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A B S T R A C T   

Estimating soil organic carbon (SOC) stocks of agricultural fields has a range of important applications from 
development of sustainable management practices to monitoring carbon stocks. There are many estimation 
strategies with the potential for more reliable estimates of SOC stock and more efficient use of soil sampling and 
analysis resources, especially by leveraging readily available auxiliary information such as remote sensing. 
However, concrete guidance for strategy selection is lacking. This study narrows this gap with a comparison of 
strategies for estimating deep SOC stock (0–60 cm) in a prototypical field. Using high density SOC stock mea-
surements and simulation, we built on past studies by 1) ex-ante evaluating a large number of strategy options, 2) 
using a Bayesian approach to quantify the uncertainty of the comparison, and 3) considering multiple Bayesian 
models to assess sensitivity to this modeling choice. We found that, using readily available auxiliary information, 
both balanced and stratified sampling offer substantial improvements over simple random sampling. The 
auxiliary information most important for this improvement is a Sentinel-2 SOC index = blue / (green × red), 
followed by the topographic wetness index. We found that these results are robust to the choice of mapping 
method, but that there is uncertainty in the magnitude of improvement. We recommend future studies imple-
ment this Bayesian approach for simulated ex-ante evaluation of SOC stock estimation strategies across more 
fields to investigate the generalizability of these findings.   

1. Introduction 

Estimating soil organic carbon (SOC) stock in agriculturally managed 
soils at the field scale has a range of important applications from 
development of sustainable management practices to monitoring carbon 
stocks. Such an estimation strategy entails two statistical steps: (1) a 
sampling design selects locations at which to take measurements, and 
(2) an estimator combines those sample measurements to estimate mean 
SOC stock across the field. Which strategy should we use? In this study 
we focus on probability-based sampling designs (e.g. stratified sam-
pling) with design-unbiased estimators (e.g. inverse probability- 
weighted mean) since these are preferred for spatial mean estimation 
(Brus and de Gruijter, 1997; Brus, 2021) and are required by various 

SOC stock monitoring protocols (Oldfield et al., 2021). The baseline 
estimation strategy is simple random sampling with the sample mean 
estimator. 

Stratified sampling, i.e. dividing the field into areas of similar 
characteristics, is often recommended because it can lead to more effi-
cient estimation of mean SOC stock (de Gruijter et al., 2006; Oldfield 
et al., 2021). However, several choices must be made to design a strat-
ification, e.g. which variables to stratify and into how many strata. 
Guidance for these choices remains qualitative and quantitative evi-
dence for the benefits of stratified sampling and how these benefits 
might depend on these choices is lacking (Oldfield et al., 2021). A 
promising probability sampling design that also takes advantage of 
auxiliary information is balanced sampling (Deville and Tillé, 2004). 
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Balanced sampling does not require designing an intermediate stratifi-
cation which can both improve performance and reduce the number of 
choices requiring guidance. 

However, there is a knowledge gap about the performance of these 
strategies for estimating mean SOC stock in agricultural fields. Recently, 
Lawrence et al. (2020) identified just one study (Mallarino and Wittry, 
2004) evaluating stratified sampling for estimating mean soil organic 
matter (SOM) in agricultural fields, and zero studies for mean SOC stock. 
De Gruijter et al. (2016) validated a stratified sampling design for mean 
SOC stock. However, because their study site was a 2083 ha farm and 
their stratification relied on a previous SOC stock evaluation with soil 
sampling, their findings are not directly relevant to us. Another study 
validating strategies for mean SOC stock estimation is Brus (2015), 
though it was at the district level in Ethiopia. Altogether, data on the 
performance of strategies to estimate mean SOC stock in agricultural 
fields is lacking. 

To fill this gap, we need to evaluate these estimation strategies in 
agricultural fields by estimating and comparing their performance. One 
conventional approach to evaluating estimation strategies is to imple-
ment each one in the field and estimate its performance ex post using 
variance formulas. A potentially more versatile and efficient method 
evaluates performance ex ante using simulation. First, a field is inten-
sively sampled to create an SOC stock map. Then different estimation 
strategies are simulated against the map and their estimates compared 
with the map’s mean SOC stock (Fig. 1. Uncertainty in the SOC stock 
map can be incorporated by repeating this process using many such 
maps. 

While ex-ante evaluation using simulation has proved a useful tool 
for evaluating mean SOC stock estimation strategies, most applications 
have ignored two important technical considerations. The first consid-
eration is propagating uncertainty in the reference map through the 
evaluation procedure to quantify uncertainty in the performance of 
quantification strategies and their comparison. This consideration has 
been previously addressed in the context of estimating mean nitrate 
content by using Bayesian methods (Hofman and Brus, 2021). The sec-
ond consideration is the sensitivity of the evaluation to the predictive 
mapping method used to generate the map. To address this 

consideration, our approach expands on Hofman and Brus (2021) by 
employing and comparing both geostatistical and machine learning 
methods for predictive mapping of SOC stock. 

