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Abstract

This paper addresses the feedback control design for a class of nonholonomic systems which are subject to inequality state
constraints defining a constrained (viability) set K. Based on concepts from viability theory, the necessary conditions for
selecting viable controls for a nonholonomic system are given, so that system trajectories starting in K always remain in
K. Furthermore, a class of state feedback control solutions for nonholonomic systems are redesigned by means of switching
control, so that system trajectories starting in K converge to a goal set G in K, without ever leaving K. The proposed
approach can be applied in various problems, whose objective can be recast as controlling a nonholonomic system so that the
resulting trajectories remain for ever in a subset K of the state space, until they converge into a goal (target) set G in K.
The motion control for an underactuated marine vehicle in a constrained configuration set K is treated as a case study; the
set K essentially describes the limited sensing area of a vision-based sensor system, and viable control laws which establish
convergence to a goal set G in K are constructed. The robustness of the proposed control approach under a class of bounded
external perturbations is also considered. The efficacy of the methodology is demonstrated through simulation results.

Key words: Constraint Satisfaction Problems, Constrained Control, Underactuated Robots, Nonholonomic Control, Robot
Control, Convergent Control, Invariance, Disturbance rejection, Robust control.

1 Introduction

Nonholonomic control has been and still remains a
highly challenging and attractive problem from a theo-
retical viewpoint. Related research during the past two
decades has attributed various control design method-
ologies addressing stabilization, path following and tra-
jectory tracking problems for nonholonomic systems of
different types, which nowadays feature a solid frame-
work within control theory.
From a practical viewpoint, nonholonomic control is of
particular interest within the fields of robotics and multi-
agent systems, since a significant class of robotic systems
is subject to nonholonomic constraints. The control de-
sign in this case typically pertains to realistic, complex
systems, which should perform efficiently and reliably;
in this sense, the robustness of control solutions with re-
spect to (w.r.t.) uncertainty and additive disturbances
is a desirable property, which highly affects the perfor-
mance, or even safety, of the considered systems. In part
for this reason, the development of robust nonholonomic
controls w.r.t. vanishing, as well as non-vanishing per-
turbations has received special attention, see [1–10] and

? This paper was not presented at any IFAC meeting. Corre-
sponding author Dimitra Panagou. Tel. +30-210-772-3656.

Email addresses: dpanagou@mail.ntua.gr (Dimitra
Panagou), kkyria@mail.ntua.gr (Kostas J.
Kyriakopoulos).

the references therein. Non-vanishing perturbations are
typically more challenging, since a single desired config-
uration might no longer be an equilibrium for the sys-
tem [11]. In this case one should rather pursuit the ul-
timate boundedness of state trajectories; this problem
is often addressed as practical stabilization. In a similar
context, the development of input-to-state stability (iss)
as a fundamental concept of modern nonlinear feedback
analysis and design, has allowed the formulation of ro-
bustness considerations for nonholonomic systems into
the iss framework [12–15].
Furthermore, one often can not neglect that control sys-
tems are subject to hard state constraints, encoding
safety or performance criteria. An illustrative paradigm
of hard state constraints is encountered in the case of
agents that have limited sensing capabilities while ac-
complishing a task. For instance, consider an underac-
tuated robotic vehicle equipped with sensors (e.g. cam-
eras) with limited range and angle-of-view, which has
to surveil a target of interest; the requirement of always
having the target in the camera field-of-view (f.o.v.) im-
poses a set of inequality state constraints, which should
never be violated so that the target is always visible.
This problem, often termed as maintaining visibility, ap-
plies in leader-follower formations where the leader is
required to always be visible to the follower [16–19], in
landmark-based navigation [20–22], in visual servo con-
trol [23, 24], or in visibility-based pursuit-evade prob-
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lems, see [25] and the references therein. Similar specifi-
cations in terms of state constraints apply in maintaining
connectivity problems, involving n nonholonomic agents
with limited sensing and/or communication capabilities
that have to accomplish a common task while always
staying connected [26].

1.1 Contributions

This paper proposes a control design methodology for a
class of nonholonomic systems which are subject to hard
state constraints. The state constraints are realized as
nonlinear inequalities w.r.t. the state variables, which
constitute a closed subsetK of the state spaceQ. The set
K is thus the subset of state space in which the system
trajectories should evolve ∀t ≥ 0. System trajectories
which either start out of K, or escape K for some t > 0
immediately violate the state constraints and thus are
not acceptable. Therefore, the control objective reduces
into finding a (possibly switching) state feedback control
law, so that system trajectories starting in K converge
to a goal set G in K without ever leaving K.
The proposed approach combines concepts from viabil-
ity theory [27] and results from our earlier work on the
state feedback control of n-dimensional nonholonomic
systems with Pfaffian constraints [28] (Section 2). In the
sequel, following [27], state constraints are called viabil-
ity constraints, the set K is called the viability set of the
system, and system trajectories that remain in K ∀t ≥ 0
are called viable (Section 3). In particular, we adopt the
concept of tangency to a setK defined by inequality con-
straints [27], and provide the necessary conditions under
which the admissible velocities of a kinematic nonholo-
nomic system are viable in K, as well as the necessary
conditions for selecting viable controls (Section 4). In
addition, given the control solutions in [28], we propose
a way of redesigning them by means of switching con-
trol, so that the resulting trajectories are viable in K
and furthermore converge to a goal setG ⊂ K. As a case
study, we consider the motion planning for an underac-
tuated marine vehicle which is subject to configuration
constraints because of limited sensing (Section 5); the
onboard sensor system consists of a camera with limited
angle-of-view and two laser pointers of limited range.
The task is defined as to control the vehicle so that it
converges to a desired configuration w.r.t. a target of in-
terest, while the target is always visible in the camera
f.o.v.; in that sense, this is also a problem of maintaining
visibility. The visibility maintenance requirement, along
with limited sensing, impose a set of configuration con-
straints that define a viability set K. The robustness of
the proposed control approach under a class of bounded
perturbations is studied in Section 6. Our conclusions
and plans for future extensions are summarized in Sec-
tion 7.
The problem formulation is similar to the characteriza-
tion of viable capture basins of a target set C in a con-
strained set K [29], which is based on the Frankowska
method that characterizes the backward invariance and
(local) forward viability of subsets by means of the value

function of an optimal control problem. However, in this
paper we rather address the problem in terms of set in-
variance [30,31], where the objective is to render the vi-
ability set K a positively invariant (or controlled invari-
ant) set, and the goal set G the largest invariant set of
the system by means of state feedback control. 1

The notion of controlled invariance for linear systems
has been utilized for the control design of systems with
first-order (kinematic) nonholonomic constraints, after
linearizing the nonlinear system equations around the
equilibrium [18]; compared to this work, here we present
a method which addresses a wider class of constrained
underactuated systems, including the class of nonholo-
nomic systems with second-order (dynamic) nonholo-
nomic constraints, without the need for linearizing the
system equations.
The motion control of underactuated marine (underwa-
ter, surface) vehicles and ships has been treated in the
past using various control design techniques, see for in-
stance [32–38] and the references therein; however, to
the best of our knowledge, none of the relevant work con-
siders any additional state (configuration) constraints
on the system. Furthermore, in this paper we present a
novel motion control scheme for the considered class of
underactuated marine vehicles, based on our method-
ology for the state feedback control for n-dimensional
nonholonomic systems [28].
In relation to our prior work in [39], here we do not adopt
an optimal control formulation, and propose control so-
lutions that not only remain in K, but also converge to
a goal set G ⊂ K. Compared to [40], we consider a wider
class of viability constraints, while we further address
the viable robust control design of underactuated sys-
tems w.r.t. a class of bounded external perturbations.

1.2 Overview

We consider the class of nonlinear systems described by

q̇ = f(q,u), u ∈ U(q), (1)

where q ∈ Q is the state vector, Q ⊂ Rn is the state
space (a normed space), u ∈ U is the vector of m < n
control inputs, U ⊂ Rm is the control space, U : Q U
is a feedback set-valued map associating with any state
q the (possibly empty) subset U(q) of feasible controls
at q and f : Graph(U) 7→ Q is a continuous single-
valued map, which assigns to each state-control pair
(q,u) ∈ Graph(U) the velocity f(q,u) of the state, i.e.
the (tangent) vector q̇ ∈ Q.
The system (1) is subject to κ < n nonholonomic con-
straint equations. 2 Each constraint i ∈ {1, . . . , κ} is

1 The viability property has been introduced as “controlled
invariance” for linear and smooth nonlinear systems [27].
2 Typically, kinematic nonholonomic constraints can be
written in Pfaffian form as A(q)q̇ = b(q), where q ∈ Rn
is the vector of generalized coordinates, A(q) ∈ Rκ×n and
b(q) ∈ Rκ. If b(q) = 0 the constraints are called catastatic,
otherwise they are called acatastatic.
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written in Pfaffian form as

[ ai1(q) ... ain(q) ]︸ ︷︷ ︸
a>

i
(q)

[
q̇1

...
q̇n

]
= 0⇒ a>i (q)q̇ = 0,

where a>i (q) = [ai1(q) ai2(q) . . . ain(q)] is the i-th
constraint vector, while κ > 1 constraints are written as

A(q)q̇ = 0, (2)

where A(q) ∈ Rκ×n is the constraint matrix.
The system (1) is additionally subject to λ nonlinear
inequalities w.r.t. the state variables. Consider the con-
tinuous map c = (c1, c2, . . . , cλ) : Q → Rλ; then, the
subset K of Q defined by the inequality constraints

K := {q ∈ Q | cj(q) ≤ 0, j = 1, 2, . . . , λ}, (3)

is the viability set of the system, where J (q) = {j =
1, 2, . . . , λ | cj(q) = 0} is the subset of active constraints.

