time instant t. Therefore, it is

reasonable to assume that F has some “a priori” knowledge

on the velocity bounds of L, in the sense that L is restricted

to move at most with velocities |uL| ≤ uL M, |wL| ≤ wL M.

The task for F is to keep a fixed distance rd w.r.t. L with

angle φ = 0, where 2r0 ≤ rd ≤ Ls cosα, and r0 is the

radius of the robots; in that way, L is centered in the camera

f.o.v.. This requirement specifies a manifold M of desired

configurations: qd =
[
xd yd θd

]
T for F,

M =

{

qd ∈ C
∣
∣

xd
2 + yd

2 = rd
2,

θd = atan2(yd, xd) + sign(yd)π

}

.

Thus, the control design for F reduces into finding a feedback

control law so that F converges to a qd ∈ M, while the

trajectories q(t) satisfy the visibility constraints (8) ∀t ≥ 0.

However, the perturbation g(q,vL) is non-vanishing ∀q ∈ C,

and thus qd ∈ M is not an equilibrium point of (7). In that

case, the best one can hope for is that the system trajectories

q(t) are ultimately bounded [9].

Therefore, the task for F reads as to converge and remain

into a ball B(rd, ǫr) of radius ǫr > 0 around a desired

position rd ∈ M. The control design is based on the

concept of dipolar vector fields [10]. A dipolar vector field

F : R2 → R
2 has integral lines that all lead to the origin



(x, y) = (0, 0) of the global frame G, is non-vanishing

everywhere in R
2 except for the origin, and is given as

F(r) = λ(p T r)r − p(r T r), (10)

where λ ≥ 2, p ∈ R
2 and r =

[
x y

]
T is the position

vector w.r.t. G. The main characteristic of a dipolar vector

field (10) is that its integral lines converge to (0, 0) with

the direction ϕp of the vector p. Then, choosing the vector

p =
[
px py

]
T such that ϕp = atan2(py, px) , θd, reduces

the orientation control of the unicycle into forcing it to align

with the integral curves of the dipolar vector field. Therefore,

if p is assigned on a desired position rd =
[
xd yd

]
T ∈

M, then one gets a dipolar vector field whose integral lines

converge to rd having the desired orientation ϕp , θd (Fig.

2). The analytic form of (10), where r is substituted by r1 =
[
x1 y1

]
T, r1 = r − rd and λ = 3 reads:

Fx = 2pxx1
2 − pxy1

2 + 3pyx1y1, (11a)

Fy = 2pyy1
2 − pyx1

2 + 3pxx1y1. (11b)

A. Ultimate boundedness

Theorem 1: The trajectories r(t) =
[
x(t) y(t)

]
T of the

perturbed system (7) enter and remain into a ball B(rd, ǫr)
around the desired position rd, under the control law vF =
[
uF wF

]
T where

uF = −k1 sgn
(

r1
T
[

cosβ
sin β

])

‖r1‖−sgn(p T r1)uL M , (12a)

wF = −k2(β − ϕ) + ϕ̇, (12b)

where k1, k2 > 0, ϕ = atan2(Fy,Fx) is the orientation of

the vector field at (x, y), uL M is the upper bound of the

linear velocity of L and ǫr >
|wL|√
k1k2

, see the proof in [11].

A conservative, yet safe, ǫr can be taken for the bound wL M

of the angular velocity of L. Note also that if wL → 0, then

ǫr → 0 as well.

B. Maintaining Visibility

The control law (12) forces F to converge into a ball

around a desired position rd ∈ M, which by definition

belongs to the visibility set K . However, the trajectories q(t)
do not necessarily belong to the visibility set K ∀t ≥ 0, i.e. L
may not be visible to F during some finite time interval. This

mainly depends on the choice of qd ∈ M, which dictates the

vector p for the reference vector field (10), i.e. the reference

orientation ϕ(t) that the robot has to track via (12b).