The objective of this study is to demonstrate the use of ex-ante 
evaluation to compare different estimation strategies (simple random 
sampling, stratified sampling, and balanced sampling) in a prototypical 
agricultural field to fill the above knowledge gap and address the 
technical considerations. Specifically, we aim to answer the following 
two questions: (1) Which estimation strategy would perform best and 
which auxiliary information is most beneficial? (2) How much uncer-
tainty and sensitivity is there in the evaluation? We draw on high- 
density soil sampling and SOC stock measurement at a commercial 
field in central Illinois to address these questions. Importantly, we es-
timate deep (0 – 60 cm) SOC stocks because of evidence that lower 
depths play an important role in SOC stock dynamics (Tautges et al., 
2019). We discuss how future studies can build on our evaluation results 
to develop a knowledge base for guiding efforts to estimate mean SOC 
stock in agricultural fields. 

2. Review of estimation strategies and evaluation methods 

In this section we review strategies for estimating mean SOC stock 
(section 2.1) and methods for evaluating these strategies (section 2.2). 
Compared to other reviews of these topics (e.g., de Gruijter et al., 2006), 
ours has two distinctions. First, while de Gruijter et al. (2006) refer to 
the combined stages of a sampling design and estimator as a sampling 
strategy, we prefer the term estimation strategy to emphasize that the 
sampling design does not completely determine the estimator. Our re-
view highlights these as discrete choices. Second, we devote significant 
attention to what we call ex-ante evaluation. This method for evaluating 
estimation strategies has not to our knowledge received a careful review 
in the soil science literature, nor a direct comparison to the traditional 
alternative which we term ex-post evaluation. 

2.1. Estimation strategies 

We define an estimation strategy as the combination of two 

Fig. 1. Flowcharts of (A) mean SOC stock estimation strategies and (B) ex-ante evaluation of these strategies.  
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statistical steps: a sampling design and an estimator. 

2.1.1. Sampling designs 
A probability sampling design is one in which each point in the study 

area has a known and non-zero probability of being selected for mea-
surement. Probability sampling has the benefit of supporting robust 
estimation of the population mean (i.e. mean SOC stock) as described in 
the next subsection. For regulatory applications, an auxiliary benefit of 
randomized sampling locations is mitigation of fraud (de Gruijter et al., 
2016; Lawrence et al. 2020). We consider three probability sampling 
designs: simple random sampling (SRS), stratified sampling, and 
balanced sampling. SRS serves as our baseline. 

Stratified and balanced sampling have the potential to improve on 
SRS by incorporating auxiliary information (covariates) such as topog-
raphy and remote sensing into the selection of sample locations. In 
addition to choosing which auxiliary information to include, stratified 
sampling requires several further choices including: rescaling these 
covariates to make them comparable, an allocation of samples among 
the strata, and the number of strata (de Gruijter et al., 2006). While the 
traditional k-means approach to constructing a stratification only sup-
ports continuous covariates, there are other clustering algorithms that 
accommodate categorical covariates (Huang, 1998). 

Balanced sampling (Deville and Tillé, 2004; Brus, 2015) selects 
samples that are representative in the sense that the (inverse probability 
weighted) mean value of a covariate (e.g. slope) at the sample locations 
is equal to the mean value across the field. Balanced sampling has 
several advantages over stratified sampling. First, it can naturally 
incorporate categorical covariates. Second, we need not make the 
somewhat arbitrary choices listed above for constructing a stratification 
(Grafström and Schelin, 2014). One disadvantage of balanced samping is 
it may lead to less robust uncertainty quantification than simple or 
stratified sampling (see next section). 

2.1.2. Estimators 
Probability sampling designs yield a natural unbiased estimate of 

mean SOC stock, called the Horvitz-Thompson (HT) estimator in its most 
general formulation, which averages the measurements weighting each 
by the inverse of probability of inclusion in the sample. In the case of SRS 
and stratified sampling, the HT estimator is the usual sample mean and 
weighted sample mean, respectively. The HT estimator is design- 
unbiased so that the average estimate across many random samples of 
a given design is equal to the true mean SOC stock. 

One disadvantage of the HT estimator is that it does not take into 
account auxiliary information beyond what was used to inform the 
sampling design. Most monitoring protocols require estimators to be 
design-unbiased, so that model-based estimators accounting for auxil-
iary information are not permitted. An alternative to this is the so-called 
model-assisted estimators (Brus, 2000). 