2 Nonholonomic Control Design

The control design is based on our methodology [28]
on the state feedback control for drift-free, kinematic
nonholonomic systems of the form

q̇ =

m∑
i=1

gi(q)ui, (4)

which are subject to kinematic Pfaffian constraints (2),
where the state vector q ∈ Rn includes the system gen-
eralized coordinates, gi(q) are the control vector fields
and ui are the control inputs. The main idea is that one
can define a smooth N-dimensional reference vector field
F(·) for (4), given by

F(x) = λf
(
p>x

)
x− p

(
x>x

)
, (5)

where N ≤ n, λf ≥ 2, x ∈ RN is a (particular) subvector

of the configuration (state) vector q ∈ Rn, and p ∈ RN

is a vector that generates the vector field F(·).
The dimension N of the vector field F(·) is specified
by the explicit form of the constraint equations, in the
following sense: depending on the structure ofA(q), the
state space Q is trivially decomposed into L×T , where
L is the “leaf” space, T is the “fiber” space, dimL = N,
n = dimL+dimT . The local coordinates x ∈ RN on the
leaf are called leafwise states and the local coordinates
t ∈ Rn−N on the fiber are called transverse states.
The vector field F(·) is defined tangent to L in terms of
the leafwise statesx, and is non-vanishing everywhere on
L except for the origin x = 0 of the local coordinate sys-
tem, which by construction is the unique critical point
of rose type [41]; this implies that all integral curves of
F(x) contain the origin x = 0. Thus, for N < n, F(·)
is singular on the subset A = {q ∈ Rn | x = 0}; this

singularity may necessitate switching for initial condi-
tions q0 ∈ A. Input discontinuities are assumed to yield
a closed loop vector field in (4) which is piecewise con-
tinuous. Solutions are then understood in the Filippov
sense, i.e. q̇ ∈ F(q), where F is a set valued map:

F(q) , co

{
lim

m∑
i=1

gi(qj)ui : qj → q, qj /∈ Sq

}

where co stands for the convex closure and Sq is any set
of measure zero [42].
Away from the singularity subset A, F(·) serves as a ve-
locity reference for (4), i.e. at each q ∈ Q, the system vec-
tor field q̇ ∈ TqQ is steered into the tangent space TqL
of the integral curve of F(·). In this sense, one can use
the available control authority to steer the system vector
field into the tangent bundle of the integral curves of F,
and “flow” in the direction of the reference vector field
on its way to the origin. In [28] we show that these two
objectives suggest the choice of particular Lyapunov-
like functions V , and enable one to establish conver-
gence of the system trajectories q(t) to the origin based
on standard design and analysis techniques. In partic-
ular, one can find a smooth function V (q) : Rn → R
of compact level sets, and a state feedback control law
γ(·) = (γ1(·), . . . , γm(·)) : Rn → Rm such that

V̇ ≤ 0 ⇔ ∇V q̇ = ∇V
m∑
i=1

gi(q)γi(·) ≤ 0, (6)

where ∇V ,
[
∂V
∂q1

. . . ∂V
∂qn

]
the gradient of V at q.

Convergence of the system trajectories q(t) to the origin
is then established using standard tools.

3 Tools from Viability Theory

This section gives a brief description of concepts from
viability theory [27,43] that are used in the paper.
Consider the dynamics of a system described by a
(single-valued) map f from some open subset Ω of X to
X, f : Ω 7→ X, where X is a finite dimensional vector
space, and the initial value problem associated with the
differential equation:

∀t ∈ [0, T ], ẋ (t) = f
(
x(t)

)
, x(0) = x0. (7)

Definition 1 (Viable Functions) Let K be a subset of
X. A function x(·) from [0, T ] to X is viable in K on
[0, T ], if x(t) ∈ K ∀t ∈ [0, T ].
Definition 2 (Viability Property) Let K be a subset of
Ω. K is said to be locally viable under f if, for any initial
state x0 ∈ K, there exist T > 0 and a viable solution on
[0, T ] to the differential equation (7) starting at x0. It is
said to be (globally) viable under f if T =∞.
The characterization of viable sets K under f is based
on the concept of tangency: A subset K is viable under
f if at each state x of K the velocity f(x) is “tangent”
to K at x, for bringing back a solution to the differential
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equation inside K. An adequate concept of tangency is
realized via the concept of the contingent cone.
Definition 3 (Contingent Cone) Let X be a normed
space, K be a nonempty subset of X and x belong to K.
The contingent cone to K at x is the set

TK(x) =

{
υ ∈ X | lim inf

h→0+

dK(x+ hυ)

h
= 0

}
,

where dK(y) denotes the distance of y to K, dK(y) :=
infz∈K ‖y − z‖. Note that ∀ x ∈ Int(K), TK(x) = X.
Thus, if K is an open set, the contingent cone TK(x) to
K at any x ∈ K, is always equal to the whole space.
(Contingent Cone at a Fréchet differentiable point) Con-
sider the continuous real-valued map g = (g1, g2, . . . , gp) :
X → Rp and the subset K of X defined as

K = {x ∈ X | gi(x) ≥ 0, i = 1, 2, . . . , p}, (8)

where gi(·) are Fréchet differentiable at x. For x ∈ K,

I(x) = {i = 1, 2, . . . , p | gi(x) = 0} (9)

is the subset of active constraints. The contingent cone
TK(x) to K is TK(x) = X whenever I(x) = ∅, otherwise

TK(x) = {υ ∈ X | ∀i ∈ I(x), 〈g′i(x), υ〉 ≥ 0} ,

where g′i(x) ∈ X? is the gradient of gi at x, and 〈·, ·〉
stands for the duality pairing.
Definition 4 (Viability Domain) Let K be a subset of
Ω, then K is a viability domain of the map f : Ω 7→ X
if ∀ x ∈ K, f(x) ∈ TK(x).
Definition 5 Consider a control system (U, f), defined
by a feedback set-valued map U : X  Z, where X
the state space and Z the control space, and a map f :
Graph(U)→ X, describing the dynamics of the system:

ẋ(t) = f(x(t), u(t)), where u(t) ∈ U(x(t)).

We associate with any subset K ⊂ Dom(U) the regula-
tion map RK := K  Z defined by

∀x ∈ K, RK(x) := {u ∈ U(x) | f(x, u) ∈ TK(x)}.

Controls u belonging to RK(x) are called viable, and K
is a viability domain if and only if the regulation map
RK(x) has nonempty values.
If the subset K is given by (8), the set of active
constraints is as in (9), and for every x ∈ K,
∃υ0 ∈ X such that ∀i ∈ I(x), 〈g′i(x), υ0〉 ≥ 0, then the
regulation map RK(x) is

RK(x) := {u ∈ U(x) | ∀i ∈ I(x), 〈g′i(x), f(x, u)〉 ≥ 0}.

4 Viable Nonholonomic Controls

Consider a nonholonomic system of the form (4) subject
to λ inequality state constraints determining a viability

set K of the form (3), where cj(·) : Q→ R are continu-
ously differentiable maps, j ∈ J = {1, . . . , λ}.
Assume that at some q ∈ K one has that J (q) = ∅,
i.e. none of the constraints is active; then obviously q ∈
Int(K), and the contingent cone ofK at q coincides with
the state space Q, TK(q) = Q. 3 This implies that the
system can evolve along any direction q̇ ∈ TqQ with-
out violating the viability constraints. For a nonholo-
nomic system (4) with Pfaffian constraints (2), the ad-
missible velocities q̇ ∈ TqQ belong into the null space of
the constraint matrix A(q), which is an (n− κ) dimen-
sional subspace of the tangent space TqQ. Thus, at each
q ∈ Int(K), the viable admissible velocities q̇ for a non-
holonomic system are tangent to an (n−κ) dimensional
subspace of the contingent cone TK(q).
Assume now that the j-th constraint becomes active
at some point z ∈ ∂K: cj(z) = 0, j ∈ J , where ∂K
stands for the boundary of the set K. The viable sys-
tem velocities belong into the contingent cone of K at z,
ż ∈ TK(z), which now is a subset (not necessarily a vec-
tor space but rather a cone) of the tangent space TzQ.
Thus, an admissible velocity for a nonholonomic system
(4) is viable at z if and only if

ż ∈
(

Null(A(z))
⋂
TK(z)

)
6= ∅.

