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Abstract Many physiological processes are spatially

variable across leaf surfaces. While maps of photo-

synthesis, stomatal conductance, gene expression,

water transport, and the production of reactive oxygen

species (ROS) for individual leaves are readily

obtained, analytical methods for quantifying spatial

heterogeneity and combining information gathered

from the same leaf but with different instruments are

not widely used. We present a novel application of

tools from the field of geographical imaging to the

multivariate analysis of physiological images. Proce-

dures for registration and resampling, cluster analysis,

and classification provide a general framework for the

analysis of spatially resolved physiological data. Two

experiments were conducted to illustrate the utility of

this approach. Quantitative analysis of images of

chlorophyll fluorescence and the production of ROS

following simultaneous exposure of soybean leaves to

atmospheric O3 and soybean mosaic virus revealed

that areas of the leaf where the operating quantum

efficiency of PSII was depressed also experienced an

accumulation of ROS. This correlation suggests a

causal relationship between oxidative stress and

inhibition of photosynthesis. Overlaying maps of leaf

surface temperature and chlorophyll fluorescence fol-

lowing a photoinhibition treatment indicated that areas

with low operating quantum efficiency of PSII also

experienced reduced stomatal conductance (high tem-

perature). While each of these experiments explored

the covariance of two processes by overlaying inde-

pendent images gathered with different instruments,

the same procedures can be used to analyze the

covariance of information from multiple images. The

application of tools from geographic image analysis to

physiological processes occurring over small spatial

scales will help reveal the mechanisms generating

spatial variation across leaves.

Keywords Chlorophyll fluorescence imaging �
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Introduction

Geographical imaging methods developed for the

analysis of satellite and other remote-sensing imagery

hold great promise for advancing our understanding of

plant physiological processes. These methods are tai-

lored for the assembly and quantitative analysis

of multiple images (layers) of the same landscape,

acquired by one or more imaging platforms in different

wavelengths of the electromagnetic spectrum. Infer-

ences about ground cover are made by examining the

statistical relationships among the spectral properties of

different data layers (Frank 1988). Similarly, plant

physiologists have the ability to examine multiple
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spatially-resolved physiological processes (Table 1)

occurring in the same leaf. For example, images of

stomatal conductance, non-photochemical quenching,

and Photosystem II operating efficiency can be

acquired simultaneously using chlorophyll fluorescence

and thermal imaging (Omasa and Takayama 2003;

Aldea et al. 2006; Tang et al. 2006), while the spatial

patterns of reactive oxygen species (ROS) can be

mapped using specific dyes (Fryer et al. 2002). Quan-

titative comparisons among layers are rare and may

reveal functional relationships between these pro-

cesses. Because the data and analytical approaches used

in plant physiology are similar to those used in remote

sensing of landscapes, the methods used in geographical

imaging (Swain and Davis 1978; Jensen 2005) are well

suited to the analysis of spatial maps of physiological

processes.

Photosynthesis and its component processes can be

highly variable across the surfaces of individual

leaves (Mott and Buckley 1998; Peak et al. 2004;

West et al. 2005). Development (Grassi and Magnani

2005), variation in microenvironment (Peak et al.

2004), and stomatal conductance (Haefner et al. 1997;

Prytz et al. 2003; West et al. 2005), as well as insect,

pathogen or mechanical damage (Bown et al. 2002;

Zangerl et al. 2002; Hall et al. 2004; Aldea et al.

2005; Gog et al. 2005) generated spatial heterogeneity

of photosynthesis.

Understanding the mechanisms contributing to

the spatial heterogeneity of photosynthesis has been

hampered by an inability to precisely map and

compare multiple physiological processes across leaf

surfaces. It is now possible to quantify the spatial

patterns of several different processes that may

contribute to variation in photosynthesis, including

the energy state of thylakoid membranes, the rate

of electron transport through the photosystems,

stomatal conductance, deployment of chemical

defenses, gene expression, and water transport

(Table 1). Although our ability to collect spatially

resolved information for individual physiological

processes is accelerating, simultaneous analysis of

these different layers of information is uncommon.

