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Abstract By altering myriad aspects of leaf chemistry,

increasing concentrations of CO2 and O3 in the atmosphere

derived from human activities may fundamentally alter the

relationships between insect herbivores and plants. Because

exposure to elevated CO2 can alter the nutritional value of

leaves, some herbivores may increase consumption rates to

compensate. The effects of O3 on leaf nutritional quality are

less clear; however, increased senescence may also reduce

leaf quality for insect herbivores. Additionally, changes in

secondary chemistry and the microclimate of leaves may

render plants more susceptible to herbivory in elevated CO2

and O3. Damage to soybean (Glycine max L.) leaves and the

size and composition of the insect community in the plant

canopy were examined in large intact plots exposed to

elevated CO2 (*550 lmol mol-1) and elevated O3

(1.2*ambient) in a fully factorial design with a Soybean

Free Air Concentration Enrichment system (SoyFACE).

Leaf area removed by folivorous insects was estimated by

digital photography and insect surveys were conducted

during two consecutive growing seasons, 2003 and 2004.

Elevated CO2 alone and in combination with O3 increased

the number of insects and the amount of leaf area removed

by insect herbivores across feeding guilds. Exposure to

elevated CO2 significantly increased the number of western

corn rootworm (Diabrotica virgifera) adults (foliage

chewer) and soybean aphids (Aphis glycines; phloem fee-

der). No consistent effect of elevated O3 on herbivory or

insect population size was detected. Increased loss of leaf

area to herbivores was associated with increased carbon-to-

nitrogen ratio and leaf surface temperature. Soybean aphids

are invasive pests in North America and new to this eco-

system. Higher concentrations of CO2 in the atmosphere

may increase herbivory in the soybean agroecosystem,

particularly by recently introduced insect herbivores.

Keywords SoyFACE � Non-native pests � Leaf quality �
Herbivory

Introduction

The increase in atmospheric CO2 derived from the com-

bustion of fossil fuels and changes in land use (Forster et al.

2007) accelerates the rate of plant photosynthesis, often

causing an increase in plant productivity (Drake et al. 1997;

Ainsworth et al. 2002; Long et al. 2004), whereas the

increasing concentration of tropospheric O3 (Prather et al.

2001) typically has the opposite effect (Fuhrer 2003; Morgan

et al. 2003). Changes in the concentration of these gases in
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the troposphere also affect many aspects of leaf structure and

chemistry that indirectly affect productivity by changing the

relationship between plants and insect herbivores. The

magnitude and direction of these indirect effects vary widely

(Kopper et al. 2001; Percy et al. 2002; Fuhrer 2003; Kopper

and Lindroth 2003; Stiling et al. 2003). To date, only a few

experiments have examined how these elements of global

change alter the behavior of natural insect populations in

agricultural ecosystems (Fuhrer 2003). Understanding how

insect feeding behavior is altered by elevated CO2 and O3

will be important for predicting crop productivity as well as

identifying insect species likely to become pests in the future

(Herms et al. 1995; Baker et al. 2000).

Growth in elevated CO2 generally increases the carbon-

to-nitrogen ratio (C:N) of plant tissues (Lincoln et al. 1984;

Heagle et al. 1998; Rogers et al. 2004; Hamilton et al.

2005), reducing the nutritional quality for protein-limited

insects (Coviella and Trumble 1999). Insects may increase

their food intake to compensate for reduced leaf nitrogen

content (Coviella and Trumble 1999; Kopper et al. 2001;

Holton et al. 2003), although this is not always the case

(Kopper and Lindroth 2003; Knepp et al. 2005). Depending

on the species and its life stage, nitrogen may not be lim-

iting (Gratton and Denno 2003; Heisswolf et al. 2005), and

insects also may respond to other primary and secondary

compounds that change in elevated CO2 (Coviella and

Trumble 1999; Ziska et al. 2001; Agrell et al. 2005).