Thus, given a q(0) ∈ K , one should first select a qd ∈
M that ensures visibility maintenance under (12). In this

respect, note that not all possible desired positions rd belong

to the cone-of-view at each t; see for instance Fig. 2: the

desired positions rd ∈ R
2 belong to the circle c = {r ∈

R
2 | x2 + y2 = rd

2}, centered at the origin of L; however,

only the positions on the arc V shown in bold belong to

the cone-of-view of F. Thus, it makes sense to pick some

rd ∈ V . Furthermore, out of the available options, it makes

sense to pick the position rd ∈ V which lies on the line

that connects the two robots. In this case, the orientation

error to be regulated via the control input wF is e = θF −
ϕ(x1, y1), where ϕ(x1, y1) = ϕp = θd (Fig. 2), while φ =

Fig. 2. Determining the vector p and the desired position rd on R
2

ϕp − θF = −e. Moreover, with this choice one has that

φ → 1
k2
wL, which further implies that k2, wL can be tuned

so that | 1
k2
wL| ≤ α.

In order to ensure that the system trajectories q(t) never

escape the visibility set K , one has to consider how the

system behaves on the boundary ∂K of K , where at least

one of the constraints becomes active: hk(q) = 0 for some

k. In particular, for q ∈ ∂K one has to check whether the

system vector field q̇ = G(q)vF(q) is “tangent” to K , for

bringing the solution q(t) back in the interior of K [8]. Thus,

given that the constraints hk(·) : R
3 → R are continuously

differentiable functions, one has thus to check whether

ḣk(q) = ∇hkq̇ = ∇hk (f(q,vF) + g(q,vL)) < 0, (13)

for all q ∈ ∂K where hk(q) = 0, for each k. If (13)

holds, then the value of hk(q) is forced to decrease, bringing

the trajectory q(t) into the visibility set K . In other words,

visibility is maintained if and only if the condition (13) holds

∀k. Consequently, if (13) does not hold for some k, switching

to a different control vF(q) that satisfies (13) should occur.

Similarly, the necessary conditions for maintaining visi-

bility when all the constraints are active at the same time

are written using the Jacobian matrix Jh(q) of the map

h = (h1(·), h2(·)) : R
3 → R

2 as

Jh(q)q̇ < 0, where Jh(q) =

[
∂h1

∂x
∂h1

∂y
∂h1

∂θF
∂h2

∂x
∂h2

∂y
∂h2

∂θF

]

. (14)

To illustrate this, consider the time derivative of h1(·) for

φ ≥ 0, that reads

ḣ1 =
[
− y

x2+y2
x

x2+y2 −1
]
[
uF cosβ−uL+ywL

uF sin β−xwL

wF−wL

]

=

=
uF

x2 + y2
(x sin β − y cosβ)− wF +

yuL

x2 + y2
, (15)

and the time derivative of h2(·) for φ ≥ 0, that reads

ḣ2 =
uF√

x2+y2

(

[ x y ]
[
cosβ
sin β

]

+
Ls cos α tan φ√

x2+y2 cosφ
[ x y ]

[
− sin β
cosβ

])

+

+ Ls cos α tan φ
cos φ

wF +
∣
∣ x√

x2+y2 + yLs cos α tan φ

(x2+y2) cos φ

∣
∣uL. (16)

Then, the control gains k1, k2 should be chosen such that the

constraints are not violated in the worst-case scenario, where



Fig. 3. In an obstacle-free environment, the viability constraints are nearly
violated on the boundary of the cone of view (visibility at stake)

both constraints are active. This in turn yields the following

sufficient condition:

A+
uLM sinα

Ls

≤ wF ≤ A+
uF

Ls
2 tanα

|x cosβ + y sinβ| −

−
uLM

Ls sinα
, where A =

uF

Ls
2 |x sinβ − y cosβ| .

For a more detailed treatment please consider [11].

Remark: The above discussion implies that if the control

gains k1, k2 in (12) are such that ḣk(q) < 0, ∀q ∈ ∂K, ∀k,

then F is guaranteed to maintain visibility w.r.t. L, and

furthermore to converge and remain into the ball B(rd, ǫr).
The orientation control (via wF) for F ensures that φ is

exponentially stable to − 1
k2
|wL|, which can be tuned to be

≤ α, i.e. h1(·) is always forced to be negative. This in

turn implies that the system trajectories are always forced

away from the boundary of K that corresponds to h1 = 0.