Studies of the spatial variation of photosynthesis

typically employ analysis of single two-dimensional

images (Nilsson 1980, 1995; Omasa and Takayama

2003; Smith et al. 2004). By quantifying the co-var-

iance of information from multiple layers of data

(Table 1) and using this new metadata set to iden-

tifying unique features, the use of quantitative image

analysis will advance understanding of the mecha-

nisms driving spatial variation in photosynthesis

within individual leaves.

Different types of spatial variation in physiological

processes across leaf surfaces require different ana-

lytical approaches. At one extreme is fine-grained

Table 1 Examples of physiological processes that can be monitored remotely in vivo with digital imaging instruments to provide
spatially resolved data

Parameter Physiological process Wavelength References

Photosynthesis (kinetic
measurements)

Fv/Fm Maximum quantum
efficiency of PSII

470/700 Genty et al. 1989; Rolfe and Scholes 1995;
Oxborough 2004

NPQ Non-photochemical energy
dissipation

470/700

FPSII Quantum yield of electron
transport

470/700

Thermal Transpiration, conductance None/>1200 Jones 1999; Omasa and Takayama 2003
Water and energy status MRI Water transport X-ray to

microwaves
Gussoni et al. 2001; Clearwater and Clark 2003

Tracers Water transport Depends on
tracer

Gaff and O-Ogola 1971; Canny 1990

Leaf pigments PRI Xanthophyll cycle <700/531,570 Ehrlich et al. 1994; McVicar and Jupp 1998;
Gamon and Surfus 1999NDVI Chlorophyll content 704,750/

750,704
Gene expression GFP Gene expression 485/509 Chalfie et al. 1994; Haseloff and Amos 1995;

Dixit et al. 2006RFP Gene expression 490,520,563/
583

BFP Gene expression UV/440
Defense compounds Dyes ROS (H2O2, radicals) Visible light Fryer et al. 2002

‘‘Wavelength’’ indicates typical excitation/measurement wavelength (nm). [MRI = magnetic resonance imaging; PRI = photochemical
reflectance index; NDVI = normalized difference vegetation index; GFP, BFP, RFP = green, blue, and, respectively, red florescent
protein]
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heterogeneity, characterized by many small, adjacent

areas with different properties (high coefficient of

variation). Variation in microenvironment (Eckstein

et al. 1996; Mott and Buckley 2000; West et al.

2005), exposure to ozone (Morgan et al. 2004; Fiscus

et al. 2005), localized changes in leaf hydraulic status

(Mott and Franks 2001), and intrinsic variation in

biochemical properties (Buckley et al. 2003) can

generate fine-grained heterogeneity. At the other

extreme is coarse-grained heterogeneity, character-

ized by large homogeneous areas with relatively

well-defined edges (low coefficient of variation within

a patch) followed by a step change to a new physi-

ological state. Physical damage to leaves by insects

often causes discrete areas of damage or coarse-

grained heterogeneity of photosynthesis (Bown et al.

2002; Zangerl et al. 2002; Aldea et al. 2005, 2006;

Tang et al. 2006).

The objective of this research was to apply the

quantitative methods for image analysis developed for

remote sensing (Swain and Davis 1978) to the spatial

patterns of physiological processes across leaf surfaces.

Two experiments were conducted to generate appro-

priate images. In the first experiment soybean plants

were exposed simultaneously to elevated atmospheric

ozone and soybean mosaic virus (SMV) to generate

fine-grained heterogeneity in photosynthetic efficiency

and related processes. In the second experiment a

photoinhibition treatment to a discrete portion of a

leaf was used to generate coarse-grained heterogene-

ity. For simplicity only two spatially resolved data sets

(two layers) were collected in each experiment. In

principle there is no limit to the number of data layers

that can be combined with geographic image analysis

techniques.

While specific methods will vary with the type of data

and the objectives of the analysis, the following steps

provide a general framework for the analysis of spa-

tially-resolved physiological data: (1) registration and

resampling, (2) cluster analysis, and (3) classification.

Registration and resampling are used to precisely align

and overlap images (spatial maps) of mechanistically

related physiological processes (e.g., ROS and chloro-

phyll fluorescence). Clustering relies on multivariate

statistics such as cluster analysis to identify groups of

pixels with similar profiles (i.e., classes) and to quantify

the covariance between maps of different physiological

processes. A classification algorithm (i.e., Bayesian

maximum likelihood) is then used to create a new

spatial map of the combined metadata by assigning all

the pixels in the image to one of the predefined classes.