Because it reduces stomatal conductance, elevated CO2 also

increases canopy temperature (Rogers et al. 2004; Yo-

shimoto et al. 2005). Insect generation times are strongly

related to temperature (Bale et al. 2002) and rising canopy

temperature may shorten the generation time of many pests,

increasing the number of generations per season and further

exacerbating crop losses (Bale et al. 2002; Fuhrer 2003).

Depending on the dose and duration of exposure, ele-

vated O3 has been shown to increase or decrease

susceptibility to herbivores. By diverting assimilates away

from the synthesis of plant defenses, elevated O3 can

increase the susceptibility of plants to insect attack (Endress

and Post 1985; Chappelka et al. 1988; Sandermann et al.

1998; Long and Naidu 2002; Percy et al. 2002). In contrast,

O3 also may function as an abiotic elicitor of plant defenses

and possibly deter folivorous insects (Sandermann et al.

1998). When plants are exposed to both gases simulta-

neously, elevated CO2 reduces the effects of O3 on

photosynthesis (Herms et al. 1996; McKee et al. 2000;

Isebrands et al. 2001; Heagle et al. 2003). The combined

effect of these gases on leaf chemistry and insect perfor-

mance has been explored in aspen trees (Kopper et al. 2001;

Kopper and Lindroth 2003), but how these gases together

affect folivorous insects in an agro-ecosystem is unknown.

Although many invasive insects are tolerant of a wide

range of environmental conditions, elevated CO2 and the

accompanying increases in global temperatures may facili-

tate the spread of non-native insect pests, particularly in

northern and mid-latitudes (Pimentel et al. 2000; Strand

2000). Already, many ecosystems are affected by non-native

insects and at least 40% of insect pest species in agricultural

fields in the United States are non-indigenous (Pimentel

et al. 2000; Strand 2000; Bale et al. 2002). The absence of

natural enemies may contribute to the success of non-native

pests, but the vulnerability of agro-ecosystems is exacer-

bated by their lack of genetic diversity for resistance to

multiple stressors (Bale et al. 2002; Baker et al. 2005).

Currently, *$13.9 billion of the potential value of crops is

lost annually to non-native insect pests (Pimentel et al. 2000;

USDA 2005). This figure will likely rise in the future as trade

between the United States and countries with similar climate

such as China continues to increase (Baker et al. 2005).

The objective of this research was to quantify the effect of

elevated CO2 and O3, applied singly and in combination, on

insect abundance and the loss of leaf area to herbivores in an

intact soybean canopy. The Soybean Free Air Concentration

Enrichment (SoyFACE) experiment provides elevated CO2

and O3 over an intact soybean crop and unfettered access to

insect herbivores without altering other aspects of canopy

microenvironment (Long and Naidu 2002). Previously,

Hamilton et al. (2005) demonstrated that growth under ele-

vated CO2 increased herbivory of soybean by Japanese

beetles (Popillia japonica), and increased damage to foliage

was associated with elevated concentrations of soluble

sugars that serve as powerful feeding stimulants. Using

similar methods, we investigated the effects of inter-annual

variation in insect populations on the amount of defoliation

in soybean grown in elevated CO2 and O3. We predicted that

leaf area consumed by herbivores in elevated CO2 would

increase in concert with an increase in leaf C:N. Because

both elevated CO2 and O3 may reduce the nutritional value of

leaves, we expected their effects on herbivory to be additive

when both gases are elevated simultaneously.

Materials and methods

Site description

This study was conducted at the SoyFACE facility at the

University of Illinois, Urbana-Champaign (40�020 N,

88�140 W, 228 m above sea level; www.soyface.uiuc.edu).

Each experimental plot was surrounded by pipes that

injected CO2 or O3 at a supersonic velocity from 300-lm

pores above the canopy (Miglietta et al. 2001). The target

CO2 concentration was 550 lmol mol-1; the actual aver-

age concentrations for 2003 and 2004 were 552 and

550 lmol mol-1, respectively, while the ambient plots

were *370 lmol mol-1 CO2. The average daily (8 h) O3
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concentration was 60 nmol mol-1, and the elevated O3

plots were fumigated to 20% above ambient levels. The

elevated CO2 plus elevated O3 plots received both gases

simultaneously. One-minute average CO2 and O3 were

±20% of the target for [ 95% of the time. The target

concentrations for CO2 and O3 represent the predicted

atmospheric levels by 2050 (Prather et al. 2001; Prentice

et al. 2001). A more detailed description of the SoyFACE

facility can be found in Dermody et al. (2006).

