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Abstract— This paper presents a Leader-Follower formation
control strategy for underactuated marine vehicles which move
under sensing and communication constraints in the presence
of bounded persistent environmental disturbances. We assume
that the vehicles do not communicate for exchanging infor-
mation regarding on their states (pose and velocities), and
that their sensing capabilities are restricted, due to limited
range and angle-of-view. Sensing constraints are thus realized
as a set of inequality state constraints which should never be
violated (viability constraints). The viability constraints define
a closed subset K of the configuration space (viability set K).
The control objective is thus reduced into to coordinating the
motion of the vehicles in a Leader-Follower formation, while
system trajectories starting in K always remain viable in K.
The proposed control design employs dipolar vector fields and
a viability-based switching control scheme, which guarantees
that system viability is always maintained. The efficacy of the
proposed algorithm, as well as its relevance with surveillance
of (stationary) targets are demonstrated through simulations.

I. INTRODUCTION

Multi-vehicle systems and cooperative control objectives
have recently seen an increased interest within the fields
of marine robotics and oceanic engineering. Applications
such as environmental monitoring, surveillance and scien-
tific explorations, search and rescue missions, harbor patrol,
situation awareness, motivate the development of distributed
systems of relatively lower cost and power, to carry out a
common task in a collaborative manner. Coordinating the
motion of marine vehicles in formations is a characteristic
paradigm of achieving collective behaviors and complicated
tasks, compared to employing a single vehicle. Multi-vehicle
formations can be used, among others, for seabed mapping,
structure inspection (pipelines, oil drilling platforms), off-
shore and inshore surveillance; therefore, the coordination
and formation control for multiple underactuated marine ve-
hicles has been and still remains an active topic of research.

Choosing a pertinent formation strategy is primarily de-
pended on the nature of the application at hand, as well as
on the information flow among the vehicles. For the case
of marine applications in particular, note that underwater
communications and sensing rely mostly on acoustic sys-
tems, which suffer from limited range and communication
bandwidth; thus, such constraints impose challenges and in
principle can not be ignored during the control design.
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Popular ways to address the formation control for multiple
marine vehicles have been the coordinated path following
of pre-described spatial paths while keeping desired inter-
vehicle formation patterns [1]–[4] and tracking of reference
trajectories [5], [6]. Behavioral-based approaches have been
presented in [7], [8], while geometric methods that rely on
the virtual structure paradigm have appeared in [9], [10].

Leader - Follower (L−F) formation strategies have also
been widely studied, mainly due to their simplicity in con-
trol design and scalability in implementation. In a L−F
formation, L tracks a predefined path while F maintains a
desired geometric configuration with respect to (w.r.t.) L.
Consequently, the local control design is strongly depended
on the information that F can access regarding on the states
of L. For instance, the formation control designs in [11],
[12] require an intermittent or periodic broadcast of the
position and velocities of L to F. In [13] F can obtain any
information from L, while the decentralized control design in
[14] assumes that each vehicle obtains information from one
or two neighboring vehicles. In [15], F acquires the position
of L to track a reference trajectory in accordance with a
predefined distance, without any information on the leader’s
velocity and dynamics. In [16] all vehicles are first forced
to follow predefined paths, with L moving with the desired
formation speed, and then the velocities of F are coordinated
with a single communication broadcast from L. In general,
the communication variable broadcast in a L−F strategy is
required to be kept to a minimum, due to the constraints of
the acoustic communication bandwidth.

Motivated in part by this remark, in this paper we con-
sider a surveillance scenario, in which two marine vehicles
have to move on the horizontal plane in L−F formation
with no explicit communication and information exchange
between them. Each vehicle is assumed to carry an onboard
sensor with limited range and angle-of-view; for example, a
forward-looking sonar on an underwater vehicle, or a camera
on a surface vessel. These limitations define the effective
sensing area of each vehicle as a circular sector of radius
L and angle 2a (Fig. 1). Thus, each vehicle can track and
acquire reliable measurements on the pose of objects lying
within its sensing area. L is assigned with the task to move
in the proximity of and always keep a (stationary) target T
visible in its sensing area, while F is required to maintain a
fixed distance and orientation w.r.t. to L.1 Consequently, due
to sensing and communication limitations, it immediately

1In this scenario we rather treat F as a back-up vehicle, and do not have
it assigned with the task of directly surveilling the target T. Nevertheless,
as illustrated in Section IV, F may also gradually gain visibility with T.



follows that coordinating the motion of the vehicles in a
L−F fashion for target surveillance can be effective if
and only if L maintains visibility with T, and F maintains
visibility with L.