Based on these, we are able to characterize the conditions
for selecting viable controls (if any) for the system (4).
For q ∈ Int(K), an admissible controlu = (u1, . . . , um) :
Rn → Rm for (4) is viable at q if and only if

u ∈ U(q), q̇ =

m∑
i=1

gi(q)ui ∈ TK(q) , TqQ,

which essentially implies that a control law u(·) is viable
at q as long as the control inputs ui belong into the
subset U(q) of feasible controls.
Assume now that z ∈ ∂K so that a single constraint is
active: cj(z) = 0 for some j ∈ J . The map of viable
controls for a system (1) at z is:

RK(z) = {u ∈ U(z) | 〈c′j(z),f(z,u)〉 ≤ 0},

where c′j is the gradient of cj(·) at z, and 〈·, ·〉 is the dual-
ity pairing. Following [44], the value of the duality pair-
ing at z can be essentially expressed by the dot product

∇cj f(z,u), where ∇cj =
[
∂cj
∂q1

. . .
∂cj
∂qn

]
at z ∈ ∂K.

The regulation map then reads:

RK(z) = {u ∈ U(z) | ∇cjf(z,u) ≤ 0}.

Thus, an admissible control u = (u1, . . . , um) : Rn →

3 If K is a differentiable manifold, then the contingent cone
TK(q) coincides with the tangent space to K at q.
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Rm for (4) is viable at z ∈ ∂K if and only if

u(z) ∈ U(z),
[
∂cj
∂q1

. . .
∂cj
∂qn

] m∑
i=1

gi(z)ui ≤ 0. (10)

It immediately follows that if more than one constraints
cj(·) : Q→ R are simultaneously active at some z ∈ ∂K,
then a control law u(·) is viable at z if the condition (10)
is satisfied for each one of the active constraints. If all λ
constraints are active at z, the viability conditions are
written in matrix form as

u(z) ∈ U(z), Jc(z)

m∑
i=1

gi(z)ui ≤ 0, (11)

where Jc(z) is the Jacobian matrix of the map c =

(c1(·), . . . , cλ(·)) : Q→ Rλ, evaluated at z ∈ ∂K.
Consequently, a control law γ(·) = (γ1(·), . . . , γm(·)) :
Rn → Rm is viable at z ∈ ∂K if and only if

γ(z) ∈ U(z),
[
∂cj
∂q1

. . .
∂cj
∂qn

] m∑
i=1

gi(z)γi(z) ≤ 0, (12)

for each one of the active constraints cj(z) = 0, where
U(z) ⊆ Rm is the subset of feasible controls at z.
To illustrate the viability condition (10) let us consider
the case when a single constraint is active: cj(z) = 0,
z ∈ ∂K (Fig. 1). The viable system velocities ż belong
into the contingent cone TK(z) at z; thus, any control
u = (u1, . . . , um) ∈ U(z) such that ż =

∑m
i=1 gi(z)ui ∈

TK(z) is viable. Furthermore, following [28], the sys-
tem velocities that establish asymptotic convergence to
the origin define the subset C = {ż ∈ TzQ | ∇V ż ≤ 0}.
Thus, a convergent control law γ(·) is also viable at
z ∈ ∂K if and only if γ(z) ∈ U(z) and furthermore the
system velocity ż =

∑m
i=1 gi(z)γi(z) belongs into the

intersection (C
⋂
TK(z)); if this intersection is empty,

then any convergent solution γ(·) steers the system tra-
jectories out of K.
Therefore, given the state feedback control solutions in
[28], the idea for designing viable feedback control laws
for the class of nonholonomic systems (1) reduces into
redesigning (if necessary) the convergent control laws
γ(·) : Rn → Rm by means of switching control, so that
they yield viable control inputs u(z), ∀z ∈ ∂K. The
proposed control design is illustrated via the following
example.

5 Viable control design for an underactuated
marine vehicle with limited sensing

We consider the motion control on the horizontal plane
for an underactuated marine vehicle subject to configu-
ration constraints, which mainly arise because of the on-
board vision-based sensor system. The sensor suite con-
sists of a camera and two laser pointers mounted on the
vehicle, and provides the vehicle’s position and orienta-

tion (pose) vector η = [x y ψ]
>

w.r.t. a global coordi-

Fig. 1. Any control law γ(·) = (γ1(·), . . . , γm(·)) : Rn → Rm
such that γ(z) ∈ U(z), ż =

∑m
i=1 gi(z)γi(·) ∈ (C

⋂
TK(z))

is also viable at z ∈ ∂K, bringing the system trajectories
into the interior of K.

nate frame G, which lies on the center of a target on a ver-
tical surface (Fig. 2). The target and the two laser dots

Fig. 2. Modeling of the state constraints

projected on the surface are tracked using computer vi-
sion algorithms and this information is used to estimate
the pose vector η. Thus, the target and the laser dots
should always be visible in the camera f.o.v., for the sen-
sor system to be effective. These requirements impose
a set of nonlinear inequality constraints w.r.t. η, which
are treated as viability constraints that define a viabil-
ity set K for the system. The control objective is thus
defined as to control the vehicle so that it converges into
a set G ⊂ K of desired configurations ηd ∈ G, while the
system trajectories η(t) never escape K.

5.1 Mathematical Modeling

The marine vehicle has two back thrusters for moving
along the surge and the yaw degree of freedom (d.o.f.),
but no side (lateral) thruster for moving along the sway
d.o.f.. Following [45] the kinematic and dynamic equa-
tions of motion are analytically written as:

ẋ = u cosψ − v sinψ (13a)

ẏ = u sinψ + v cosψ (13b)
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ψ̇ = r (13c)

m11u̇ = m22vr +Xuu+Xu|u| |u|u+ τu (13d)

m22v̇ = −m11ur + Yvv + Yv|v| |v| v (13e)

m33ṙ = (m11 −m22)uv +Nrr +Nr|r| |r| r + τr, (13f)

where η =
[
r> ψ

]>
= [x y ψ]

>
is the pose vector of

the vehicle w.r.t. the global frame G, r = [x y]
>

is the
position vector and ψ is the orientation of the vehicle

w.r.t. G, ν = [u v r]
>

is the vector of linear and angular
velocities in the body-fixed coordinate frame B, m11,
m22, m33 are the terms of the inertia matrix (including
the added mass effect) along the axes of frame B,Xu, Yv,
Nr are the linear drag terms, Xu|u|, Yv|v|, Nr|r| are the
nonlinear drag terms, and τu, τr are the control inputs
along the surge and yaw d.o.f.. 4

5.2 Nonholonomic control design

The system (13) falls into the class of control affine un-
deractuated mechanical systems with drift: ẋ = f(x) +∑m
i=1 gi(x)ui, where x = [x y ψ u v r]

>
is the state

vector, including the generalized coordinates η and the
body-fixed velocities ν, and u1 = τu, u2 = τr are the
control inputs, respectively. The dynamics of the sway
d.o.f. (13e) serve as a second-order (dynamic) nonholo-
nomic constraint. If we only consider the kinematic sub-
system for a moment, we see that (13a), (13b) are com-
bined into −ẋ sinψ + ẏ cosψ = v ⇒

[− sinψ cosψ 0]︸ ︷︷ ︸
a>(η)

[
ẋ
ẏ

ψ̇

]
= v ⇒ a>(η)η̇ = v, (14)

which for v 6= 0 can be seen as an acatastatic Pfaffian
constraint on the unicycle. The constraint equation (14)
implies that η = 0 is an equilibrium point if and only if
v |η=0 = 0, i.e. if and only if (14) turns into catastatic
at the origin η = 0.
With this insight, one can try to steer the kinematic
subsystem augmented with the second order constraint
(13e) to the origin η = 0, using the velocities u, r as
virtual control inputs, while ensuring that the velocity
v vanishes at η = 0. Thus, the system (13) can be di-
vided into two subsystems Σ1, Σ2, where Σ1 consists of
the kinematic equations (13a)-(13c) and the sway dy-
namics (13e), while the dynamic equations (13d), (13f)
constitute the subsystem Σ2. The velocities u, r are con-
sidered as virtual control inputs for Σ1, while the actual
control inputs τu, τr are used to control Σ2.
The constraint (14) can now be used to apply the steps
presented in [28], in order to design the virtual control
inputs for Σ1: based on the structure of the constraint