The experiment consisted of four randomized blocks

within a continuous crop of soybean. Each block contained

four 20-m diameter octagonal plots (total area 314 m2)

exposed to ambient air, elevated CO2, elevated O3 or ele-

vated CO2 plus elevated O3. Each block was replicated four

times. Soybean (Glycine max cv. 93B15, Pioneer Hi-Bred,

Johnston, IA, USA) was planted at 0.38-m row spacing in

each year. This variety is typical of those grown in com-

mercial production.

Leaf area removal

Leaf damage was measured in July and August of 2003 and

2004. The July measurements coincided with the expected

peak levels of Japanese beetle (Popillia japonica). The

August measurements coincided with peak levels of bean

leaf beetle (Cerotoma trifurcata) and soybean looper

(Pseudoplusia includens).

To estimate the loss of leaf area to herbivory, 100 plants

were randomly selected in each experimental plot and a

single leaf was randomly harvested from the top four tri-

foliates of each plant. Leaves were selected by first

randomly selecting the row, then the plant and then finally

the nodal position. Randomization was performed in the

field by choosing from a set of numbers from 1–30 for row

and plant, and from 1–3 for each leaflet on a soybean node.

Leaves were cut at the base and photographed against a

calibrated background with a high-resolution digital cam-

era (Coolpix 950; Nikon, Melville, NY, USA). The digital

photographs were analyzed for tissue lost to herbivory

using image analysis software (Scion Image, Beta Version

4.0.2; Scion Corp., Frederick, MD, USA). The size of the

leaf was measured and the area before damage was esti-

mated by reconstructing the perimeter. The amount of

damage was then converted to a percentage of the esti-

mated original leaf area.

Insect censuses

Insect censuses were conducted to identify species poten-

tially responsible for leaf damage. To minimize disturbance,

insect censuses were conducted two days prior to collecting

leaves for assessment of leaf area removal. A modified Allen

vacuum (Stihl Model BG 85 Blower, Stihl Inc. Virginia

Beach, VA, USA) was fitted with mesh bags (1.4 mm

diameter) and each plot was vacuumed for a total sampling

time of five minutes per plot. The mesh bags captured the

major leaf chewers at SoyFACE. The contents of the mesh

bags were freeze-dried for later identification. Similar

methods have been employed for other crops (Zalom et al.

1993).

During an outbreak in 2003 we quantified the density of

soybean aphids (Aphis glycines) on plants grown in

ambient and elevated CO2 and O3. In each experimental

plot, 50 leaves were selected randomly, using the same

method employed for measurement of herbivory (see

above), from the top two trifoliates and handled carefully

to avoid dislodging aphids. Leaves were taken immediately

to a field laboratory, where the number of aphids on a

randomly selected 2-cm2 plot on each leaf was counted,

with the condition that the midrib and edge of each leaf

were excluded from selection. Aphids were classified as

alate (winged), apterous (wingless), or dead. The majority

of aphids were actively feeding and apterous, indicating a

healthy reproducing population (Rice et al. 2005).

Leaf chemistry and temperature

To determine if leaf carbon and nitrogen levels were

altered by elevated CO2 or O3, 2-cm2 discs from six leaves

were sampled within two days of the measurements of area

loss. Leaves were chosen randomly using the same method

as those employed for leaf sampling, i.e. by first randomly

selecting the row, then the plant. The nodal position was

however kept constant between treatments. Randomization

was performed in the field by choosing from a set of

numbers from 1–30 for row and plant, and from 1–3 for

each leaflet on a soybean node. The leaf discs from each

experimental plot were dried, ground to a fine powder

using an automatic grinder (BioSpec products, Bartletts-

ville, Oklahoma, USA) and pooled. Leaf carbon and

nitrogen levels were determined with an elemental CHN

analyzer (ECS 4010, COSTECH Analytical, USA).