These steps allow the spatially—resolved analysis of

statistical relationships between various leaf processes.

Methods

Fine-grained heterogeneity

To illustrate the analysis of fine-grain heterogeneity,

the spatial pattern of the production of ROS and

Photosystem II quantum operating efficiency (FPSII)

were measured on soybean leaves exposed to ozone

and virus infection. Soybeans (Glycine max L., cv.

Pioneer 93B15) were grown in 5-l pots in a growth

chamber with a 14-h photoperiod (300 lmol m–2 s–1

PFD, 25�C), and an 8-h dark period (20�C) as in Aldea

et al. (2005). Immediately after emergence, plants were

fumigated with ozone (O3) at ~80 nl l–1 for 8 h each

day, centered within the photoperiod (ozone generator

Model HTU-500AC, Azco Industries Ltd., Surrey, BC,

Canada; O3 analyzer Model 1008-RS, Dasibi Envi-

ronmental Corp., Glendale, CA). The first fully ex-

panded trifoliate was inoculated mechanically (Chen

et al. 2004), homogenously across the leaf surface, with

soybean mosaic virus (SMV).

The spatial pattern of Photosystem II operating

efficiency (FPSII) was quantified on attached leaves

(first trifoliate) with an imaging chlorophyll fluorome-

ter (Walz Imaging PAM, Walz GmbH, Effeltrich,

Germany) ca. 100 h after infection with SMV. At a

given incident irradiance and leaf absorptance, FPSII is

directly proportional to the rate of electron transport

through the Photosystem II reaction centers (Genty

et al. 1989; Rolfe and Scholes 1995). When other

electron sinks are inhibited (e.g., photorespiration) or

are insignificant (e.g., nitrate reduction) the rate of

electron transport through PS II is proportional to the

rate of carbon assimilation (Genty et al. 1989).

Leaves were measured under steady state, light-

adapted conditions (229 lmol m–2 s–1 PFD; 23 · 33 mm

imaged area). These irradiances were similar to the

light environment of the growth chamber (average

300 lmol m–2 s–1) and optimal for imaging chlorophyll

fluorescence using the Walz Imaging PAM at its highest

resolution. Each leaf was adapted to the new light

environment for 5 min. The light-adapted steady-state

fluorescence (F¢) was then recorded with the measuring

pulse from the fluorometer (Oxborough et al. 2000;

Oxborough 2005). An image of the maximum fluores-

cence (F¢m) was recorded during a one-second satu-

rating pulse (ca. 2,500 lmol m–2 s–1). Photosystem II

quantum operating efficiency (FPSII) was calculated as

the quotient (F¢m–F¢)/F¢m (Genty et al. 1989).

Following chlorophyll fluorescence imaging, the

leaves were harvested with a sharp razor blade while

holding their petiole under degassed water. They were

immediately vacuum-infiltrated with 10 mM nitroblue
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tetrazolium (NBT; 0.2% Tween 80), placed in a water

flask and returned to the growth chamber for 10 min.

The light-yellow NBT reacts with superoxide and

forms a dark-blue formazan precipitate (Fryer et al.

2002). Leaves were gently cleared of chlorophyll in

cold dimethyl sulfoxide (DMSO) and washed with

warm ethanol. The cleared leaves were photographed

with a digital camera using diffuse backlight. After

subtracting the non-formazan pixels (as in Fryer et al.

2002), the image was converted to grayscale and

inverted (by subtracting all pixel values in the image

from 255), such that the areas with most superoxide

(darkest formazan deposits) became the brightest pix-

els (Image Invert, Photoshop 7.0.1, Adobe Systems

Inc., San Jose, CA, USA).

Coarse-grained heterogeneity

To illustrate the analysis of coarse-grained heterogene-

ity, spatial variation in leaf temperature and chlorophyll

fluorescence were measured on photoinhibited soybean

leaves. Soybean plants were grown in growth chambers

as described above but without ozone. Some plants were

moved to a 4�C cold room (Gray et al. 2003) and the

topmost fully-expanded trifoliate was covered with a

layer of aluminum foil which had a window in the shape

of a capital letter ‘‘I’’. After 1 h at low temperature a

bright, cold light (ca. 2,500 lmol m–2 s–1 PFD) from a

halogen microscope lamp illuminated the leaf for an

additional 1 h. The aluminum foil was removed and

plants were returned to the growth chamber for

approximately 1 h before images were collected.