Fig. 1. Each vehicle can sense and be localized w.r.t. objects within its
sensing area.

To this end, we build upon earlier work of ours [17], [18]
and adopt notions from viability theory [19] as follows: the
requirements imposed by the limited sensing are realized as a
set of hard inequality constraints w.r.t. the configuration vari-
ables, called viability constraints. The viability constraints
constitute a subset K of the configuration space, called the
viability set K of the system. System trajectories that always
belong into K are called viable, whereas those which either
start out of K, or escape K for some t > 0, immediately
violate the viability constraints and thus are not acceptable.

Then, the control objective is translated into designing
state feedback control laws so that the vehicles move in L−F
formation, while the resulting trajectories remain viable in
K. The control design is characterized as cooperative, in
the sense that the vehicles are not thought of as a pair of
one pursuer, one evader, with the latter trying to escape the
sensing area of the former, but on the contrary are controlled
so that each one always keeps its target visible in its sensing
area. The proposed control algorithms guarantee that the
system trajectories are (i) viable in K, i.e. that each vehicle
always maintains visibility w.r.t. its target while moving in
L−F fashion, as well as (ii) collision-free.

Compared to other relevant solutions on L−F formation
control for marine vehicles, our algorithms do not require
any communication or information exchange between the
vehicles regarding on their states; only the upper bounds of
the leader’s velocities are assumed to be a priori known to
the follower. In this way, the task is executed in a distributed
manner, with each vehicle taking care of converging to
a desired distance, while maintaining visibility with, its
target. Furthermore, our path planning and control algorithms
guarantee that inter-vehicle collisions are always avoided,
something which is often taken for granted in similar L−F
approaches. Compared to our previous work in [18], here we

extend our methodology, originally presented for agents with
unicycle kinematics, to underactuated marine vehicles, and
propose an alternative way of controlling L for maintaining
visibility with T. Finally, compared to [17], in this paper we
consider a multi-vehicle scenario and furthermore the effect
of non-vanishing, bounded external perturbations.

The paper is organized as follows: Section II provides
the modeling of the system and of the sensing constraints.
Section III includes the proposed control design for the
L−F formation, while its efficacy is demonstrated in Section
IV. Our conclusions and plans for future extensions are
summarized in Section V.

II. MATHEMATICAL MODELING

We consider the horizontal motion of (identical, for sim-
plicity) marine vehicles which have two back thrusters for
moving along the surge and the yaw degree-of-freedom
(d.o.f.), but no side (lateral) thruster for moving along the
sway d.o.f.. Following [20], the kinematics and dynamics
for the i vehicle are:

ẋi = ui cosψi − vi sinψi, (1a)
ẏi = ui sinψi + vi cosψi, (1b)

ψ̇i = ri, (1c)
muu̇i = mvviri +Xuui +Xu|u| |ui|ui + τui + wu, (1d)
mv v̇i = −muuiri + Yvvi + Yv|v| |vi| vi + wv, (1e)
mr ṙi = muvuivi +Nrri +Nr|r| |ri| ri + τri + wr, (1f)

where i ∈ {L,F}, ηi =
[
r>i ψi

]>
= [xi yi ψi]

> is the
pose vector w.r.t. a global frame G, ri = [xi yi]

> is the
position vector w.r.t. G, νi = [ui vi ri]

> is the vector of
linear and angular velocities w.r.t. the body-fixed frame Bi,
mu, mv , mr are the terms of the inertia matrix including
the added mass effect, muv = mu − mv , Xu, Yv , Nr are
linear drag terms, Xu|u|, Yv|v|, Nr|r| are nonlinear drag
terms, τi = [τui 0 τri]

> is the vector of control inputs,
and w = [wu wv wr]

> is the vector of bounded external
disturbances, such that |wu| ≤ wub, |wv| ≤ wvb, |wr| ≤ wrb.