Leaf temperatures were measured in ambient and ele-

vated CO2 plots in 2004 with two non-contact digital

infrared thermometers (RadioShack, Fort Worth, Texas,

USA). The thermometers were cross-calibrated over non-

biological (metal and concrete) and biological (leaves)

surfaces. The surface temperature of 25 randomly selected

leaves at the top of the canopy was measured in each plot

by holding the thermometers 10 cm above the leaf surface;

each leaf was measured at two locations for a total of 50

individual leaf temperature measurements per plot. To

avoid confounding time with treatment, the measurement

of temperature in each ring was paired (e.g. an ambient plot

was measured at the same time as an elevated CO2 plot).

Measurements were performed in blocks. Measurements
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on the same leaf were averaged and the experimental plot

was treated as the independent replicate.

Statistical analysis

To fulfill the assumptions of ANOVA, the data on leaf area

removed by insects were square-root transformed before

analysis. Data were separated by year and analyses were

performed on the plot means; date and treatment were fixed

effects and blocks were included as a random component

(n = 4; SAS version 8; SAS Institute, Cary NC). A repe-

ated measure ANOVA (PROC MIXED) was used to test

for treatment effects on percentage leaf area removed by

insects. Values are presented as least squares means with

standard errors. The total number of insects and the num-

bers of individuals of the five main insect species (Japanese

beetles, potato leafhoppers, western corn rootworm, soy-

bean nodule fly and multicolored Asian lady beetle

(Harmonia axyridis) were analyzed in a mixed model

ANOVA with treatment and date as fixed effects and

blocks as a random component. Leaf carbon and nitrogen

contents were analyzed in a mixed model repeated mea-

sures ANOVA. A mixed model ANOVA (PROC MIXED;

SAS, The SAS Institute; Version 8.1, Cary, NC.) was used

to test for treatment effects on leaf temperature. Treatment

and day of measurement were fixed effects and blocks were

random effects. Post hoc linear contrasts were performed to

elucidate treatment effects within interaction terms. All

comparisons were made between treatments and the con-

trol. Given the limitation on sample size inherent in all

FACE experiments, we sought to avoid type II errors by

recording results significant at both P B 0.05 and at 0.1 as

in Hamilton et al. (2004) and Dermody et al. (2005).

Results

Exposure to elevated CO2 increased the area of soybean

leaves removed by insect herbivores in 2004 but not in

2003 (August 2003, ambient vs. CO2, F-stat = 0.5,

P B 0.47, n = 4, August 2004, ambient vs. CO2, F-

stat = 5.4, P B 0.1, n = 4, Fig. 1). No effect of elevated

O3 on leaf area removed was evident in either year

(P [ 0.1). There was, however, a significant interaction

between elevated CO2 and O3 in July 2004 (F-stat = 4.4,

P B 0.1, n = 4, Fig. 1). The amount of leaf area removed

was significantly greater for plants exposed simultaneously

to elevated CO2 plus elevated O3, but the absence of a main

effect of O3 suggests that this response was driven by

exposure to elevated CO2.

Increased foliar damage to plants exposed to elevated

CO2 in August 2004 corresponded with greater numbers of

insects (Fig. 2). Total numbers of insects were also higher

in elevated CO2 and CO2*O3 in August 2004. This result

was driven primarily by increases in the number of western

corn rootworms in elevated CO2 plots (ambient: 15 ± 11

rootworms; elevated CO2: 57 ± 13 rootworms, F-stat = 5,

P B 0.04, n = 4). There was no detectable effect of ele-

vated CO2 or elevated O3 on the size of the insect

population in 2003 (e.g. July, 2003, ambient: 17 ± 3

insects; elevated CO2: 18 ± 3 insects, F-stat = 0.1,

P B 0.9, n = 4; Fig. 2).