In addition to providing a point (i.e. single-number) estimate of 
mean SOC stock, it is important for both scientific and regulatory ap-
plications to quantify the uncertainty of this estimate via a confidence 
interval (CI). For the probability design-based strategies we are 
considering, CIs are constructed by estimating the variance of the esti-
mator and then assuming a normal or Student-t distribution to calculate 
the CI. For simple and stratified sampling, this assumption is justified by 
the central limit theorem and variance estimation is design-unbiased. 
However, for balanced sampling it is not possible to have a design- 
based unbiased variance estimate (Grafström and Schelin, 2014) and 
so uncertainty quantification may be less robust. 

2.1.3. Measures of estimation strategy performance 
There are several ways of quantifying the performance of an esti-

mation strategy. For a given point estimate of mean SOC stock, the error 
is commonly quantified in terms of squared error, absolute error, and 
relative error. Since probability sampling designs are randomized, the 
estimate is also random and so are these error quantities. Thus, each 

estimation strategy has a corresponding distribution of squared error, 
relative error, etc. These are commonly summarized using a single 
number, e.g. mean squared error is the mean (or expected) squared error 
across many random samples. 

In this study our primary performance measure is the 95th percentile 
of the relative error distribution, which we simply call the relative error 
bound because with high probability (95%), the relative error of the 
estimate will be less than (bounded by) this number. This is a version of 
expanded measurement uncertainty as defined by ISO Guide 98 (ISO, 
2009) to be “a quantity defining an interval about the result of a mea-
surement that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the meas-
urand” (see also Hofman and Brus, 2021). 

We can also measure the performance of the estimated CI. A simple 
but important measure of CI performance is coverage, i.e. the proportion 
of CIs which contain the true value. Ideally the coverage of the 95% CI is 
95%. Another measure of CI performance that is common in SOC stock 
monitoring protocols (Oldfield et al., 2021) is the relative width of the 
95% CI. We note that when the point and variance estimates are design- 
unbiased (see section 2.1.2) then the expected relative width of the 95% 
CI is equal to the relative error bound.1 We prefer the relative error 
bound measure because its meaning does not rely on the design- 
unbiasedness of the estimate nor its variance. 

2.2. Evaluation methods 

Here we review two different approaches to validating estimation 
strategies, i.e. measuring and comparing their performance. The con-
ventional approach is ex-post evaluation, in which a strategy is imple-
mented in the field to estimate its performance. In this study we opt for 
ex-ante evaluation, in which SOC stock maps are created and then 
different strategies are simulated against these maps. 

2.2.1. Ex-post evaluation 
One way to evaluate an estimation strategy is by implementing it and 

estimating its estimation variance. There are standard formulas for 
estimating the variance of SRS and stratified sampling (de Gruijter et al., 
2006). Moreover, after stratified sampling we can estimate the precision 
that would have been obtained with SRS using the law of total variance 
(equation 7.16 of de Gruijter et al., 2006). These formulas for simple and 
stratified sampling are expected to be quite robust (owing to the central 
limit theorem) for large sample sizes. For example, de Gruijter et al. 
(2016) quantified SOC stocks in surface soils (0–7.5 cm depth) in ver-
tisols and alfisols across the 2083 ha University of Sydney Holtsbaum 
Agricultural Research (“Nowley”) Farm in Australia (Stockmann et al. 
2016) and estimated that their stratification had a standard error of 0.62 
Mg ha− 1. Using the law of total variance, they estimated that SRS would 
have a standard error of 0.87 Mg ha− 1, meaning that the stratification 
improved the relative error of the estimation by 29%. 

However, this ex-post approach to evaluation of simple and stratified 
estimation strategies has three important limitations. First, the 
maximum number of strategies that can be compared by implementing a 
single sampling design is two (e.g., the previous example): (1) imple-
menting a stratified design and (2) comparing it to SRS. We are unable to 
compare the implemented stratification with alternatives arising from 
different auxiliary data or even the same auxiliary data but some 
different stratifications (e.g. a different number of k-means clusters). 
Second, ex-post evaluation does not fully apply to strategies besides SRS 
and stratified sampling. The formulas for estimating the variance of 
balanced sampling estimates are not as firmly grounded as those for 

1 In this case they are both equal to t0.975σ/SOC where t0.975 is the 0.975 
quantile of the Student-t distribution with n-1 degrees of freedom, n is the 
sample size, σ is the standard deviation of the sampling distribution of the 
estimator, and SOC is the mean SOC stock. 
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simple or stratified sampling so we do not wish to rely on them for 
evaluation. Moreover, we are primarily interested in the relative error 
bound, which is only directly related to the estimator variance for nor-
mally distributed estimators. Third, ex-post evaluation does not quantify 
the uncertainty of the performance estimate or any comparison. For 
example, the standard error of 0.62 Mg ha− 1 estimated for the stratifi-
cation of de Gruijter et al. (2016) is not accompanied by an uncertainty 
interval. One could be constructed by assuming a normal distribution of 
SOC stock within each stratum and constructing CIs on the chi-squared 
distribution. This would give a very wide 95% CI of 0.37 to 1.78 Mg 
ha− 1. However, unlike the normality assumption used to justify the 
variance estimate itself, which is supported by the central limit theorem, 
a normality assumption here is less plausible. 