Furthermore, one has from the convergence analysis of the

system trajectories into the ball B(rd, ǫr) [11] that V̇1 is

negative in the set {r1
∣
∣ 1

2ǫr
2 ≤ V1(‖r1‖) ≤

1
2‖r1(0)‖

2},

where V1 = 1
2 (x1

2 + y1
2), which implies that the distance

‖r1‖ decreases under the control law uF; this implies that

h2(·) is forced to decrease. These two conditions verify that

if F starts somewhere in the interior of K , or on the boundary

∂K , it never reaches again the boundary ∂K on its way to

rd. Finally, collision avoidance between the two robots is

ensured since V̇1 is negative out of the ball B(rd, ǫr).

IV. MOTION PLANNING IN OBSTACLE ENVIRONMENTS

The L−F formation is assumed to move in a structured

workspace W ⊂ R
2 with known obstacles (e.g. an indoor

corridor environment), where F is controlled by the control

law (12). The motion of both robots is restricted due to the

obstacles, and therefore the trajectories qL(t), qF(t) should

be collision-free. Given that the robots can be represented

as circular disks of radius r0, the obstacles are inflated as

shown in Fig. 4. Then, the dark grey region around each

obstacle reduces the system free space, while it does not

affect visibility; F can still detect L through this region, but

xL
yL

r0

r0

r0

xF

yF
ɺ
bq

A

b

B
n

Fig. 4. In an obstacle environment, the “viability” constraints are active on
the boundary of the cone of view (visibility at stake) and on the boundary
of the inflated obstacles (safety due to collisions at stake)

both F, L should not enter into it. This requirement can be

encoded as additional constraint inequalities, so that the same

analysis on the boundary of the viability (safe) set can be

applied, as for the visibility constraints.

In order to design a state feedback control scheme for

an L−F formation that has to move through a corridor

environment, we first decompose the free space into rectan-

gular cells. L is assigned a global high-level discrete motion

planner, which indicates the successive order of cells that

L has go through in order to converge to a goal state qdL.

Then, a dipolar vector field (10) of certain desired properties

is defined into each one of the cells. The desired properties

are specified by the motion plan: the vector field in a cell i is

constructed so that its integral curves point into the interior

of the successor cell i + 1 on the exit face of the cell i,

while pointing into the interior of the cell i on each one of

the remaining faces.This approach is similar in spirit with the

one in [12]. The difference is that the vector fields defined in

each cell i are dipolar, so that the integral curves converge

to the midpoint of the exit face of cell i.

The feedback plan for L is defined as to orient with and

flow along the integral curves of the vector field in each cell.

To do so, the control inputs for L are defined as

uL = const ≤ uL M, (17a)

wL = −kL(θL − ϕL i) + ϕ̇L i, (17b)

where ϕL i is the orientation of the vector field in cell i,

kL > 0. Collision avoidance for L is ensured since by

definition each vector field points into the interior of the free

space. Furthermore, the trajectories of L essentially dictate

the desired position rd(t) ∈ V (Fig. 2) that F has to track

at each t; clearly rd(t) should always lie in the free space.

To see if this is always the case, let us first assume that

L, F start in the same cell i, at initial distance r > rd.

Initial configurations that violate visibility are excluded. In

the worst case, both robots start on the boundary of the free

space. It is easy to verify that if the initial orientations θL, θF
point into the interior of the cell i, then under the control laws

(17), (12) both robots move into the cell i, and thus collisions

with obstacles are avoided. Inter-robot collision avoidance

is also guaranteed, as shown in Section III; therefore, their

motion in cell i is guaranteed to be collision-free.



However, when L enters cell i+ 1 while F is still in cell

i, it is likely that qL(t) will force the desired position rd
to eventually enter the obstacle space. This remark implies

that L should move with a minimum turning radius RL

when entering into cell i+1, such that the trajectories qF(t)
do not enter the obstacle space. Note also that after F has

converged into B(rd, ǫr), where ǫr → 0, the L−F formation

essentially behaves as a tractor (L) pulling a trailer (F) with

axle-to-axle hitching of length rd [13]. Then, if L starts

moving along a circle of center C and radius RL when it

enters cell i+1, it immediately follows that F will move on

a circle of the same center C and radius RF =
√

RL
2 − rd2.