The composition of the insect community, including

folivores and predators, varied from July to August. Japa-

nese beetles (P. japonica) and potato leafhoppers (E.

fabae) were abundant in July (Fig. 2). By August the

numbers of individuals of these species had declined and

western corn rootworms became dominant. Soybean nod-

ule flies were present in July 2004 in all treatments (Fig. 2).

Other species present in August but in low numbers (B5

individuals per plot) included minute pirate bugs (Orius

tristicolor), soybean loopers (Pseudoplusia includens),

cucumber beetles (Diabrotica undecimpunctata howardii)

and bean leaf beetles (Cerotoma trifurcata). Of these,
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Fig. 1 Amount of leaf tissue removed by herbivores as a percentage

of the original leaf area, for soybean grown in ambient air (open bars),
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Japanese beetles and soybean loopers are folivores and

probably were responsible for the greatest proportion of

leaf area loss. Because of their low numbers, it is unlikely

that various predators contributed to observed differences

in leaf damage among the treatments.

During an outbreak in August 2003, soybean aphids

responded strongly to elevated CO2 but not to O3. Aphid

densities were almost twice as high on leaves in elevated

CO2 and CO2*O3 plots compared to leaves grown in

ambient air (Fig. 3).

In three out of four time periods, exposure to elevated

CO2 reduced the nitrogen content (F-stat = 22.8,

P B 0.01, n = 4) and increased the C:N of leaves relative

to those grown in ambient air (F-stat = 5.4, P B 0.03,

n = 4, Table 1). When CO2 was combined with O3 this

effect was dampened; there was a trend toward lower leaf

nitrogen and higher C:N in the CO2*O3 treatment but it

was statistically significant only in July 2004 (Table 1).

Apart from an isolated effect on C:N in August 2004,

elevated O3 had no detectable effect on these aspects of

leaf chemistry (Table 1).
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Table 1 N content (mg g-1), C content (mg g-1) and C:N ratio of

soybean leaves measured in mid-July and mid-August of 2003 and

2004.

Year Month Treat N (mg g-1) C (mg g-1) C: N

2003 July Ambient 57.77 (1.57) 446.73 (1.77) 7.75 (0.21)

CO2 53.62 (2.83) 451.96 (2.56) 8.50 (0.42)

O3 60.93 (2.85) 444.29 (1.14) 7.34 (0.34)

CO2*O3 55.17 (0.59) 448.54 (2.58) 8.13 (0.10)

August Ambient 58.64 (0.87) 459.93 (0.83) 7.85 (0.13)

CO2 52.51 (1.67) 456.36 (1.12) 8.72 (0.30)

O3 56.80 (0.46) 458.84 (1.71) 8.08 (0.05)

CO2*O3 55.39 (2.80) 461.22 (3.23) 8.39 (0.41)

2004 July Ambient 51.58 (0.87) 452.72 (5.26) 8.78 (0.12)

CO2 47.67 (1.23)* 453.48 (2.48) 9.53 (0.26)*

O3 49.67 (1.46) 442.14 (2.05) 8.92 (0.24)

CO2*O3 41.37 (2.11) 441.70 (9.07) 10.74 (0.48)

August Ambient 46.11 (2.44) 463.90 (1.22) 10.15 (0.57)

CO2 44.33 (0.70) 457.03 (5.42) 10.31 (0.15)

O3 51.18 (0.77) 459.97 (8.69) 8.98 (0.05)

CO2*O3 44.47 (2.1) 457.72 (5.21) 10.35 (0.44)

Soybean was grown in ambient air, 550 lmol mol-1 CO2, 1.29

ambient O3 and CO2*O3. Leaf discs were sampled from the same

section of the canopy in which herbivory was surveyed. Leaves were

sampled within two days of photographing the leaf area removal by

herbivores. The least squared means of 4 experimental plots are

presented with standard error of the mean in parentheses. Significant

differences (P B 0.05) between elevated CO2 or O3 or CO2*O3 and

ambient air are in bold, * indicates differences significant at P B 0.1
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With the exception of August, when senescence of the

soybean canopy was more advanced in the ambient plots

(Dermody et al. 2006), and July 8th, exposure to elevated

CO2 increased leaf temperature (F-stat = 25.1, P B 0.01,

n = 4, Fig. 4). The average increase was *1�C across all

measurement dates.