2.2.2. Ex-ante evaluation 
An alternative to ex-post evaluation is ex-ante evaluation in which an 

estimation strategy is simulated rather than implemented. If we had 
knowledge of the SOC stock at every location in the field then we could 
simulate an estimation strategy by repeatedly generating random loca-
tions according to the sampling design, looking up the corresponding 
SOC stocks, and evaluating the estimator. Since we cannot (with current 
measurement technology) measure SOC stock at every location in the 
field, we approximate it using a digital SOC stock map. 

The fidelity of the SOC stock map is essential to the validity of ex- 
ante evaluation so we review several approaches to digital soil map-
ping and their consequences for ex-ante evaluation. One approach is to 
measure SOC stock at each pixel of a map. This was the approach of 
Mallarino and Wittry (2004), who used 0.2 ha pixel maps to ex-ante 
evaluate mean SOM estimation strategies in eight Iowa, USA fields. In 
each pixel they randomly selected an 80 m2 subplot from which they 
collected 20–24 vertical cores to a depth of 15 cm, which they 
composited and analyzed using the Walkley-Black method. The major 
limitation of this approach to digital soil mapping is that it does not 
capture any variability within each pixel, e.g. in this case on a scale less 
than 45 m. 

Short range variation can be incorporated into the SOC stock map 
using geostatistical simulation (Chilès and Delfiner, 2012). For example, 
Brus (2015) used a random forest model to generate their map from SOC 
stock measurements at convenient sample locations in three districts of 
Ethiopia. Importantly, independent predictions of SOC stock at each 
point in the field produced an SOC stock map with unrealistically low 
variability, and so normally distributed noise was added. An important 
limitation of both of these simulation approaches is that they do not 
account for uncertainty in the underlying measurements or predictions. 

Uncertainty in the SOC stock map can be incorporated into ex-ante 
evaluation by using a Bayesian model, as shown by Hofman and Brus 
(2021) in the context of nitrate estimation strategies. Instead of gener-
ating a single digital soil map, many maps are drawn from the posterior 
distribution of the Bayesian model. This collection of maps captures the 
uncertainty in the SOC stock map according to the model. For each map, 
we perform ex-ante evaluation of the estimation strategies under 
consideration. The result is that for each map we have a measure of 
estimation performance, e.g. relative error bound (section 2.3.3). 
Combining the maps, we obtain samples from the posterior distribution 
for the performance measure. These samples express our uncertainty in 
the performance of the estimation strategy due to our uncertainty in the 
SOC stock map. We can then summarize this distribution in various ways 
(e.g. the median and 95% CI). 

The Bayesian approach allows us to quantify the uncertainty in the 
performance measures of the estimation strategies. However, the un-
certainty is limited to the scope of the model. For example, if we model 
the relationship between SOC stock and topographic wetness index 
(TWI) as linear, the Bayesian approach only captures our uncertainty in 
the slope of this linear relationship, not in the possibility that the rela-
tionship is non-linear. In other words, the uncertainty may be mis-stated 
because the model is wrong. In order to investigate the sensitivity of our 

results to this latter possibility, we suggest simply performing ex-ante 
evaluation with multiple Bayesian models. 

3. Materials and methods 

3.1. Study site 

The Bondville site is a 34 ha field located in Champaign county, in 
central Illinois, USA. The field is mapped as five closely related soil se-
ries classified as Mollisols (USDA Soil Taxonomy) with textural classes of 
silt loam to silty clay loam (Fig. 2. According to SSURGO, the A horizon 
depths of these soils generally range 20 to 36 cm, with a pH 5.6–7.4, and 
SOC stock in the 0–50 cm profile of 98 (Wyanet) − 195 (Drummer) Mg 
ha− 1 (Soil Survey Staff). 

The field at Bondville has been managed using a soybean-maize 
rotation cropping system for 12+ years with no-till after soybean and 
conservation tillage after maize. This is a rain-fed agricultural system. In 
2020, soybean was planted and fertilized with 168 kg-N ha− 1 as mon-
oammonium phosphate 11–52-0 fertilizer, 168 kg-K ha− 1 as potassium 
chloride (0–0-60), and 4.5 t ha− 1 of soft lime before planting. Weeds 
were controlled using herbicides according to regional recommenda-
tions (Illinois Agronomy Handbook, 2017). There was a heavy presence 
of tall fescue (Festuca sp.) at the edges of the site and the grassed 
waterway in the middle of the field. The average monthly precipitation, 
maximum and minimum temperatures for the nearby (7 km) 
Champaign-Urbana Willard Airport station (USW00094870) in 2020 
were 7.7 cm, 17.3 and 5.8 ◦C, respectively (NOAA). Growing-season 
precipitation (April-Sept) in 2020 was 10.1 cm. 