4 The model (13) is valid under the assumption that the in-
ertia and damping matrices are diagonal, i.e. for bodies with
three planes of symmetry, performing non-coupled motions
at low speed [45]. In general, these assumptions are consid-
ered as a good approximation for dynamic positioning, how-
ever they still introduce uncertainty in the model.

vector a>(η), the states r = [x y]
> , x are the leafwise

states while ψ is the transverse state. Thus, an N = 2
dimensional reference vector field F(·) = Fx

∂
∂x + Fy

∂
∂y

can be picked out of (5), in terms of the leafwise states

x, y. For λf = 3 and p = [1 0]
>

, the vector field reads:

Fx = 2x2 − y2, Fy = 3xy. (15)

The vector field (15) is non-vanishing everywhere in R2

except for the origin r = 0, and has integral curves that
all converge to r = 0 with direction φ → 0. Thus, the
vehicle can be controlled so that it aligns with the di-
rection and flows along the integral curves of the vector
field F(·), until it converges to η = 0. Note that for the
integral curves to converge to the desired configuration

ηd = [xd yd 0]
>

, the reference vector field F(·) is de-
fined out of (5) in terms of the position error r1 = r−rd;
thus, the vector field components read:

Fx = 2x1
2 − y12, Fy = 3x1y1, (16)

where r1 = [x1 y1]
>

, x1 = x− xd, y1 = y − yd.
Theorem 1 The trajectories η(t) = [x(t) y(t) ψ(t)]

>

of the subsystem Σ1 globally converge to the desired

configuration ηd = [xd yd 0]
>

under the control laws
u = γ1(·), r = γ2(·):

γ1(·) = −k1 sgn
(
r>1

[
cosψ
sinψ

])
tanh (µ‖r1‖) , (17a)

γ2(·) = −k2(ψ − φ) + φ̇, (17b)

where k1, k2 > 0, φ = atan2(Fy,Fx) is the orientation
of the vector field (16) at (x, y) and the function sgn(·) :

R → {−1, 1} is defined as: sgn(a) =

{
1, if a ≥ 0,

−1, if a < 0.

The proof is given in the Appendix A.
Finally, the control inputs τu, τr of the subsystem Σ2

should be designed so that the actual velocities u(t), r(t)
are globally exponentially stable (GES) to the virtual
control inputs γ1(·), γ2(·).
Theorem 2 The actual velocities u(t), r(t) are GES to
the virtual control inputs γ1(·), γ2(·), respectively, under
the control laws τu = ξ1(·), τr = ξ2(·) given as:

τu = m11α−m22vr −Xuu−Xu|u||u|u, (18a)

τr = m33β − (m11 −m22)ur −Nrr −Nr|r||r|r, (18b)

where

α = −ku(u− γ1(·)) + (∇γ1)η̇, ku > 0, (19a)

β = −kr(r − γ2(·)) + (∇γ2)η̇, kr > 0, (19b)

and∇γk =
[
∂γk
∂x

∂γk
∂y

∂γk
∂ψ

]
is the gradient of γk, k = 1, 2.

The proof is given in the Appendix B.
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Fig. 3. Response of the system trajectories x(t).
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Fig. 4. The resulting control inputs and thrust forces.

The system trajectories x(t) under the control law (18),
(19), (17) are shown in Fig. 3, whereas the control inputs
τu, τr and the resulting thrust forces Fp, Fst are shown
in Fig. 4(a) and Fig. 4(b), respectively.

5.3 Viable nonholonomic control design

The viability set K of the system (13) is determined by
the following requirements (Fig. 2):
• The target should always be in the camera f.o.v.,

[−yT , yT ] ⊆ [f2, f1], so that sensing is effective.
• The laser range Lm must be within given bounds,
Lmin ≤ Lm ≤ Lmax, so that the laser dots on the sur-
face can be effectively detected.

These specifications impose λ = 4 nonlinear inequal-
ity constraints of the form cj(x, y, ψ) ≤ 0, j ∈ J =
{1, 2, 3, 4}, written analytically as

c1 : y − x tan(ψ − α) + yT ≤ 0, (20a)

c2 : yT − y + x tan(ψ + α) ≤ 0, (20b)

c3 : Lmin +
x

cosψ
≤ 0, (20c)

c4 : − x

cosψ
− Lmax ≤ 0. (20d)

Note that the control law (17) yields solutions that,
starting from any initial configuration η0 in K converge
to (any) desired configuration ηd inK. Nevertheless, the
convergent trajectories η(t) may not be viable in K, in

Fig. 5. A convergent solution η(t) given by the control law
(17) may violate viability during some (finite) time interval.

the sense that the control inputs may steer the trajecto-
ries η(t) out of K during some finite time.
Such an example is shown in Fig. 5. Assume for now that
only the constraint c1(·) (20a) is of interest. The vehi-
cle starts on a configuration η0 in K; however, track-
ing the reference vector field F(·) under (17) on its way

to ηd = [−0.5 0 0]
>

implies that the convergent tra-
jectories η(t) are driven out of K for some finite time.
More specifically, the constraint c1(·) becomes active
when the target lies on the left boundary of the f.o.v.
(Fig. 5, dashed line). This condition defines a subset
Z1 = {z ∈ ∂K | c1(·) = y−x tan(ψ−α)+yT = 0} of ∂K.
From the definition of the regulation mapRK(·) (Section
3) one has that the viable system velocities at z ∈ Z1

satisfy ∇c1ż ≤ 0⇒ [− tan(ψ−α) 1 −x sec2(ψ−α) ]

[
ẋ
ẏ

ψ̇

]
≤ 0.

Substituting the system equations yields:

(− tan(ψ − α) cosψ + sinψ)u+ (tan(ψ − α) sinψ +

cosψ) v − x sec2(ψ − α)r ≤ 0. (21)

The viability condition (21) verifies that the control in-
puts (17) violate the constraint c1(z) = 0: at z ∈ Z1 the
vehicle moves with u, r, ψ > 0, thus the first and third
term are> 0, whereas the (in general indefinite) velocity
v is not negative enough to satisfy (21). Therefore, the
control laws u = γ1(·), r = γ2(·) should be redesigned
so that (21) holds ∀z ∈ Z1.
To this end, the condition (21) offers the way to select
viable control inputs when z ∈ Z1. If the system starts
at z with zero linear and angular velocities, then a viable
option is to set u(z) = 0 and r(z) < 0; then, one has
v = 0 since (13e) reduces to v̇ = 0, and the condition (21)
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is satisfied, since always x < 0. 5 For picking a viable
control input r(z), one can choose to regulate the orien-
tation ψ of the vehicle to the angle φt = atan2(−y,−x),
which essentially is the orientation of the vector−η that
connects the vehicle with the target via the angular ve-
locity rviab1 = −k(ψ − φt). In this way, the system is
controlled so that target is centered in the camera f.o.v.,
avoiding thus the left boundary.
Similarly, the viability conditions when the remaining
constraints become active at some Zj = {z | cj(z) = 0},
j ∈ {2, 3, 4}, are analytically written as:

∇c2η̇ ≤ 0⇒
[
tan(ψ + α) − 1 x sec2(ψ + α)

]
η̇ ≤ 0

(13)⇒
(tan(ψ + α) cosψ − sinψ)u+ x sec2(ψ + α)r−
− (tan(ψ + α) sinψ + cosψ) v ≤ 0, (22a)

∇c3η̇ ≤ 0⇒ [secψ 0 x] η̇ ≤ 0
(13)⇒

u+ x r − tanψ v ≤ 0, (22b)

∇c4η̇ ≤ 0⇒ [− secψ 0 − x] η̇ ≤ 0
(13)⇒

tanψ v − u− x r ≤ 0, (22c)

and indicate how to select viable control laws for the
case that the corresponding constraint becomes active.
Thus, if z ∈ Z2, i.e. if the target is adjacent to the right
boundary of the f.o.v., the system can be as well con-
trolled so that the target is centered in the camera f.o.v.
via rviab2 = −k(ψ− φt); in this case the resulting angu-
lar velocity is rviab2 > 0; given that x < 0 and by choos-
ing the control gain k large enough, the term involving r
is negative and dominates the remaining terms in (22a).
In the same spirit, for the remaining constraints one can
verify that by setting rviab3,4 = 0 and uviab3,4 by (17a)
the term involving u is negative, implying that viability
is maintained.
Thus, for redesigning the control laws (17) so that they
are viable at z ∈ Zj , j ∈ J , one can consider the con-
tinuous switching signal

σj(cj) =


cj
cj∗
, if cj∗ ≤ cj ≤ 0,

1, if cj < cj∗ ,
(23)

shown in Fig. 5, and use the control law:

u = σj(cj)uconv + (1− σj(cj))uviabj , (24a)

r = σj(cj)rconv + (1− σj(cj))rviabj , (24b)

where cj∗ is a critical value for the constraint cj(·), uconv,
rconv are the convergent to the origin control laws given
by (17) and uviabj , rviabj are viable control laws at z ∈
Zj . Then, if cj(z) = 0 one has σj(cj) = 0, which ensures
that the control laws given by (24) at z ∈ Zj are viable.