Discussion

In August 2004, plants grown under elevated CO2 had

significantly more leaf damage and in 2003 the populations

of chewing insects and phloem-feeding aphids were greater

than for plants grown in ambient air (Figs. 1 and 2). In the

year prior to this study, Hamilton et al. (2005) also

observed a substantial increase in leaf damage caused by

greater numbers of Japanese beetles in these same ele-

vated-CO2 plots. Taken together, these results suggest that

future increases in atmospheric CO2 will increase the

susceptibility of soybean to insect pests. However, in a cool

and wet July 2004, the total number of insects was reduced

by growth in elevated CO2, indicating how climate vari-

ability may complicate any predictions of the effects of

elevated CO2 and O3 on insect pests. Damage to soybean

foliage was caused primarily by increased populations of

non-indigenous insects (e.g. Japanese beetles and soybean

aphid) that have only recently appeared in Midwest fields

(Potter and Held 2002; Ragsdale et al. 2004; Rutledge

et al. 2004). The spread of invasive pests is an increasingly

important threat to agro-ecosystems, and the increased

abundance of these species on plants grown under elevated

CO2 suggests that these two elements of global change may

act synergistically to reduce crop yields in the future.

Growth in elevated CO2 changes many facets of plant

metabolism that potentially alter the feeding behaviour of

insects. In this study, increased numbers of insects and leaf

area loss to herbivory were associated with greater leaf C:N

in elevated CO2 (Table 1, Figs. 1 and 2). Most phytopha-

gous insects are limited by nitrogen and greater C:N may

have stimulated herbivory. Additionally, nitrogen metabo-

lite pools can change following exposure to elevated CO2

(Stitt and Krapp 1999); for instance Ainsworth et al. (2007)

measured decreased levels of ureides, specifically allantoin

in developing leaves growing in elevated CO2 at Soy-

FACE. As a storage form of N, allantoin is not an optimal

N source for folivourous insects on soybean (Wilson and

Stinner 1984), so it is possible that increased susceptibility

of leaves to herbivory in elevated CO2 reflected a prefer-

ence of insects for these lower ureide levels. The

nutritional requirements of insects differ depending on life

stage, with actively growing larval forms often limited by

nitrogen and reproducing adults limited by energy sources

(Cloutier et al. 2000; Jacob and Evans 2000; Kopper et al.

2001; Wheeler 2003; Scheirs et al. 2004). As reproductive

adults, Japanese beetles and western corn rootworm may

respond more strongly to the substantial increase in soluble

carbohydrates evident in soybean leaves grown under ele-

vated CO2 (Hamilton et al. 2005). Insect herbivores also

may have responded to changes in leaf secondary com-

pounds in plants grown in elevated CO2. Specifically,

increased lifespan and fecundity of Japanese beetles are

associated with higher levels of individual flavonols

(quercetin and kaempferol) that have potent antioxidant

properties (B.F. O’Neill, unpublished), as well as with

reduced levels of defensive protease inhibitors (Zavala

et al. 2008) in leaves grown under elevated CO2. The rel-

ative contribution of changes in primary versus secondary

metabolism on herbivory of soybean under elevated CO2 is

not yet known.

Chronic exposure to O3 did not affect the susceptibility

of soybeans to herbivory (Fig. 1). Growth in elevated O3

induces many biochemical changes in leaves, including

multiple defence pathways; however, these effects are

strongest in older leaves that develop at high levels of O3

(Reid and Fiscus 1998; Sandermann et al. 1998; Booker

et al. 2005; Riikonen et al. 2005). Many herbivorous

insects preferentially feed on young upper canopy leaves

(Bale et al. 2002; Potter and Held 2002), which show few

symptoms of O3 damage after chronic exposure (Ewert and

Porter 2000; Morgan et al. 2004). This phenomenon may

explain why our results contrast with those of Endress and

Post (1985) and Chappelka et al. (1988), who, in closed

systems and with acute exposure, found that leaf area
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Fig. 4 Mean temperature of leaf surfaces in a soybean canopy grown

in ambient air (open bars) and 550 lmol mol-1 CO2 (black bars).