3.2. SOC stocks and auxiliary data 

A set of reference SOC stock measurements were made as follows. On 
April 22, 2020, vertical core samples were taken to a depth of at least 60 
cm (and up to 100 cm) using a Giddings probe (Giddings machine 
company: Winsor, CO) mounted on an all terrain vehicle. Soils were 
sampled on a 35 m × 35 m grid, yielding 225 sampling locations within 
the cultivated area (Fig. 2. The cores were split into 0–30 cm and 30–60 
cm depths and homogenized by hand crumbling. Gravimetric water 
content was measured by drying 5–7 g of subsample at 100 ◦C for 24 h. 
The bulk density (BD) was obtained from dry weight of soil from each 
section (g) over volume of the segmented portion of the soil core (cm3). 
The samples were prepared and sent to a third-party lab to measure total 
soil carbon concentration by dry combustion method in a LECO CN828. 
For soils with pH > 7.2, inorganic carbon was estimated gravimetrically 
after addition of 1% HCl (Walthert et al., 2010). 

We collected the following auxiliary information (covariates) for the 
site (Fig. 3). From SSURGO we collected the map units and the gSSURGO 
estimate of 0–60 cm SOC stock for each map unit (obtained by linear 
interpolation of the 0–50 cm and 50–100 cm estimates). From the Na-
tional Elevation Dataset we collected elevation from which we derived 
three topographic covariates: slope, aspect, and TWI. We used northing 
and easting geographic coordinates (measured in meters from the SW 
corner of the site). Finally, we used an SOC Index (SOCI) defined as blue 
/ (green × red) (Thaler et al., 2019). We computed the index from a 
Sentinel-2 image retrieved on February 11, 2020, the most recent cloud 
free image available prior to planting. All auxiliary information was 
stored on a 10 m × 10 m raster grid (100 pixels ha− 1) so that the 
cultivated area of the field contained 3,085 pixels. These covariates were 
chosen because of their 1) potential to predict SOC, 2) recommendation 
in SOC monitoring protocol guidance (Oldfield et al., 2021), and 3) 
availability in public databases for every point of the field, a require-
ment for those sampling designs (stratified and balanced) and estima-
tion methods (model-assisted) that use covariates (section 2.1.2). 
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3.3. Evaluation methods 

We evaluated the three sampling designs (simple random sampling, 
stratified sampling, and balanced sampling) using ex-ante evaluation 
(section 2.2.2). For this purpose the study site was represented by the 
points at the centers of the raster pixels described in section 3.2, i.e. 
3,085 points on a 10 m × 10 m grid. A Bayesian model of SOC stock 
(described next) was used to simulate 200 SOC stock maps. For each 
sampling design and sample size (15, 20, 25, …, 50) we generated 
200 samples. Each of the 200 × 200 combinations of an SOC stock 
map and sample led to a point estimate and CI for mean SOC stock. 

The relative error was calculated for each of these estimates relative 
to the mean SOC stock of the corresponding map. For each map and 
sample design and sample size there were thus 200 relative errors, one 
for each sample. The relative error bound (see section 2.1.3) for this map 
was then calculated as the 95th percentile of these 200 values. There is 
thus a relative error bound for each of the 200 posterior maps. For each 

map and sample the estimated CI either does or does not cover the true 
mean SOC stock. For each map, CI coverage is calculated as the pro-
portion of the 200 estimated CIs (one for each sample) that covers the 
true mean SOC stock. 

Our primary model of SOC stock was kriging with external drift 
(KED), also known as universal kriging or regression kriging (Pebesma, 
2006). Because the SSURGO SOC stock is constant within each map unit, 
including both the map units and SSURGO SOC stock would lead to a 
singular regression design matrix, so we omitted the map unit in the KED 
model. We used an exponential variogram for the KED model. After 
standardizing the outcome and covariates, the following 
non-informative prior distributions were put on the egression co-
efficients β, variogram scale α, variogram nugget σ, and variogram range 
ρ : β ∼ Normal(0,2.5), α ∼ Exponential(1), σ ∼ Exponential(1),
ρ ∼ Uniform(a, b), where a = 22 m and b = 788 m are the minimum and 

maximum distances, respectively, between sample points in the refer-
ence SOC stock design (Fig. 2. The KED model was fit using the Markov 

Fig. 2. Regional map (left) of North Central USA showing cropland (USDA 2020 Cultivated Layer) in green and the Bondville site location and field map (right) with 
225 sample locations (black dots) used for SOC stock measurement, overlying, and soil map units (SSURGO). 