Each vehicle i is localized w.r.t. objects which lie in
its sensing area, i.e. the position vectors rj = [xj yj ]

>,
j ∈ {0, 1} and the bearing angles φj ∈ [−a, a] are measured
(Fig. 1). Consequently, reliable pose feedback w.r.t. a target
of interest is available to each vehicle i if and only if |φj | ≤ a
and ‖rj‖ ≤ L, where L > 0 is the maximum effective range
and 2a > 0 is the effective angle-of-view. These constraints
define the closed subsets Kj of the configuration space,
given as Kj = {ηj | hjk(ηj) ≤ 0, j ∈ {0, 1}, k ∈ {1, 2}},
where hj1 = |φj | − a and hj2 = ‖rj‖ − L. Thus, for the
sensing system to be effective, the trajectories ηj(t) should
always evolve in the set K =

⋃
j Kj , called the viability set.

To describe the motion of L w.r.t. target T, the global
frame G is set on T; then the equations of motion for
L are given by (1), with ηL , η0. To describe the
motion of F w.r.t. the leader frame BL, take the position
vector r1 = [x1 y1]

> of F w.r.t. BL, defined as r1 =
R(−ψL) (rF − rL), and consider its time derivative as ṙ1 =



Ṙ(−ψL) (rF − rL) + R(−ψL) (ṙF − ṙL), where R(−ψL) =[
cos(−ψL) − sin(−ψL)
sin(−ψL) cos(−ψL)

]
=

[
cosψL sinψL
− sinψL cosψL

]
is the rotation

matrix of the frame BL w.r.t. frame G, and Ṙ(−ψL) =[
0 rL
−rL 0

]
R(−ψL). After some algebra one eventually gets:

ẋ1
ẏ1
β̇

=


cβ −sβ 0
sβ cβ 0
0 0 1



uF
vF
rF

+


−1 0 y1
0 −1 −x1
0 0 −1



uL
vL
rL

 ,
where the vector η1 = [x1 y1 β]

> comprises the position
r1 = [x1 y1]

> and orientation β of F w.r.t. frame BL, cβ
and sβ stand for cosβ and sinβ, respectively, while the
evolution of the velocities ui, vi, ri is governed by the
dynamic equations in (1). As expected, the motion of L can
be seen as a perturbation to the motion of F.

III. CONTROL DESIGN

Following common practice for this class of vehicles, we
first consider the subsystem Σ1i of kinematic equations (1a)-
(1c) augmented with the sway dynamics (1e) for each vehicle
i, and design virtual control laws γi1(·), γi2(·) for the linear
and the angular velocity, respectively. Then, a control law for
the actual control inputs τui, τri is designed via backstepping
and feedback linearization, so that the actual velocities ui,
ri track the virtual velocities γi1(·), γi2(·).

A. Control design for the Leader
1) Necessary and sufficient conditions for maintaining

visibility: In order to ensure that the trajectories η0(t) remain
into the set K0 for all t ≥ 0, one has to ensure that, at all
points of the boundary ∂K0, the system vector field points
into the interior of K0, so that the resulting solution is
brought back into K0 [19]. Thus, given that the constraints
h0k(·) : R3 → R are continuously differentiable functions,
one has thus to control the motion of L while ensuring that at
all points η̄0 on the boundary ∂K0 the following conditions
hold: ḣ0k(η̄0) = ∇h0k η̇0 < 0, for each k.

2) Path following: Building upon previous work of ours
we design a controller for the motion of L based on the
concept of reference dipolar vector fields.

A dipolar vector field F : R2 → R2 is described by:

F(r) = λ(p>r)r − p(r>r), (2)

where λ ≥ 2, p ∈ R2 and r = [x y]
> is the position

vector w.r.t. G. The main characteristic is that all its integral
lines converge to (0, 0), tangent to the direction ϕp =

atan2(py, px) of the vector p = [px py]
>. Then, picking

a vector p such that ϕp , ψd reduces the orientation
control design into forcing the vehicle to align with the
integral curves of F(·). We therefore define the following
reference dipolar vector field FL(·) for L, with analytic form
taken out of (2), where the vector r is substituted by the
position error vector re = [xe ye]

>, where re , r0 − r0d,
r0d = [x0d y0d]

> is the desired position for L, p , pL =[
pL
x pL

y

]>
and λ = 2:

FL
x = pL

x xe
2 − pL

x ye
2 + 2pL

y xeye, (3a)

FL
y = pL

y ye
2 − pL

y xe
2 + 2pL

x xeye. (3b)

Theorem 1: The position trajectories r0(t) of L converge
into a ball B(r0d, εL) around the desired position r0d under
the (virtual) control law

uL = −k1 sgn
(
p>L re

)
tanh(‖re‖), (4a)

rL = −k2(ψL − ϕ), (4b)

where k1, k2 > 0, ϕ = atan2(FL
y,F

L
x) is the orientation of

the vector field (3) at (xL, yL) w.r.t. G, and εL > 0 can be
made arbitrarily small.