5 This is not the only viable option; any control input
[u r]> ∈ U(z) such that ∇c1ż ≤ 0 implies that the con-
straint c1(z) is not violated.

cj

−∞ cj*

σj

1

+∞0

Fig. 6. The switching signal σj(cj).

Under this control setting, if the system trajectories
η(t) evolve away from the subset Zj ∈ ∂K so that
cj(η(t)) < cj∗(η(t)) ∀j ∈ J ∀t ≥ 0, then the viable con-
trols are never activated and the system is guaranteed
to converge to the desired configuration ηd under the
convergent control law (17). On the other hand, if the
switch σj(·) is activated at some t ≥ 0, then the vehicle
does not track the convergent to (x, y) = (0, 0) integral
curves of the vector field F during the time interval that
σj(cj) 6= 1. If furthermore the corresponding viable con-
trol laws are not convergent to ηd, then the system is no
longer guaranteed to converge to ηd. In this case, one
can relax the requirement on the convergence to a single
point, and rather choose to establish convergence to a
goal set G ⊂ K of desired configurations, given as G ={
ηd ∈ K

∣∣ xd2 + yd
2 = d2, ψd = atan2(−yd,−xd)

}
,

where d is a desired distance w.r.t. the target. The
viable linear velocity controller is given as

uviab = −k1 sgn
(

[x1 y1]
[
cosψ
sinψ

])
tanh(µ‖r1‖), (25)

where r1 = [x1 y1]
>

, x1 = x − xd, y1 = y − yd, xd =
d cosψd, yd = d sinψd, ψd = atan2(−y,−x).
The orchestration of the switching between conver-
gent and viable control laws taking into consideration
all j constraints can be implemented by replacing
the switching signal σj(cj) with the switching signal
σ∗ := min(σj), j ∈ J ;

u = min(σj)uconv + (1−min(σj))uviabj , (26a)

r = min(σj)rconv + (1−min(σj))rviabj , (26b)

In this way, the system switches when necessary to the
viable controls uviabj , rviabj that correspond to the con-
straint j which is closer to be violated.
Finally, note that the control gains k1, k2, ku, kr can
be properly tuned so that the virtual control inputs u, r
correspond to thrust forces Fp, Fst that belong into the
compact set U = [−fp, fp]× [−fst, fst].
To evaluate the efficacy of the methodology, let us con-
sider the scenario shown in Fig. 7. The vehicle initiates
on a configuration η0 where both the constraints c2(·),
c4(·) are active. Thus, a viable control law that does not
violate both (22a), (22c) is active at t = 0; in this case, we
chose to use the convergent control law (17) as a viable
control law, with the control gains k1, k2 tuned so that
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Fig. 7. The path x(t), y(t) under the control scheme (26).
The vehicle converges into a point of the goal set G.

none of the constraints is violated. The vehicle moves to-
wards the nominal desired configuration ηd under (26);
note that the constraints c4(·), c1(·) become nearly active
during some time intervals, activating the correspond-
ing viable control laws. The vehicle approaches the goal
set G under (26) for j = 1, i.e. by regulating the orienta-
tion ψ so that the target is always visible (red path). In
this scenario the effect of the viable control law for c1(·)
does not vanish, and thus the vehicle does not converge

to ηd = [−0.5 0 0]
>

, but rather to a configuration inG.
Finally, to ensure that the vehicle will stabilize at some
point in G, the system switches to the viable control law
corresponding to j = 1 in a small ball around rd (blue
path).
The evolution of the constraint functions cj(η(t)), j ∈ J
is shown in Fig. 8; the value of cj(·) is always non-positive
which implies that viability is always maintained.
Finally, Fig. 9 shows the resulting path under (26) for a
case that the vehicle starts on a point in K, so that the
viable control laws are not active (green path). As the
vehicle moves towards ηd the switching signal σ∗ = σ2
becomes< 1, activating the corresponding viable control
law for some finite time interval (red path). The vehicle
moves away from the corresponding boundary Z2 of the
set K, yielding σ∗ = 1, and thus eventually converges to
ηd under the convergent control law.

6 Viable control under a class of bounded dis-
turbances

6.1 Robust nonholonomic control design

Let us now assume that the vehicle moves in the presence
of an irrotational current of velocity Vc and direction βc
w.r.t. G. As it will be shown later, the current Vc, βc does
not have to be explicitly known or constant, but rather
to correspond to a class of bounded perturbations so that
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Fig. 8. The value of the constraints remains always negative.

Fig. 9. The vehicle starts moving under the control law (24)
where σ∗ = 1, i.e. the convergent control law (17) is active
(green path). When the constraint c2(·) is nearly violated
the corresponding switching signal σ2 becomes < 1 for some
time interval (red path). The vehicle eventually converges to

ηd = [−0.5 0 0]>.

the velocity is at most equal to a known upper bound.
Following [45], the kinematic and dynamic equations of
motion are rewritten including the current effect as:

ẋ = ur cosψ − vr sinψ + Vc cosβc (27a)

ẏ = ur sinψ + vr cosψ + Vc sinβc (27b)

ψ̇ = r (27c)

m11u̇r = m22vrr +Xuur +Xu|u| |ur|ur + τu (27d)

m22v̇r = −m11urr + Yvvr + Yv|v| |vr| vr (27e)

m33ṙ = (m11−m22)urvr +Nrr +Nr|r| |r| r + τr (27f)
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where νr = [ur vr r]
>

is the vector of the relative ve-
locities in the body-fixed frame B, νr = ν − νc and

νc = [Vc cos(βc − ψ) Vc sin(βc − ψ) 0]
>

are the current
velocities w.r.t. frame B.
The system is written as a control affine system with
drift vector field f(x) and additive perturbations δ(·) as:

ẋ = f(x)+
∑2
i=1 gi(x)ui+δ(·), where x =

[
η> ν>r

]>
=

[x y ψ ur vr r]
>

is the state vector, gi(·) are the con-

trol vector fields and δ(·) = [Vc cosβc Vc sinβc 01×4]
>

is the perturbation vector field.
The dynamic nonholonomic constraint (27e) implies
that xe = 0 is an equilibrium point of (27) if vr = 0
and urr = 0. One gets out of the first condition that
v = vc. Given that the linear velocity v of the vehicle
along the sway d.o.f. should be zero at the equilibrium,
it follows that vc = 0 ⇒ Vc sin(βc − ψe) = 0 ⇒ Vc =
0 or ψe = βc + κπ, κ ∈ Z. Thus, the desired orientation
ψe = 0 can be an equilibrium of (27) if Vc = 0, which
corresponds to the nominal case, or if βc = 0, i.e. if the
current is parallel to the x-axis of the global frame G.
In the general case that βc 6= 0, the current serves as a
non-vanishing perturbation at the equilibrium ηe, and
therefore the closed-loop trajectories of (27) can only be
rendered ultimately bounded in a neighborhood of ηe.
Thus, the control design for (27) reduces into address-
ing the practical stabilization problem, i.e. to find state
feedback control laws so that the system trajectories η(t)
remain bounded around the desired configuration ηd.
Following the control design ideas used in the nominal
case, the system (27) is divided into two subsystems Σ1,
Σ2, where Σ1 consists of the kinematic equations (27a)-
(27c) and the sway dynamics (27e), while the dynamic
equations (27d), (27f) constitute the subsystem Σ2. The
velocities ur, r are considered as virtual control inputs
for the subsystem Σ1, while the actual control inputs τu,
τr are used to control the subsystem Σ2.

Theorem 3 The trajectories r(t) = [x(t) y(t)]
>

of the
subsystem Σ1 approach the ball B(rd, rb), while the
trajectories ψ(t) globally converge to the equilibrium
ψe = βc + κπ, κ ∈ Z, under the control law ur = γ1(·),
r = γ2(·) given as:

γ1(·) = −k1 sgn
(
r>1

[
cosψ
sinψ

])
tanh (µ‖r1‖) , (28a)

γ2(·) = −k2(ψ − φ) + φ̇, (28b)

where rb is the ultimate bound given by (C.4). The proof
is given in the Appendix C.
Remark 1 Recall that the evolution of the trajectories
η(t) should respect the viability constraints, for the sen-
sor system to be effective. Thus the vehicle is restricted
to move on the left hyperplane w.r.t. the global yG axis
(Fig. 10), while its orientation ψ(t) should (roughly) be
in [−π2 ,

π
2 ], so that the vehicle faces the target. Consider

the case in Fig. 10, where r>1 rd > 0: the vehicle en-
ters the ball B(rd, r0) under (28a) with linear relative

velocity ur > 0, r>1

[
cosψ
sinψ

]
< 0. It was shown in the

Fig. 10. The marine vehicle is controlled so that it aligns
with the direction φ and flows along the integral curves of the
vector field F(·), until its trajectories r(t) remain bounded
into a ball B(rd, r0) and approach the ball B(rd, rb).