Fig. 3. Spatial patterns of covariates at Bondville site used for SOC stock estimation. Abbreviations: topographic wetness index (TWI), soil organic carbon index 
(SOCI), Soil Survey Geographic database (SSURGO). 
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Chain Monte Carlo software Stan (Carpenter et al., 2017). We generated 
4 chains with 1000 iterations each, saving the last 500 to produce 2000 
samples from the joint posterior parameter distribution. We assessed 
mixing using the criteria R̂ < 1.05 and neff /N > 0.001 where R̂ is the 
Gelman-Rubin convergence statistic and neff is the effective sample size 
(Gelman et al., 2013). 

For the purpose of sensitivity analysis, we considered an alternative 
SOC stock model using Bayesian Additive Regression Trees (BART) 
(Chipman et al., 2010). BART was chosen because, compared to KED, its 
modeling approach is substantially different which is desirable for the 
sensitivity analysis. The BART model consists of an ensemble of 
regression trees which are non-linear compared to the linear regression 
term of KED. The trees are constrained to be weak learners but unlike 
related machine learning methods such as Gradient Boosted Trees 
(Hastie et al., 2009), this is accomplished using a prior and likelihood to 
obtain a Bayesian statistical model. Unlike KED, which uses a spatially 
autocorrelated error term, BART has a spatially independent Gaussian 
error term. We included all of the available covariates (section 3.2) in 
the BART model and fit the model in R using the BART package (Spar-
apani et al., 2021). 

For both KED and BART models, we included a measurement error 
term. Following Hofman and Brus (2021), we assumed a normally 
distributed measurement error informed by the prior literature. Specif-
ically, we assumed a measurement standard deviation of 0.15 g cm− 3 for 
bulk density and 0.16% for SOC concentration. We assumed these errors 
were independent so that the measurement standard deviation for SOC 
stock was 1.44 Mg ha− 1. These errors were incorporated into the sim-
ulations by subtracting the corresponding variance from the nugget of 
the KED model and the Gaussian error of the BART model. 

For stratified designs we used the standard k-means clustering al-
gorithm (de Gruijter et al., 2006). As mentioned above (section 2.1.1) 
this does not accommodate categorical covariates so the SSURGO map 
unit was not included. For rescaling, our default method was z-score 
standardization, though we also considered percentile rank and min-
–max. In the absence of prior information on the variability of SOC stock 
within each stratum, we used proportional allocation of samples (de 
Gruijter et al., 2006). Since uncertainty quantification is essential, each 
stratum must have at least two samples. Thus the number of strata was 
set such that, under proportional allocation, each stratum received at 
least two samples. We also considered this with 3, 4, or 5 samples per 
stratum. For balanced sampling we included all covariates and gener-
ated samples in R using the BalancedSampling package (Grafström 
and Lisic, 2019). We also considered a model-assisted estimator in 
conjunction with SRS using generalized regression in the mase R 

package (McConville et al., 2018). 

4. Results 

The mean of the SOC stock measurements at the 225 locations was 
101.8 Mg ha− 1 with a standard deviation of 26.0 Mg ha− 1 (Figure S1). 
Before fitting models (section 4.1), we examined the relationship be-
tween these measurements and each of the covariates (Fig. 4). We found 
stronger linear relationships between measured SOC stock and SOCI (R2 

= 0.31), TWI (R2 = 0.21), SSURGO Map Unit (R2 = 0.17), and SSURGO 
SOC stock (R2 = 0.16). 

4.1. Bayesian SOC maps 

The Bayesian KED model was fit to the 225 measurements and their 
associated covariates. Both TWI and SOCI had significant relationships 
with SOC stock in the model (Fig. 5). The estimated spatial autocorre-
lation structure has a posterior nugget-to-sill ratio 0.83 (95% CI 0.39 to 
1.0) and range 430 m (95% CI 53 to 768). The median Bayesian R2 

(Gelman et al., 2019) of the KED model was 0.46. Note that we used a 
linear KED model as opposed to log-linear because the linear model 
outperformed the log-linear model in terms of mean absolute error 

Fig. 4. Relationship between SOC stock and each covariate. Abbreviations: topographic wetness index (TWI), soil organic carbon (SOC), SOC index (SOCI), Soil 
Survey Geographic database (SSURGO). 