To quantify the spatial pattern of evapotranspira-

tion leaf surface temperature was imaged with an

infrared camera (ThermaCAM SC1000 Infrared

Camera, FLIR Systems, Portland, OR, USA; wave-

lengths: 3–5 lm). We assumed that the variation in

latent heat loss associated with evapotranspiration

was the dominant process controlling heterogeneity in

leaf surface temperature (Jones 1999; Omasa and

Takayama 2003). The adaxial surface of an attached

leaf was held perpendicular to the camera and in

front of a warmer background to improve contrast

(ca. 30�C; 150–200 mm behind the leaf). The thermal

camera was calibrated for air temperature and

humidity and leaf emissivity was assumed to be 1.

Temperature differences on the same image were

precise to ±0.07�C (instrument specifications).

The spatial patterns of PSII operating efficiency

(FPSII), ROS and leaf surface temperature were

quantified using the remote sensing image analysis

methods described by Swain and Davis (1978),

implemented in a readily available geographical

imaging software package (Erdas Imagine 8.6, Leica

Geosystems GIS & Mapping LLC, Atlanta, GA,

USA). These image analysis methods (Swain and

Davis 1978) are available in most geographic image

analysis or remote sensing software packages.

Because of the similarity of the data and analysis

needs, we were able to adapt these widely used image

analysis tools from the field of remote sensing to

the analysis of images representing physiological

processes.

Understanding image data

The quantitative analysis of spatial maps of physio-

logical processes (i.e., images) is based on the

assumption that pixel intensity values can be related to

a physiological process. Most commercially available

chlorophyll fluorescence imaging instruments (e.g.,

Imaging PAM, Walz GmbH, Effeltrich, Germany;

FluorImager, Technologica Ltd., Colchester, UK;

FluorCam, PSI, Brno, Czech Republic) produce

images with pixel values between 0 and 255 (unsigned

8-bit), which can be translated into meaningful physi-

ological data using a linear function. For example, a

spatial map of Photosystem II quantum operating

efficiency (FPSII) has pixel intensity values between 0

and 255, but the physiological range of this parameter

varies from a minimum value (MIN) to a maximum

(MAX), which can generally be determined within the

application used to obtain the image. The conversion

from pixel intensity to true value is:

UPSII ¼ pixel valuef g � MAX�MIN

255
þMIN ð1Þ

For final presentation of the data it may be desirable

to express the true value using Eq. 1 rather than rela-

tive pixel intensity values. However, for the purposes

of image analysis, maintaining the unsigned 8-bit for-

mat is recommended, as it ensures comparable vari-

ances among the layers of an image, which may

otherwise be on very different scales (e.g., FPSII and

temperature).

Image registration and resampling

Images collected with different instruments generally

have different pixel resolutions and sizes. For example,

images of FPSII acquired with the Walz Imaging PAM

are 640 by 480 pixels (307,200 pixels total); the camera

was held at a fixed distance and captures 23 by 33 mm

of the leaf surface (all pixels were square). This

translates to a pixel size of approximately 50 lm or 1–5
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plant cells per pixel. Thermal images (ThermaCAM

SC1000, FLIR Systems, Portland, OR) were 255 by 239

pixels, but the size of leaf surface captured depends on

the distance from the handheld camera to the leaf. The

thermal images we collected had pixel sizes ranging

from 100 lm to 600 lm. Images of ROS distribution

also were collected with a handheld digital camera,

resulting in pixel sizes from 20 lm to 150 lm,

depending on the distance from the camera to the leaf.

These discrepancies in resolution and pixel size

between images acquired with different instruments or

at different distances between the instruments and

the leaf can be resolved using a technique that

interchanges different spatial resolutions known as

resampling. In our case, one of the images also

required spatial adjustments for accurate alignment

with the other images of the same leaf, a process called

registration. Image resampling (or interpolation) is

often guided by a registration solution, such that the

resampled image will not only match the pixel resolu-

tion and size of the standard, but it will also be in

perfect alignment with it. For accurate analyses,

resampling must be performed using algorithms that

preserve the underlying data in an image (i.e., pixel

intensity).