Leaf temperature was measured between 11 am and 2 pm on June

30th, July 8th, July 16th, July 25th, July 30th and August 8th in 2004.

Each bar represents the least squared mean ± standard error (n = 4)

calculated from the repeated measures ANOVA. Significant differ-

ences (P B 0.05) between elevated CO2 or O3 and ambient air are

indicated by **, * indicates differences significant at P B 0.1
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removal increased for soybean foliage grown in elevated

O3. In previous experiments, the effects of elevated O3 on

leaf chemistry and thus on herbivory may have been

overestimated by artefacts associated with enclosed sys-

tems, e.g. unrealistically high concentrations of O3 at the

base of the canopy at the site of O3 injection into the

chamber (Long and Naidu 2002). FACE technology avoids

these artefacts and allows a chronic treatment, more rep-

resentative of the predicted scenario for major agricultural

areas such as the Midwest United States (Prather et al.

2001). However, the effects of O3 may be more severe in

agricultural areas heavily influenced by cities (Ashmore

et al. 2006). In aspen trees exposed to elevated CO2 and O3

in a FACE system, the effects of the treatments varied

depending on which insect herbivore was examined;

however, overall effects on leaf chemistry and insect per-

formance were relatively small (Kopper et al. 2001;

Lindroth et al. 2001; Kopper and Lindroth 2003).

The density of western corn rootworms was greater on

soybean plants grown in elevated CO2 relative to those in

ambient air (Fig. 2). Western corn rootworm is the most

important pest of corn in the United States, and, until

recently, annually rotating corn with soybean was the

principal management strategy to control its numbers

(Onstad et al. 2003). Some populations of western corn

rootworm circumvent this crop rotation strategy by ovi-

positing in soybean fields (Onstad et al. 2003; Crowder

et al. 2005), and nutritional stress increases the oviposition

rate of western corn rootworm (Mabry et al. 2004). Soy-

bean foliage is not an optimal food for western corn

rootworm, and higher C:N of soybeans in elevated CO2

relative to ambient air may have increased nutritional

stress, thereby increasing the number of eggs (Schroeder

et al. 2006). Although CO2 is an attractant for western corn

rootworm larvae in soil, the adult rootworms are not

attracted to CO2 (Bernklau and Bjostad 1998; Hammack

and Petroski 2004). Like many other folivorous insects,

western corn rootworms are attracted to plants and stimu-

lated to feed by green leaf volatiles (Hammack 2001; Pare

et al. 2005; Pophof et al. 2005). Greater production of

green leaf volatiles measured in soybeans grown in ele-

vated CO2 relative to ambient air (B.F. O’Neill,

unpublished) may have contributed to the higher numbers

of western corn rootworm. Elevated CO2 also increased the

emission of green leaf volatiles in other systems (Staudt

et al. 2001; Vuorinen et al. 2005).

During an outbreak in 2003, the number of aphids per

unit leaf area was considerably higher for soybeans grown

under elevated CO2 than in ambient air (Fig. 3). In addition

to altering leaf chemistry, growth under elevated CO2 may

have improved the canopy micro-environment for aphids.

By decreasing stomatal conductance, exposure to elevated

CO2 increases canopy temperature (Rogers et al. 2004),

which may in turn shorten the generation time of aphids

(Bezemer et al. 1998; Holopainen and Kainulainen 2004;

Newman 2004) and contribute to their higher densities on

soybeans. Although the effect varied across the season, we

measured an average increase of 1�C in leaf surface tem-

perature in 2004 (Fig. 4). The exception in August was

associated with a change in phenology; plants in the

ambient plots had initiated canopy senescence at this time

(Dermody et al. 2006) and presumably were operating at

lower conductances and hence had greater leaf tempera-

tures than those growing under elevated CO2. In this

system, continuous measurements over three growing

seasons revealed that leaf temperature was consistently

0.2�C higher during the day and 0.5�C higher at mid-day

under elevated CO2 (Bernacchi et al. 2006).