Appendix C that after entering the ball B(rd, r0), the
vehicle converges to the equilibrium ηe, where the lin-
ear velocity of the vehicle is u = 0, yielding ur = −uc =
−Vc cos(βc − ψe). The control input ur given by (28a)
at the equilibrium should be > 0 as well; otherwise one

has out of (28a) that r>1

[
cosψe
sinψe

]
> 0, i.e. that the ve-

hicle does not face towards the target, which is undesir-
able. Then, it follows that cos(βc − ψe) < 0. Given that
ψe = βc + κπ, this further reads: cos(βc − ψe) = −1 ⇒
cos(βc − ψe) = cosπ ⇒ ψe = βc − π. Then, in order to
have ψe ∈ [−π2 ,

π
2 ], so that the vehicle faces the target, it

follows that βc ∈ [π2 ,
3π
2 ], i.e. that r>1 [cosβc sinβc] > 0.

Remark 2 In the remaining of the paper we consider
the class of bounded perturbations

δ = [Vc cosβc Vc sinβc 01×4] , ‖δ‖ ≤ ‖δ‖max,

such that r>1 [cosβc sinβc] > 0, see Fig. 10.
Theorem 4 The actual velocities ur(t), r(t) are GES to
the virtual control inputs γ1(·), γ2(·), respectively, under
the control laws τu = ξ1(·), τr = ξ2(·) given as

τu = m11α−m22vrr −Xuur −Xu|u||ur|ur, (29a)

τr = m33β − (m11 −m22)urr −Nrr −Nr|r||r|r (29b)

where

α = −ku(ur − γ1(·)) + (∇γ1)η̇, ku > 0, (30a)

β = −kr(r − γ2(·)) + (∇γ2)η̇, kr > 0. (30b)

The proof is given in the Appendix D.

6.2 Viable controls in the set K

Assume that the vehicle is at a configuration z ∈ Zj
where Zj = {z ∈ ∂K | cj(·) = 0}, i.e. that j-th con-
straint becomes active. The map of viable controls at
z ∈ Zj is given as RK(z) := {τ ∈ T (z) | ∇cj(·) η̇ ≤ 0},
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where∇cj(·) =
[
∂cj
∂x

∂cj
∂y

∂cj
∂ψ

]>
is the gradient of cj(η).

Thus, the necessary conditions for selecting viable con-
trols when the j-th constraint becomes active are ana-
lytically written as:

∇c1η̇ ≤ 0⇒
[
− tan(ψ − α) 1 − x sec2(ψ − α)

]
η̇ ≤ 0

(27)⇒
(− tan(ψ − α) cosψ + sinψ)ur − x sec2(ψ − α)r

+ (tan(ψ − α) sinψ + cosψ) vr − tan(ψ − α)Vc cosβc
+ Vc sinβc ≤ 0, (31a)

∇c2η̇ ≤ 0⇒
[
tan(ψ + α) − 1 x sec2(ψ + α)

]
η̇ ≤ 0

(27)⇒
(tan(ψ + α) cosψ − sinψ)ur + x sec2(ψ + α)r

− (tan(ψ + α) sinψ + cosψ) vr + tan(ψ + α)Vc cosβc
− Vc sinβc ≤ 0, (31b)

∇c3η̇ ≤ 0⇒ [secψ 0 x] η̇ ≤ 0
(27)⇒

ur + x r − tanψ vr + secψVc cosβc ≤ 0, (31c)

∇c4η̇ ≤ 0⇒ [− secψ 0 − x] η̇ ≤ 0
(27)⇒

tanψ vr − ur − x r − secψVc cosβc ≤ 0. (31d)

Given that the velocities ur, r serve as the control in-
puts, one should check whether the convergent control
law (28) satisfies the viability conditions (31) at z ∈ Zj .
If this is not the case, then the control law should be
re-designed so that the viability conditions are met at
z ∈ Zj . Clearly, if more than one constraints become
active at the same time at some z ∈

⋂
j∈J Zj , the cor-

responding conditions should hold at the same time.
The conditions (31) offer the way to select viable control
inputs at z ∈ Zj . Consider, for instance, that z ∈ Z1,
which corresponds to the target being adjacent to the
left boundary of the f.o.v.; then one can choose to regu-
late the orientation ψ to the angle φt = atan2(−y,−x)
via the angular velocity rviab1 = −k(ψ− φt), as one did
for the nominal case. In this way, the vehicle is controlled
so that target is centered in the camera f.o.v.. To select
the gain k in a robust, yet conservative, way one can re-
sort to picking k so that the resulting rviab1 dominates
the worst-case remaining terms in (21), i.e. the worst-
case terms involving the upper bounds |ur|, vrb , ‖δ‖.
Similarly, if z ∈ Z2, i.e. if the target is adjacent to the
right boundary of the f.o.v., the system can be as well
controlled so that the target is centered in the camera
f.o.v., via rviab2 = −k(ψ − φt). In the same spirit, for
the remaining constraints and for the class of perturba-
tions considered in this paper (see the previous section)
one can verify that by setting rviab3,4 = 0 and ur,viab3,4
by (28a), where k1 ≥ Vc, the term involving ur is neg-
ative and dominates the worst-case term involving Vc,
implying that viability is maintained.
Therefore, for redesigning the control laws (28a), (28b)
so that they are viable at z ∈ Zj one can consider the
continuous switch (23) and use the control law

ur = σj(cj)ur,conv + (1− σj(cj))ur,viabj , (32a)

Fig. 11. The switching signal
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Fig. 12. The switching signal

r = σj(cj)rconv + (1− σj(cj))rviabj , (32b)

where ur,conv, rconv are given by (28), and ur,viabj , rviabj
are control inputs satisfying the corresponding condition
out of (22) at z ∈ Zj . The orchestration of the switch-
ing between convergent and viable control laws taking
into consideration all j constraints can be implemented
similarly to the nominal case, by replacing the switching
signal σj(cj) with σ∗ = min(σj), j ∈ J :

ur = min(σj)ur,conv + (1−min(σj))ur,viabj , (33a)

r = min(σj)rconv + (1−min(σj))rviabj , (33b)

so that the system switches when necessary to the viable
controls ur,viabj , rviabj that correspond to the constraint
j which is closer to be violated.
In the case that the control laws ur,viab, rviab are not

11



Fig. 13. The vehicle is forced to converge into a goal set
G ⊂ K, defined as the union of the balls B(rd, r0), where rd
belong to the circle C.

convergent into the ball B(rd, r0), the switching control
law (32) does not any longer guarantee the convergence
of the system trajectories r(t) intoB(rd, r0). In this case,
one can relax the requirement on the convergence into
B(rd, r0) where rd a single point, and rather consider a
set C ⊂ K of desired configurations as

C =
{
ηd ∈ K

∣∣ xd2 + yd
2 = d2, ψd = atan2(−yd,−xd)

}
,

where d is the desired distance w.r.t. the target, which
define a circle of center (x, y) = (0, 0) and radius d. Then,
the vehicle can be controlled to converge into the set G,
defined as the union of the balls B(rd, r0), rd ∈ C (Fig.
13). To do so, the viable velocities in (32) are chosen as

ur,viab = −k1 sgn
(
r>1

[
cosψ
sinψ

])
tanh(µ‖r1‖), (34a)

rviab = −k(ψ − φt), (34b)

where φt = atan2(−y,−x), x1 = x− xd, xd = d cosψd,
y1 = y − yd, yd = d sinψd. Following the analysis in the
previous sections, one has that the vehicle approaches

the ball of radius rb = 1
µ artanh

(
‖δ‖max

k1

)
around some

rd ∈ C. If the current direction βc belongs into the cone
of angle δ shown in Fig. 13, then the vehicle converges
into the “nominal” ball B(rd, r0), shown in red.
Finally, the control gains k1, k2, ku, kr can be properly
tuned so that the “virtual” control inputs ur, r corre-
spond to thrust forces Fp, Fst that belong into the com-
pact set U = [−fp, fp]× [−fst, fst].