In order to get an estimate for picking a safe RL, con-

sider Fig. 5: Assume that at time instant t⋆, L is at the

midpoint of the cell i (driven there by (17)) and starts

moving in cell i + 1 along a circle of radius RL, while

F is at a distance rd w.r.t. L; given that F kinematically

behaves as a trailer, it starts moving along a circle of radius

RF =
√

RL
2 − rd2. The radius RF is depicted in Fig. 5

equal to the critical value RF,crit for which the trajecto-

ries of F remain collision-free. The center of rotation C

remains constant, and its position at time t⋆ w.r.t. the (time-

varying) leader frame L is xC(t
⋆) = xF(t

⋆)+RF sin(β(t⋆)),
yC(t

⋆) = yF(t
⋆) − RF cos(β(t⋆)). The coordinates of the

critical point Z w.r.t. the leader frame L at time t⋆ are

xZ(t
⋆) = r0

√
2

2 − r0, yZ(t
⋆) = −wi

2 + r0
√
2

2 − r0. Thus,

RF,crit =

√

(xC(t⋆)− xZ(t⋆))
2
+ (yC(t⋆)− yZ(t⋆))

2
. Note

also that the smallest critical value RF,crit corresponds to

the worst-case scenario shown in Fig. 5, where F is on the

boundary of the free space.1 At this point, one has xFw
(t⋆) =

−
√

rd2 −
wi

2

4 , yFw
(t⋆) = −wi

2 , cos(βw(t
⋆)) =

√

rd2−wi
2

4

rd
,

sin(βw(t
⋆)) = wi

2rd
. Then, after some algebra one can verify

out of RFw,crit = RFw
that the worst-case safe RFw

is

RFw=

(

r0
2

√

2−r0+

√

rd
2
−

wi
2

4

)2

+( r0
2

√

2−r0)
2

wi
rd

√

rd
2
−

wi
2

4
+

wir0
rd

(√

2
2

−1

)

−
2r0
rd

√

rd
2
−

wi
2

4

(√

2
2

−1

)

, (18)

where the denominator is positive for
wi
rd

√

rd2−wi
2

4 +
2r0
rd

√

rd2−wi
2

4

(

1−
√

2
2

)

>
wir0
rd

(

1−
√

2
2

)

.

As one would expect from physical intuition, the critical

turning radius for F depends on the robots’ dimension r0,

the distance rd between them and the width wi of the cell i.

Thus, if L moves with turning radius RL ≥
√

rd2 +RFw

2, it

follows that the trajectories of F are collision-free. Moreover,

one can easily verify out of Fig. 5 that the motion of L within

cell i+1 is collision-free as long as RL ≤ wi+1+RFw

wi

2rd
+

√

rd2 −
wi

2

4 . In summary, a safe RL for L should satisfy

√

r2d +RFw

2 ≤ RL ≤ wi+1 +RFw

wi

2rd
+

√

r2d −
w2

i

4
, (19)

where RFw
is given by (18), and ensures that the trajec-

tories qL(t), qF(t) are collision-free. Note that this is a

conservative condition, in the sense that RFw
is computed

1This holds for the leader taking a right turn. Similarly one can treat the
case for a left turn.

Fig. 5. After exiting cell i, the leader should move in cell i+ 1 along a
circle of radius RL that satisfies (19).

for the worst-case scenario, since we assumed that L has no

information on the position of F at time t⋆. Nevertheless,

given rd, r0 and the cell decomposition, it is easy to a priori

check whether a safe RL exists for each one of the transitions

between cells that are realized as turning around corners.