Fig. 5. Estimated coefficients in the Bayesian Kriging with External Drift 
model, after standardizing predictors and outcome. Dots are posterior medians 
and error bars span posterior 50% and 95% intervals. Abbreviations: topo-
graphic wetness index (TWI), soil organic carbon (SOC), SOC index (SOCI), Soil 
Survey Geographic database (SSURGO). 
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under 10-fold cross validation (Figure S2). 
Maps of the posterior mean and standard deviation (summarizing 

our uncertainty in the SOC stock at each point) are shown in Fig. 6, along 
with posterior simulations of SOC stock which will be used to perform 
the ex-ante evaluation in the next section. Based on these posterior 
simulations, we estimated the mean SOC stock to 60 cm depth to be 
103.4 Mg ha− 1 (95% CI 100.8 to 106.6 Mg ha− 1). For comparison, 
previous studies of agricultural fields in the region have estimated mean 
SOC stock to 60 cm depth ranging from 91.0 Mg ha− 1 (Zuber et al., 
2015) to 172.6 Mg ha− 1 (Johnson et al., 2011) and the SSURGO estimate 
for the site (obtained by weighting an estimate for each map unit) is 
140.8 Mg ha− 1. The within-field standard deviation of SOC stock was 
26.8 Mg ha− 1 (95% CI 24.9 to 29.6) for a coefficient of variation of 26% 
(95% CI 24% to 29%). Thus the assumed measurement standard devi-
ation of 1.44 Mg ha− 1 (section 3.3) is very small compared to the within- 
field SOC stock standard deviation. 

To examine the sensitivity of the ex-ante evaluation to this choice of 
mapping model we also considered the BART model. While the BART 
model produced very similar estimates of mean SOC stock (Figure S3) 

and explained a similar proportion variance (R2 = 0.48), we observed a 
non-linear relationship between the BART and KED within-field pre-
dictions (Figure S4). This suggests that BART and KED give qualitatively 
different SOC stock maps so that comparing the results of ex-ante 
evaluation using the two models is a substantive test of sensitivity. 

4.2. Ex-ante evaluation 

The stratifications produced for various sample sizes are displayed in 
Figure S5. Estimates of the relative error performance of the three pri-
mary estimation strategies are displayed in Fig. 7A. For a given strategy 
and sample size, our evaluation technique produces samples of the 
distribution of the relative error bound (section 2.1.3), one for each 
posterior map (Fig. 6). We use the median of this distribution as a point 
estimate (i.e. a single number summary). Across the range of sample 
sizes, these point estimates show that balanced sampling outperforms 
stratified sampling outperforms simple random sampling. For each 
posterior map we also calculated the confidence interval coverage rate, 
and we found that the 95% intervals for all three strategies obtain very 

Fig. 6. Modeled SOC stock map (A) posterior mean, (B) posterior standard deviation, and (C) 4 (of 200) randomly chosen simulations used for ex-ante evaluation.  
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nearly the nominal 95% rate (Figure S6). Ex-ante evaluation results are 
qualitatively similar between the KED or BART SOC stock models (Fig. 8, 
suggesting little sensitivity to this choice. 

To quantify the difference in performance between any two strate-
gies at a given sample size, our evaluation again produces a distribution– 
now of the difference in relative error between the strategies. For each of 
the three pairs of comparisons between our three strategies, these dis-
tributions are shown in Fig. 7B using the median, 50% and 95% 

intervals. We see that while there is little uncertainty that balanced 
sampling outperforms SRS, there is more uncertainty in the comparison 
of stratified sampling and SRS, and greater uncertainty comparing 
balanced and stratified sampling. 

To assess the relative benefit of each of the covariates to the esti-
mation performance, we considered designs including just one of the 
covariates. Stratifying on the Sentinel-2 SOCI covariate alone performed 
about as well as stratifying on all of the covariates together (Fig. 9). At 

Fig. 7. (A) Relative error performance of estimation strategies with dots and vertical lines showing posterior medians and 50% CIs, respectively, and (B) relative 
difference in relative error between strategies, showing posterior median (black), 50% CI (dark gray), and 95% CI (light gray). 

Fig. 8. Sensitivity of relative error ex-ante evaluation results to choice of SOC stock map model. Dots and vertical lines show posterior median and 50% CI, 
respectively. 
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the same time, stratifying on easting performed about as well as no 
stratification, i.e. SRS. We also evaluated compact geographic stratifi-
cation, which performed better than SRS but fell short of the full strat-
ification (Figure S7). 

The performance of the stratified estimation strategy was not sensi-
tive to the minimum number of samples per stratum or the distance 
measure used on the covariates (Figures S8-S9). Covariates were also 
incorporated into an estimation strategy with SRS and a generalized 
regression model-assisted estimator. Compared to SRS with the Horvitz- 
Thompson estimator, the model-assisted estimator with all covariates 
was an improvement, and using lasso to select covariates improved 
performance further (Figure S10). However, neither of these performed 
as well as the strategies with stratified or balanced sampling strategies. 