Proof: In order to study the convergence of the position
trajectories r0(t) into a ball around the desired position we
think of the system ΣL 1 as decomposed into two subsystems
with different time scales, where the states z , [ψL vL]

>

constitute the boundary-layer (fast) system, and the states
x , [xL yL]

> constitute the reduced (slow) system. Then,
the closed-loop system ΣL 1 under the control law (4b) can
be written as a singular perturbation model by considering
the (small) parameter ε , 1

k2
, for k2 sufficiently large, as:

ẋL = uL cosψL − vL sinψL

ẏL = uL sinψL + vL cosψL

εψ̇L = −(ψL − ϕ)

εv̇L =
mu

mv
uL(ψL − ϕ) + ε

Yv
mv

vL + ε
Yv|v|

mv
|vL| vL + ε

wv
mv

.

The boundary-layer system has one isolated root: ψL = ϕ,
given for ε = 0. Let us take the error η = ψL − ϕ; then one
can easily verify that εdηdt = εψ̇L− εϕ̇ = −(ψL−ϕ)− εϕ̇⇒
dη
dτ , −η, where εdηdt = dη

dτ [21]. This implies that the vehicle
orientation ψL converges exponentially and at a very fast time
scale to the orientation ϕ of the reference vector field (3).

Let us now consider the candidate Lyapunov function V =
1
2 (xe

2 +ye
2) for the reduced (slow) subsystem, and take the

derivative of V along the system trajectories, evaluated at the
stable equilibrium η = 0 of the boundary-layer subsystem,
that is for ψL = ϕ:

V̇ = r>e

[
uL cosϕ−vL sinϕ
uL sinϕ+vL cosϕ

]
= r>e

[ cosϕ
sinϕ

]
uL + r>e

[− sinϕ
cosϕ

]
vL.

As expected, the evolution of V̇ depends on the unactuated
dynamics via the sway velocity vL. Since vL comes from the
control input ζ = uL rL, one can resort to an input-to-state
stability (ISS) argument to study its evolution, as follows:
Consider the candidate ISS-Lyapunov function Vv = 1

2vL
2

and take its time derivative

V̇v ≤ −
mu

mv
vLζ −

(
|Yv|
mv

vL
2 +
|Yv|v||
mv

|vL| vL
2 − |wv|

mv
|vL|
)
,

where Yv, Yv|v| < 0 and w(vL) = |Yv|
mv

vL
2 +

|Yv|v||
mv
|vL| vL

2−
|wv|
mv
|vL| is positive definite. Take θ ∈ (0, 1), then: V̇v ≤

−(1 − θ)w(vL), ∀vL : −mumv vLζ − θw(vL) ≤ 0. If the
control input ζ = uL rL is bounded, |ζ| ≤ ζb, then one
has V̇v ≤ −(1 − θ)w(vL), ∀|vL| : |Yv||vL| + |Yv|v|||vL|2 −
|wv| > mu

θ ζb. Then, the subsystem (1e) is ISS w.r.t. ζ
[21, Thm 4.19], which essentially expresses that for any
bounded input ζ = uL rL, the linear velocity vL(t) will be
ultimately bounded by a class K function of supt>0 |ζ(t)|. If



furthermore ζ(t) = uL(t) rL(t) converges to zero as t→∞,
then vL(t) converges to zero as well [21].

At this point, note that the control input rL , −k2η (4b)
is bounded and converges to zero at a very fast time scale,
since the orientation error η = 0 is the exponentially stable
equilibrium of the boundary-layer subsystem. This further
implies that, for sufficiently large k2, the sway velocity vL
is bounded and furthermore converges to zero very fast,
compared to the remaining slow dynamics of x(t), y(t).
Then, by substituting the control law (4a) into V̇ one gets:
V̇ ≤ −k1

∣∣r>e [ cosϕsinϕ

]∣∣ tanh(‖re‖) +γ1(|vL|), where γ1(·) is
some class K function of |vL|, and γ2(‖re‖) =

∣∣r>e [ cosϕsinϕ

]∣∣
is also of class K within the constrained set K0, due to
the geometry of the integral curves of the vector field FL(·).
Then, V is a local ISS Lyapunov function for the trajectories
re(t), which further implies that as vL → 0, then re(t)→ 0;
equivalently, as vL → 0, the trajectories r0(t) converge to
the desired position r0d.