7 Conclusions

This paper presented a method for the feedback control
design of nonholonomic systems which are subject to
state constraints defining a viability set K. Using con-
cepts from viability theory, the necessary conditions for
selecting viable control laws for a nonholonomic system
were given. Furthermore, a class of nonholonomic control
solutions were redesigned in a switching control scheme,
so that system trajectories starting in K converge to a
goal setG inK, without ever leavingK. As a case study,
the control design for an underactuated marine vehicle
subject to configuration constraints due to limited vis-
ibility, as well as to a class of bounded external distur-
bances, was treated. Viable state feedback control laws

in the constrained set K, which furthermore establish
convergence to a goal set G ⊂ K were constructed. Our
plans for future extensions include the consideration of
a wider class of external perturbations.
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A Proof of Theorem 1

Proof Let us first prove the following lemma:
Lemma 1 The orientation error e = ψ − φ is GES to
zero under the control law (17b).
Proof Take the positive definite, radially unbounded
function Ve = 1

2e
2, then its time derivative reads V̇e =

e ė
(13c)
= (ψ−φ)(r− φ̇)

(17b)
= −k2(ψ−φ)2 = −2k2Ve. 2

In order to study the convergence of the trajectories η(t)
to ηd, one can take a function V in terms of the position
errors x1 = x − xd, y1 = y − yd and the orientation
error e = ψ − φ as V = 1

2 (x1
2 + y1

2) + 1
2e

2 = V1 + 1
2e

2,

which is positive definite w.r.t. [x1 y1 e]
>

and radially
unbounded, and take its time derivative as

V̇ = V̇1 + e ė
(13),(17b)

= −k2e2+

+ [x1 y1]
[
cosψ
sinψ

]
u+ [x1 y1]

[
− sinψ
cosψ

]
v. (A.1)

The behavior of V̇ depends on the velocity v. If v can
be seen as a bounded perturbation that vanishes at

[x1 y1 e]
>

= 0, then this point is an equilibrium of the
kinematic subsystem and therefore it is meaningful to
analyze its (asymptotic) stability.
Since v comes from the control input ζ = ur, one
should study its evolution in an iss framework. With
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this insight, consider the candidate iss-Lyapunov
function Vv = 1

2v
2 and take its time derivative

V̇v = −m11

m22
v(ur)−

(
|Yv|
m22

v2 +
|Yv|v||
m22

|v| v2
)

, where by def-

inition Yv, Yv|v| < 0, and w(v) = |Yv|
m22

v2 +
|Yv|v||
m22

|v| v2 is
a continuous, positive definite function. Take 0 < θ < 1,
then V̇v = −m11

m22
v(ur)− (1− θ)w(v)− θw(v)⇒

V̇v ≤ −(1− θ)w(v), ∀v : −m11

m22
v(ur)− θw(v) < 0.

If the control input ζ = ur is bounded, |ζ| ≤ ζb, then

V̇v ≤ −(1− θ)w(v), ∀|v| : |Yv||v|+ |Yv|v|||v|2 >
m11

θ
ζb.

Then, the subsystem (13e) is iss [11, Thm 4.19]. Thus,
for any bounded input ζ = ur, the linear velocity v(t)
will be ultimately bounded by a class K function of
supt>0 |ζ(t)|. If furthermore ζ(t) = u(t)r(t) converges to
zero as t→∞, then v(t) converges to zero as well [11].
Consequently, if the control inputs u = γ1(·), r = γ2(·)
are bounded functions which converge to zero as t →
∞, then one has that v(t) is bounded and furthermore,
v(t) → 0 as t → ∞. Going back to (A.1), substituting
u = γ1(x, y) by (17a) yields

V̇ = −k1
∣∣∣[x1 y1]

[
cosψ
sinψ

]∣∣∣ tanh(µ‖r1‖)− k2e2+

+ [x1 y1]
[
cos(π2−ψ)
sin(π2−ψ)

]
v(t) = V̇1 − k2e2,

The control input u(t) is bounded. Furthermore, one has
out of (17b) that the control input r(t) is bounded as

well, since e, φ̇ are bounded. Therefore v(t) is bounded:

|v(t)| ≤ vb. The derivative V̇ then reads:

V̇ ≤ −k1
∣∣∣[x1 y1]

[
cosψ
sinψ

]∣∣∣ tanh(µ‖r1‖) + ‖r1‖vb − k2e2.

Thus, a sufficient condition for V̇1 ≤ 0 can be taken as

‖r1‖vb ≤ k1
∣∣∣r>1 [ cosψ

sinψ

]∣∣∣ tanh (µ‖r1‖) ≤ k1‖r1‖ tanh (µ‖r1‖)⇒

vb ≤ k1 tanh (µ‖r1‖)⇒ ‖r1‖ ≥
1

µ
artanh(

vb
k1

), (A.2)

where artanh(·) is the inverse hyperbolic tangent func-

tion. This condition essentially expresses that V̇1 ≤ 0 for

any position vector r1 = [x1 y1]
>

that satisfies (A.2).
Consequently, for any initial position r1(0) and for any

0 ≤ r0 ≤ ‖r1(0)‖ that satisfies (A.2), V̇1 is negative in
the set {r1

∣∣ 1
2r0

2 ≤ V1(‖r1‖) ≤ 1
2‖r1(0)‖2}, which veri-

fies that the trajectories r1(t) enter and remain bounded
in the set {r1

∣∣ V1(r1) ≤ 1
2r0

2}, i.e. that r1(t) enters
and remains into the ball B(0, r0); equivalently, the tra-
jectories r(t) enter and remain into the ball B(rd, r0).

Note also that within the ball B(rd, r0) the solution r(t)
is bounded and belongs into B(rd, r0) ∀t > t1. Then,
it follows that its positive limit set L+ is a non-empty,
compact invariant set; furthermore, r(t) approaches L+

as t→∞ [11, Lemma 4.1].
Lemma 2 The trajectories ψ(t) of Σ1 globally converge
to the equilibrium ψe = 0 under the control law (17b).

Proof Consider the time derivative V̇e = −k2e2 ≤ 0,
and denote Ω = {e | V̇e = 0} ⇒ Ω = {e | ψ = φ(x, y)}.
Then, the trajectories e(t) converge to the largest invari-
ant set M included in Ω.
The control input r = γ2(·) given by (17b) vanishes when

φ̇ = 0, given that the orientation error e = ψ − φ(x, y)
is GES to zero.

The dynamics of φ = arctan
(

Fy
Fx

)
is φ̇ = ∂φ

∂x (x, y)ẋ +
∂φ
∂y (x, y)ẏ. One can verify out of the analytic expressions

of ∂φ∂x , ∂φ∂y that φ̇ vanishes at the set M1 = {x | x1 = y1 =

0 ∧ ψ = φ(x1, y1) = 0}, or at the set M2 = {x | x1 6=
0 ∧ y1 = 0 ∧ ẏ = 0}, or at the set M3 = {x | y1 6=
0∧ x1 = 0∧ ẋ = 0}. For angular velocity r = 0, the sets
further read M1 = {x | x1 = y1 = ψ = 0 ∧ u = v = 0},
M2 = {x | x1 6= 0 ∧ y1 = 0 ∧ ψ = 0 ∧ v = 0}, M3 =
{x | y1 6= 0 ∧ x1 = 0 ∧ ψ = π ∧ u = 0}. However, if the
system trajectories start on or enter the set M3, one has
u = γ1(·) 6= 0, which implies that the trajectories escape
M3. On the other hand, it is easy to verify that the sets
M1, M2 are invariant w.r.t. the trajectories ψ(t); the set
M1 corresponds to the trivial solution where u = r = 0,
whereas M2 corresponds to the vehicle moving along the
xG axis with u 6= 0, r = 0.
Thus, φ̇ vanishes at the set (M1 ∨M2). Therefore, the
largest invariant set M in Ω reduces to (M1∨M2), where
one has ψ = 0, since in any other case the control input
(17b) yields r 6= 0, which implies that ψ = φ(x, y) does
not identically stay in Ω. Consequently, the orientation
trajectories ψ(t) globally converge to ψe = 0. 2

Going back to the evolution of the position trajecto-
ries r(t), note that, within the ball B(rd, r0), the con-
trol input ζ = ur vanishes as r → 0. According to the
above analysis, the control input r(t) converges to zero
as (ψ → φ(x, y))∧ (ψ → 0). Since the dynamics of v are
iss, one has out of ζ(t) → 0 that v(t) → 0 as well.
Consequently, one gets out of (A.2) that the system
trajectories r(t) approach the ball B(rd, rb) of radius:

rb = 1
µ artanh

(
v(t)
k1

)
, where rb is the ultimate bound of

the system, rb < r0. Clearly, as v(t) → 0, one also gets
that the ultimate bound rb → 0, i.e. that r(t)→ rd. 2

B Proof of Theorem 2

Proof Under the feedback linearization transforma-
tion (18) the dynamic subsystem (13d), (13f) reads
u̇ = α, ṙ = β, where α, β are the new control
inputs. Consider the candidate Lyapunov function
Vτ = 1

2 (u− γ1(η))
2

+ 1
2 (r − γ2(η))

