RockFACE: Enhanced weathering by food and fuel crops under Free-Air Concentration Enrichment in the Midwest

David J. Beerling, Christopher M. Montes, Isabella Steely, Tom Reershemius, David P. Martin, Dimitar Z. Epihov, Noah J. Planavsky, Christopher T. Reinhard, Marya R. Matlin-Wainer, Boriana Kalderon-Asael, Jacob S. Jordan, Michael Masters, Isla Kantola, Chris Moller, Megan Allen, Rachael James, Evan DeLucia, Steven A. Banwart & Lisa Ainsworth

<u>RockFACE</u> is an innovative field trial using Free-Air Concentration Enrichment (FACE) technology to investigate the interactions between elevated CO_2 and enhanced weathering (EW) with important Midwest food and fuel crops under field conditions. Our goal is to investigate the potential for elevated atmospheric CO_2 to interact with crops, soils and rock grain biogeochemistry to affect EW, CO_2 removal (CDR) and nitrous oxide emissions. The trials were established in 2021 with eight fully instrumented full size (20-m diameter) FACE rings (four at 600 ppm CO_2 , four at ~420 ppm CO_2). Each ring is divided into an EW treatment zone (40t/ha crushed Pioneer Valley basalt), and a control zone (no rock dust) separated by a 2m buffer zone. First year trial results for maize gave initial EW CDR rates estimated using a soil-based mass balance <u>approach</u> of 9 ± 0.8 t CO_2 ha⁻¹ and 9.5 ± 0.7t CO_2 ha⁻¹ in elevated CO_2 and ambient CO_2 rings, respectively, following the unusually dry summer 2023 conditions. The marginally lower CDR rate in elevated CO_2 may reflect a crop- CO_2 feedback in which surface soils are drier due to the maize having a larger canopy with elevated CO_2 . Future trial years will assess the evolution of these crop- CO_2 feedbacks on EW and CDR with typical corn/soybean rotations for Midwest agriculture.

AGU 2023