In summary, the control law (4) forces L to align with
and flow along the vector field FL(·). The orientation ψL is
exponentially stable to the reference orientation ϕ(xL, yL),
which by design is equal to ϕp = atan2(pL

y, p
L
x) at the

desired position (x0d, y0d). The desired configurations η0d
such that L lies at a desired distance r0d with T centered
in the sensor field-of-view define the manifold ML ={
x0d

2 + y0d
2 = r0d

2, ψd = atan2(y0d, x0d) + sign(y0d)π
}

.
Thus, any vector pL such that ϕp = ψL d ∈ M creates a
reference vector field (3) with integral curves converging to
a position r0d ∈ M. However, not all vector fields defined
as above have integral curves such that, if used as reference,
guarantee that L will always maintain visibility with T. One
option which guarantees visibility maintenance is presented
in [18]. Nevertheless, forcing the vehicle to align with the
line-of-sight is, on the one hand, not the unique option,
while on the other hand, the line-of-sight orientation is not
in general an equilibrium point for (1).

3) Switching control for maintaining visibility: Here we
propose an alternative control design for ensuring that vis-
ibility is always maintained, which is similar to the one in
[17]. The idea is that as long as the state trajectories η0(t)
evolve away from the boundary ∂K0, the convergent control
law (4) guarantees that the vehicle converges to the desired
configuration η0d; if, on the other hand, the viability of the
system is at stake, i.e. if the system trajectories η0(t) reach
(close to) the boundary ∂K0, then switching to a different
control law which ensures that the system trajectories will
remain into K0 should occur. Consequently, for redesigning
the control law (4) so that the resulting trajectories η0(t) are
viable in K0 we define the continuous switching signals

σ0k(h0k) =


0, h0km < h0k ≤ 0,

h0k−h0kM

h0km−h0kM
, h0kM ≤ h0k ≤ h0km,

1, h0k < h0kM ,

where k ∈ {1, 2} and h0km, h0kM are a priori defined values
for the constraint functions h0k(·), and use the control law:

uL = σ0k(h0k)uL,conv + (1− σ0k(h0k))uL,viabk , (5a)
rL = σ0k(h0k)rL,conv + (1− σ0k(h0k))rL,viabk , (5b)

where uL,conv , rL,conv are the convergent control inputs
given by (4), and uL,viabk , rL,viabk are viable control laws,
chosen so that they satisfy the visibility conditions at all
points η̄0 of the boundary ∂K0. Consequently, if h0k(η̄0) =
0, then one has that σ0k(h0k) = 0, which ensures that the
control law given by (5) at η̄0 ∈ ∂K0 is viable, i.e. forces the
trajectories η0(t) to get back into the interior of K0, whereas
if σ0k(h0k) = 1, then system viability is not at stake, and
the convergent control law (4) applies under (5).

For picking viable control laws uL,viab1 , rL,viab1 for the
case that the first visibility constraint h01(·) is at stake,
one can go with the straightforward option of regulating the
orientation ψL to the angle φT = atan2(−y0,−x0), i.e. to
the orientation of the vector −η0 connecting L with T; in
this way, L is controlled so that T gets centered in the sensor
field-of-view. For doing so, one can set the angular velocity
controller equal to rL,viab1 = −kv(ψL − φT), and keep the
linear velocity controller (4a), see also the analysis in [17],
[18]. This choice of controllers is sufficient for ensuring that
the second constraint h02(·) is never violated as well.

Nevertheless, the control laws uL,viabk , rL,viabk are not
convergent into the ball B(r0d, εL), and therefore the control
law (5) does no longer ensure convergence of the position
trajectories r0(t) into B(r0d, εL). In this case, we relax the
requirement on the convergence into B(r0d, εL) where r0d
a single point, and rather consider the set CL ⊂ K0 as: CL ={
η0d ∈ K0

∣∣ x0d2 + y0d
2 = d2, ψ0d = atan2(−y0d,−x0d)

}
,

where d = ‖r0d‖ is the desired distance w.r.t. the target T.
L is then forced to converge to CL under the control law
(5), where uL,conv , rL,conv are given by (4), while

uL,viabk = −k1 sgn
(
p>L re

)
tanh(‖re‖), (6a)

rL,viabk = −kv(ψL − ψd), (6b)

where k1, kv > 0, re , r0 − r0d, r0d = [x0d y0d]
>, ψd =

φT = atan2(−y0,−x0), x0d = d cosψd, y0d = d sinψd.