Nutritional factors also may have contributed to

increased aphid numbers in soybeans grown under elevated

CO2. Soybean aphids preferentially feed on young soybean

leaves (Ragsdale et al. 2004), and in elevated CO2 higher

maximum leaf area index and delayed senescence con-

tributed to an abundance of young leaf tissue (Dermody

et al. 2006). Aphids rely on free amino acids in phloem

fluid (Helden et al. 1994) and their response to elevated

CO2 may be governed by interactions with leaf nitrogen

(Newman et al. 2003). Leaf nitrogen content is high in

soybean (Dermody et al. 2006) and was probably sufficient

to allow continued growth of aphid populations, even with

increased leaf C:N in elevated CO2 (Hoover and Newman

2004).

Soybean aphids were first recorded in the United States

in 2000 (Wedburg 2000) and as newly invasive pests their

populations are not regulated by specialist predators.

However, soybean aphids are vulnerable to predation by

generalists, including multicolored Asian lady beetles and

minute pirate bugs (Fox et al. 2004). The multicolored

Asian lady beetle responds rapidly to increased populations

of soybean aphids and is a well known aphid predator in its

native range (Koch 2003; Mignault et al. 2006). At Soy-

FACE, Asian lady beetles co-occurred with soybean aphid,

although we were unable to detect any effects of elevated

CO2 and CO2*O3 on their populations. Asian lady beetles

are becoming an integral part of the pest management

strategy for soybean aphid (Rutledge et al. 2004), but the

higher density of aphids in the elevated CO2 plots suggests

that the feeding activity of Asian lady beetles may not

compensate for faster population growth rates of aphids in

elevated CO2 and CO2*O3. Aphid feeding can reduce

instantaneous rates of leaf level photosynthesis by as much

as 50% (Macedo et al. 2003) and can lower subsequent

soybean yields by as much as 28% (Wang et al. 1996).

Aphid outbreaks are highly episodic and difficult to com-

pare across years; however, in 2003, aphid densities were

highest when soybean was in the reproductive phase and at
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its most vulnerable to herbivore damage (Haile et al.

1998). If this pattern is repeated in the future, the pro-

ductivity gains expected in elevated CO2 and CO2*O3

(Morgan et al. 2005) may be reduced by aphid outbreaks.

A variety of factors, including increased leaf C:N and

warmer leaf surfaces, were associated with higher suscep-

tibility of soybean to herbivory in elevated CO2 and

CO2*O3. In addition to the effects on leaf area removal, the

fecundity of Japanese beetles that were fed on leaves

grown in elevated CO2 was greater than those that fed on

leaves grown under ambient conditions (O’Neill et al.

2008). Greater fecundity suggests that the rate of popula-

tion increase for this species will be even higher under

elevated CO2 than it is today. The effects of elevated CO2

on aphid densities were particularly notable, given the

capacity of this pest to reduce soybean yields (Wang et al.

1996; Rice et al. 2005). Predicting the response of insect

herbivores to elevated CO2 and O3 is difficult, and will

depend on feeding guild, life stage and adaptability of both

the plant and insect to changing atmospheric conditions

(Bezemer et al. 1998; Hughes and Bazzaz 2001; Newman

et al. 2003; Chen et al. 2004). Because we were unable to

quantify insect movement between plots and the role of

diseases and predators in driving population dynamics, our

results highlight the net effects of elevated CO2 and O3 on

leaf area loss to herbivory. It is possible that insects pref-

erentially move to elevated CO2 plots given their

preference for tissue grown in elevated CO2 (Hamilton

et al. 2005). Despite this limitation, our results suggest that

greater insect damage may be one factor contributing to

lower than expected yield gains when soybean is grown

under elevated CO2 in open-air FACE experiments com-

pared to partially enclosed chambers that reduce the

movement of pests (Long et al. 2006).
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