5. Discussion and conclusions 

We found that both stratified and balanced sampling strategies offer 
potentially substantial improvements in relative error over the SRS 
baseline. This result is promising because our implementation of these 
strategies only used auxiliary information that was already collected in 
public databases (SSURGO and NED) and so can easily be adopted for 
future mean SOC stock estimation studies. Model-assisted estimation did 
not show as much of an improvement over the baseline, suggesting that 
auxiliary information is most effectively incorporated in the sampling 
design stage. Our stratification, which requires no preliminary field 
work, likely achieves a 15% improvement over SRS across a range of 
sample sizes (Fig. 9). As a function of the sample size n, relative error 
declines 

̅̅̅
n

√
. This 15% improvement for a fixed sample size is thus 

equivalent to 28% fewer samples needed to achieve a given relative 
error. 

Our sensitivity analysis found the results to be robust to the choice of 
SOC stock model, including both non-linear spatial autocorrelation 
(KED) and non-linear regression (BART). Because balanced sampling is 
predicated on a linear regression model, it is encouraging that balanced 
sampling performed well here. The Bayesian approach found substantial 
uncertainty in the performance of the estimation strategies and their 
comparison. This uncertainty stemmed from uncertainty in the SOC map 
models. To reduce the uncertainty about the performance benefits of 

these estimation strategies we would need to reduce the uncertainty of 
the SOC stock maps used in evaluation. There are several ways to ach-
ieve this. Incorporating additional auxiliary information (e.g. proximal 
or remote sensing) may be helpful. We may also Increase the sample size 
of the reference sampling design and improve the reference sampling 
design (e.g. an optimized model-based design instead of a grid). In 
particular, better mapping of short-range variation would be possible 
with more measurements made on distances less than the 35 m grid used 
here. In addition to reducing the uncertainty of the SOC stock maps it 
would be useful to use an auxiliary probability sample to obtain an in-
dependent estimate of the mean SOC stock and validate the maps 
themselves (Brus et al., 2011; Wadoux and Brus, 2021). 

To compare our results to the literature, note that we found that 
using SRS we would need approximately 1.0 samples per hectare to 
achieve a relative error bound of 10% (Fig. 7). This matches prior esti-
mates for SOM and SOC variability in similarly sized agricultural fields 
(Fig. 2 of Lawrence et al., 2020), suggesting that those estimates could 
be used successfully to select a sample size for SRS. As described in the 
introduction, there is a dearth of prior literature on the performance of 
stratified or balanced sampling in agricultural fields. The closest com-
parison is the stratification of an Australian farm (de Gruijter et al., 
2016; section 2.2.1) which achieved a 29% improvement over SRS 
(section 2.4.1) compared to our 15% improvement, though the former 
relied on an initial reconnaissance sampling effort with measurements of 
SOC stocks to build the stratification. 

The reliance on an imperfect ground truth map of SOC stock is a 
notable challenge to any ex-ante evaluation (section 2.2). Building on 
the methodology of past studies, we mitigated this challenge by exam-
ining the uncertainty and sensitivity of our results. However, both 
models as well as the stratified and balanced strategies shared the same 
set of covariates. This may have led to overestimating the performance 
of these strategies. We took steps to minimize potential overestimation 
of performance, including selecting a parsimonious set of covariates 
identified in the literature and using stochastic models so that the 
simulated maps were not deterministic functions of the covariates. Our 
evaluation of strategies employing a single covariate (Fig. 9) also shows 
that the performance benefit is not dependent on a complete coincidence 
of covariates. One way to avoid the issue is to use a ground truth model 

Fig. 9. Performance of stratified sampling with various single covariates compared to no covariates, i.e. simple random sampling (SRS), and all covariates. Each 
design uses 30 samples (1.0 samples ha− 1). Bars and lines display posterior median and standard deviation, respectively. 
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that does not employ covariates at all. We considered such a model 
(ordinary kriging) but it was a poor fit to the SOC stock measurements 
(Figure S2), undermining its utility for SOC stock mapping. With many 
more SOC stock measurements, the reliance on covariates for mapping 
SOC stock could be removed. 

Our results can be used to inform future studies or monitoring pro-
jects. Where there are insufficient resources for reconnaissance prior to 
constructing a sample design, our results suggest that the use of publicly 
available information in stratified or balanced sampling can still offer 
substantial benefits over SRS. These findings also apply indirectly to 
quantifying the change in mean SOC stock over time when using un-
paired samples (i.e. different sampling locations at different time 
points). However, the magnitude of the benefits of these sampling de-
signs may vary across sites and may be related to factors such as soil 
type. In order to test the external validity of our findings, they will need 
to be replicated in other fields. 
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