Given that a safe RL exists, the control input (17) for

L is modified as follows: On the exit face of cell i, L
orients with the tangent λ1 to the radius CL, given as

λ1 = −xC(t⋆)
yC(t⋆) = −

xFw (t
⋆)+RFw sin(βw(t

⋆))
yFw (t

⋆)−RFw cos(βw(t⋆))
, and moves into

cell i+1 with wL c = sign(wL)
uL

RL
, where wL is the angular

velocity that is dictated by the vector field in cell i+1. The

angular velocity wL c should be kept until L reaches the point

E shown in Fig. 5, so that F is guaranteed to enter safely in

the cell i + 1. The coordinates of E w.r.t. the initial frame

at time t⋆ are xE = xC + RL cos θL, yE = yC − RL sin θL,

where θL is the current orientation of L w.r.t. a global frame,

which is online available. After L has reached E, then both

robots are in cell i + 1, with F pointing into the interior of

the free space. Thus, L keeps moving under (17), tracking

the vector field in cell i+1, on its way to the exit face of this

cell; as discussed above, under these conditions the motion

of the robots within the cell i+ 1 is collision-free.

A. Simulation Results

The efficacy of the proposed motion planning and control

scheme has been evaluated through computer simulations.

A decomposition of the free space in rectangular cells is

known to L. The robots start in the same cell i, so that L is

visible to F. In the case shown in Fig. 6 the robots initiate

on the boundary of the obstacle, so that the second visibility

constraint is active for F and so that they do not face out

of the free space. The leader L moves with constant linear

velocity uL ≤ uLM, and tracks the vector field in cell i under

(17), on its way to the midpoint of the exit face of i. At the

same time, F moves under the control law (12), where the

control gains are selected such that the visibility constraint

h2(q(0)) = 0 is not violated at t = 0, and converges into a

neighborhood around the desired configuration qd (the red

mark) w.r.t. L. The motion of F in cell i is also collision-
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Fig. 6. The system initiates on a configuration q ∈ C on the boundary of
the obstacles, where the second visibility constraint is active for F.

free, for the reasons explained in section III. When L reaches

the exit face of cell i, it is forced to follow a bounded

curvature within cell i+1 to move around the corner, under

the angular velocity wL c = sign(wL)
uL

RL
, where wL is the

angular velocity specified by the vector field in cell i + 1,

and RL is the safe turning radius calculated as above. At the

same time, F behaves like a trailer and starts moving along a

circle of radius RF, which is guaranteed to be collision-free.

As soon as L reaches the “exit point” E, shown in Fig. 5,

it continues moving under the angular velocity wL dictated

by the vector field i + 1, until it reaches the exit face of

cell i+1, and so on. The resulting trajectories are collision-

free, as shown in Fig. 6, while the value of the constraints

hk(x, y, β), k = 1, 2 is always non-positive (Fig. 7), which

implies that visibility is always maintained.
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Fig. 7. Visibility is always maintained, since the value of the visibility
constraints is always negative.

V. DISCUSSION

This paper presented a feedback control solution for an

L−F formation with visibility constraints in an environment

with obstacles. A control scheme that forces F to converge

and remain into a set of desired configurations w.r.t. L
without violating visibility was proposed, as well as a way of

controlling L in a known obstacle environment, so that both

obstacle avoidance and visibility maintenance are ensured.

The proposed control schemes are decentralized, since there

is no direct communication between the robots. Computer

simulations demonstrate the efficacy of our algorithms.

Finally, it is worth to mention that the proposed control

design ideas are not restricted to the scenarios presented in

this paper. Given a cell decomposition of convex polygonal

cells, L can be controlled to move from cell i to cell i + 1
by tracking a dipolar vector field in cell i, defined so that

its integral curves converge to the midpoint of the exit face

of cell i, while pointing into the interior of the cell i on the

remaining faces. For ensuring the collision-free motion of

F as it moves from cell i to cell i + 1, one can similarly

employ the tractor-trailer paradigm, and pick a safe turning

radius RL for L by computing the worst-case safe turning

radius RFw
for F. The tractor-trailer paradigm can be also

used to extend the formation control in the case of N > 2
robots that move in a chain formation, in the sense that if the

tractor (L) moves along a circle of center C and radius RL,

then the N−1 trailers (the followers Fj , j = 1, . . . ,N−1)

move along circles of center C and radii RFj
; thus, one can

compute a (conservative) condition on a safe RL so that the

(worst-case) turning radius RFj
for the j-th follower, j =

1 . . . ,N−1, is collision-free. Finally, the assumption on the

sensor footprint being an isosceles triangle is not restrictive,

since the conditions on maintaining visibility apply to any

closed convex footprint.
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