B. Control design for the Follower
The control design for F falls in the same spirit; recall that

the position r1 = [x1 y1]
> and the orientation β w.r.t. the

leader frame BL are measured online, yet F can not access
the leader velocities uL(t), vL(t), rL(t) at each time instant
t. Nevertheless, L was shown to move with upper bounded
velocities, and therefore it is reasonable to assume that F has
a priori knowledge on the velocity bounds of L.

The task for F is set as to keep a fixed distance r1d w.r.t. L
with angle φ1 = 0, so that L is centered in the camera field-
of-view (f.o.v.). This requirement specifies a manifoldMF ={
x1d

2 + y1d
2 = r1d

2, ψF d = atan2(y1d, x1d) + sign(y1d)π
}

of desired configurations for F.
Therefore, the control objective for F reads as to converge

and remain into a ball B(r1d, εF) of radius εF > 0 around a
desired position r1d ∈MF.



Theorem 2: The trajectories r1(t) = [x1(t) y1(t)]
> of F

enter and remain into a ball B(r1d, εF) around the desired
position r1d, under the (virtual) control law

uF = −k3 sgn(p>F re) tanh(‖re‖)− sgn(p>F re)|k1|, (7a)
rF = −k4(β − ϕ) + ϕ̇, (7b)

where k3, k4 > 0, re = r1−r1d, ϕ is the orientation of the
vector field FF(·) at (x1, y1), k1 is the upper bound of the
linear velocity of L. The proof follows the standard practice
also used in [18] and is omitted here for the interest of space.
Finally, the dynamic control inputs are defined as:

τui = muαi −mvvr −Xuu−Xu|u||u|u+ |wu|, (8a)
τri = mrβi −muvur −Nrr −Nr|r||r|r + |wr|, (8b)
αi = −ku(u− γi1(·)) + ∂γ1

∂ηi
η̇i, ku > 0, (8c)

βi = −kr(r − γi2(·)) + ∂γ2
∂ηi
η̇i, kr > 0. (8d)

where γi1(·), γi2(·) are the virtual linear and angular velocity,
respectively, for each vehicle i, given by (5), (7). It is easy
to verify that the tracking errors ui − γi1(·), ri − γi2(·) are
ISS and asymptotically converge to |wu|, |wr|, respectively.
The proof is omitted for the interest of space.

IV. SIMULATION RESULTS

The efficacy of the proposed control algorithm is demon-
strated through computer simulations. The vehicles initiate
at ηL(0) = [−0.9 0.4 0]

> and ηF(0) =
[
−0.9 0 π

2

]>
, so

that the target T, positioned at (0.3, 0) is visible to L.
For demonstrating the robustness of the algorithms against

bounded, non-vanishing disturbances, we consider two cases,
see Fig. 2 and Fig. 3. The model parameters have been
taken out of [22]. As expected, L moves to maintain a
desired distance and visibility w.r.t. T (Fig. 4(a), 5(a)), and F
maintains visibility and keeps a fixed distance w.r.t. L, while
also avoiding inter-vehicle collisions (Fig. 4(a), 4(b), 5(b),
5(c)). The control design for L allows the orientation ψL
to take values that are closer to the boundary h01(·) = 0,
compared to the orientation control design for F, which
aligns the vehicle along the line-of-sight w.r.t. L. For the
interest of space we have not plotted the evolution of the
constraint functions hj2(·) = ‖rj‖ − L ≤ 0, where L = 1.2
m; nevertheless it is easy to verify out of Fig. 4(b), 5(c) that
the values of hj2(·) always remain negative as well.

V. CONCLUSIONS

This paper presented a L−F formation control strategy
for underactuated marine vehicles with sensing and com-
munication limitations, which can be used for surveillance
of stationary targets in the presence of bounded, persistent
environmental disturbances. A cooperative formation control
scheme was developed based on concepts from viability
theory and on the notion of dipolar vector fields. The
efficacy of the proposed algorithm was demonstrated through
computer simulations. Future work can be towards extending
the methodology in the case of multiple moving targets
(evaders) and multiple vehicles (pursuers).

Fig. 2. The paths followed by the marine vehicles in the case of non-
vanishing, bounded external disturbances w.

Fig. 3. The paths followed by the marine vehicles in the case of non-
vanishing, bounded external disturbances −w.
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