2
, and take its

time derivative as V̇τ = (u− γ1(η)) (u̇− (∇γ1)η̇) +

(r − γ2(η)) (ṙ − (∇γ2)η̇), where ∇γk =
[
∂γk
∂x

∂γk
∂y

∂γk
∂ψ

]
,

14



k = 1, 2. Under the control inputs (19) one gets

V̇τ = −ku(u−γ1(·))2−kr(r−γ2(·))2 ≤ −2 min{ku, kr}Vτ ,

where ku, kr > 0, which verifies that the actual veloci-
ties u, r are GES to the virtual controls γ1(·), γ2(·), re-
spectively. 2

C Proof of Theorem 3

Proof The analysis on the trajectories of the perturbed
system is along the same lines as the one for the nominal
one. First, let us prove the following lemma:
Lemma 3 The orientation error e = ψ − φ is GES to
zero under the control law (28b).
Proof Take the positive definite, radially unbounded
function Ve = 1

2e
2; then its time derivative reads V̇e =

eė
(27c)
= (ψ − φ)(r− φ̇)

(28b)
= −k2(ψ − φ)2 = −2k2Ve. 2

To study the behavior of the system trajectories r(t)
under (28), consider the Lyapunov function candidate

Vr =
1

2

(
(x− xd)2 + (y − yd)2

)
=

1

2

(
x21 + y21

)
, (C.1)

which is positive definite, radially unbounded and of
class C∞, and take the derivative of Vr along the trajec-
tories of (27), given that ẋd = 0, ẏd = 0:

V̇r = [x1 y1]
[
cosψ
sinψ

]
ur + [x1 y1]

[
− sinψ
cosψ

]
vr+

+ [x1 y1]
[
cos βc
sin βc

]
Vc. (C.2)

The behavior of V̇r depends on the linear velocity vr
along the sway d.o.f., as well as on the external per-
turbation. Since vr comes from the control input ζ =
urr, one should study its evolution in an iss framework.
With this insight, consider the candidate iss-Lyapunov
function Vv = 1

2vr
2 and take its time derivative V̇v =

−m11

m22
vr(urr)−

(
|Yv|
m22

vr
2 +

|Yv|v||
m22

|vr| vr2
)

;

following the same analysis as in the nominal case, and
given that the control input ζ is bounded, |ζ| ≤ ζb, one
eventually gets for some θ ∈ (0, 1) that:

V̇v ≤ −(1−θ)w(vr), ∀|vr| : |Yv||vr|+|Yv|v|||vr|2 ≥
m11

θ
ζb.

Thus the subsystem (27e) is iss w.r.t. ζ [11, Thm 4.19],
which essentially expresses that for any bounded input
ζ = urr, the linear velocity vr(t) will be ultimately
bounded by a class K function of supt>0 |ζ(t)|. Further-
more, if ζ(t) = ur(t)r(t) converges to zero as t → ∞,
then vr(t) converges to zero as well [11].
Remark 3 Note that the control input ζ(t) should van-

ish at the equilibrium ηe = [xe ye ψe]
>

, which is dic-
tated by the direction βc of the external disturbance,
since ψe = βc + κπ, κ ∈ Z. Nevertheless, assuming that
the current Vc, βc is known and constant is unrealistic;

thus, knowing a priori the equilibrium ηe is in general in-
feasible. For this reason we assume that only the bound
‖δ‖max of the current velocity is known, while the direc-
tion βc is arbitrary, so that

‖δ‖ =
√

(Vc cosβc)2 + (Vc sinβc)2 = |Vc| ≤ ‖δ‖max.

This practically means that the current disturbance can
be of any, not necessarily constant direction βc, as long
as |Vc| ≤ ‖δ‖max.
Substituting the control law (28a) into (C.2) yields

V̇r =− k1
∣∣∣r>1 [ cosψ

sinψ

]∣∣∣ tanh (µ‖r1‖) + [x1 y1]
[
− sinψ
cosψ

]
vr+

+ [x1 y1]
[
cos βc
sin βc

]
Vc ⇒

V̇r ≤− k1
∣∣∣r>1 [ cosψ

sinψ

]∣∣∣ tanh (µ‖r1‖) + ‖r1‖ (vrb + ‖δ‖max) ,

where vrb is the ultimate bound of the linear velocity vr.
Thus, a sufficient condition for V̇r < 0 can be taken as

‖r1‖(vrb + ‖δ‖max) < k1

∣∣∣rT1 [ cosψ
sinψ

]∣∣∣ tanh (µ‖r1‖) ≤

≤ k1‖r1‖ tanh (µ‖r1‖)
⇒ vrb + ‖δ‖max < k1 tanh (µ‖r1‖)

⇒ ‖r1‖ >
1

µ
artanh

(
vrb + ‖δ‖max

k1

)
, (C.3)

where artanh(·) is the inverse hyperbolic tangent func-
tion. This condition essentially expresses that one has

V̇r < 0 for any position vector r1 = [x1 y1]
>

that sat-
isfies (C.3). Thus, for any initial position r1(0) and for

any r0 < ‖r1(0)‖ that satisfies (C.3), V̇r is negative in
the set {r1

∣∣ 1
2r0

2 ≤ Vr(‖r1‖) ≤ 1
2‖r1(0)‖2}, which ver-

ifies that the trajectories r(t) enter and remain bounded
into the ball B(rd, r0).
Note also that within the ball B(rd, r0) the solution r(t)
is bounded and belongs into B(rd, r0) ∀t > t1. Then,
it follows that its positive limit set L+ is a non-empty,
compact invariant set; furthermore, r(t) approaches L+

as t→∞ [11, Lemma 4.1].
Lemma 4 The trajectories ψ(t) of the subsystem Σ1

globally converge to the equilibrium ψe = βc ± π under
the control law (28b).
Proof To verify the argument, consider the time deriva-
tive V̇e = −k2e2 ≤ 0 of the positive definite, radially
unbounded function Ve = 1

2e
2. Denote Ω = {e | V̇e =

0} ⇒ Ω = {e | ψ = φ(x, y)}. Then, the trajectories e(t)
converge to the largest invariant set M included in Ω.
Note that the control input (28b) vanishes when φ̇ = 0,
given that the tracking error e = ψ − φ(x, y) is GES

to zero. Taking the dynamics of φ = arctan(
Fy
Fx

) yields

that φ̇ = f1(x, y)ẋ + f2(x, y)ẏ. The functions f1(x, y),
f2(x, y) vanish only at x = xd, y = yd; nevertheless, it
was shown that the system trajectories r(t) never reach
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the desired position rd, unless the perturbation is van-
ishing. Thus, φ̇ vanishes only when ẋ = ẏ = 0, i.e. at
the equilibrium of (27), at which the vehicle’s orienta-
tion is ψe = βc ± π. Therefore, the largest invariant set
M reduces to ψe = βc±π, since if ψ = φ(x, y) 6= ψe, the
control input (28b) yields r 6= 0, which implies that ψ
does not identically stay in Ω. 2

Going back to the position trajectories r(t), one has
that within the ball B(rd, r0) the control input ζ(t) =
ur(t) r(t) vanishes as r(t)→ 0. 6 According to the above
analysis, this occurs when ψ = φ(x, y) and ψ = βc ± π,
i.e. when the orientation ψ of the vehicle is aligned with
the direction of the current, at a point (x, y) where the
reference orientation φ(x, y) coincides with the direction
of the current as well; then out of (28b) one has r = 0.
Since the dynamics of vr are iss, it follows that ζ(t)→ 0
implies that vr(t) → 0. Consequently, one gets out of
(C.3) that the system trajectories r(t) approach the ball
B(rd, rb) of radius rb < r0, given as:

rb =
1

µ
artanh

(
‖δ‖max

k1

)
, (C.4)

where rb is the ultimate bound of the system. 2

Note that the ultimate bound rb depends on the norm
of the perturbation ‖δ‖max, as well as on the control
gain k1 on the linear velocity, as one would expect from
physical intuition.

D Proof of Theorem 4

Proof Under the feedback linearization transformation
(29) the corresponding dynamic equations (27d), (27f)
read u̇r = α, ṙ = β, respectively, where α, β are the
new control inputs. Consider the candidate Lyapunov
function Vτ = 1

2 (ur − γ1(·))2 + 1
2 (r − γ2(·))2, and take

its time derivative as V̇τ = (ur − γ1(·))
(
u̇r − ∂γ1

∂η η̇
)

+

(r − γ2(·))
(
ṙ − ∂γ2

∂η η̇
)

. Then, under the control inputs

(30) one gets V̇τ = −ku(ur − γ1(·))2 − kr(r − γ2(·))2 ≤
−2 min{ku, kr}Vτ , which verifies that the actual veloc-
ities ur(t), r(t) are globally exponentially stable to the
virtual velocities γ1(·), γ2(·), respectively. 2

6 It is easy to verify that ur(t) given by (28a) never vanishes,
since r1(t) does not converge to zero.
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