Images of the same leaf (e.g., FPSII, leaf surface

temperature, ROS) were subjected to a first-degree

polynomial transformation. This registration technique

guided the rotation, translation, and linear stretch of

the smaller image (i.e., fewer pixels) such that it

accurately overlapped the larger image. The polyno-

mial solution was computed based on 8–15 reference

features visible in both images (e.g., intersections of

major veins, necrotic spots, small holes), which were

manually located in both images (Fig. 1a and b). It is

possible, though considerably more difficult to register

non-flat or wrinkled leaf surfaces by constructing flat

projections using high-degree polynomial or trigono-

metric functions. The accuracy of registration is best

examined visually (Fig. 1c) by checking the image

overlap around edges or obvious surface structures

such as veins. Some software packages (e.g., Erdas

Fig. 1 Graphic
representation of the
registration process of two
images with different
resolutions acquired with
different instruments. (a)
Detail of an image of the
Photosystem II quantum
operating efficiency (FPSII) of
a soybean leaf with caterpillar
damage; (b) detail of a
thermal image of the same
area of the leaf as shown in
(a). Both images contain red
registration points that were
manually placed in
corresponding areas on the
two images (points with the
same number should
coincide); these reference
points were used to register
the two images with respect to
each other. (c) After
registration, the FPSII image
was overlapped
(semitransparent for
illustration purposes only) on
top of the thermal image in a
virtual image stack. Miss-
aligned pixels (registration
errors) are indicated by the
white arrows
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Imagine) also provide statistical measures of the

accuracy of the registration by calculating residuals,

RMS errors, and a match score for each registration

reference point.

To prevent artifacts originating from pixel averag-

ing, the smaller image always was registered with

respect to the larger, such that all registered images

were larger than the original. The original images were

resampled using a nearest neighbor algorithm based on

the polynomial solution to the registration. Nearest

neighbor interpolation is the simplest method of image

resampling, which simply changes pixel size and does

not alter the underlying data (Swain and Davis 1978).

The intensity of a pixel in the new image is the inten-

sity of the nearest pixel of the original image. For

example, if an image is enlarged by 200%, one pixel

will become a 2 by 2 area of 4 pixels with the same

intensity as the original pixel. Most software uses this

type of interpolation to enlarge a digital image because

it does not change the data in the image and does not

introduce anti-aliasing errors (i.e., averaging of pixels

around edges). Other resampling techniques include

bilinear and bicubic convolution, where the pixel

intensity in the new image is calculated using linear or

cubic functions of the neighboring pixels in the original

(Swain and Davis 1978). These later resampling

methods produce a smoother appearance but may

introduce artifacts in the resampled image, evident as

halos or blurring near the edges of features and gen-

erally constitute unwanted deviations from the original

data.

Following registration and resampling, images of the

same leaf were overlaid as layers of a virtual image

stack (Figs. 2c and 3c). Virtual image stacks can be

thought of as three-dimensional matrices, where each

pixel has a physical location in 2-D space (matrix) and

a vertical set of spectral characteristics (i.e., intensity in

each layer). Analyzing such data entails the identifi-

cation of spatial patterns based on pixel values in all

layers of the image stack. The only limit to the number

of layers in an image is the amount of physical memory

on the computer. To simplify the description of this

method, only two layers were used for each analysis

described below.

Clustering algorithms and feature-space diagrams

The objective of analyzing multi-layer images is to

define discrete classes of pixels by minimizing in-class

variance and maximizing the differences between

classes; this multivariate statistical process is known as

clustering. The relationships of the data in different

layers of the image are then statistically examined

within and between the classes, thus uncovering

underlying trends in the data. Depending on the type

of heterogeneity on each image, an automated or

manual identification of the spectral variation can be

performed to isolate classes of pixels based on their set

of intensity values in all layers of the image (Swain and

Davis 1978). Features can be identified manually

(Fig. 2) by selecting areas of interest and allowing the

software package to assemble their characteristics

(mean, variance) into a class, or features can be iden-

tified automatically with an iterative self-organizing

clustering algorithm (Fig. 3; ISODATA, Erdas Imag-

ine 8.6, Leica Geosystems GIS & Mapping LLC,

Atlanta, GA, USA; Swain and Davis 1978). Within

each class it was possible to examine the covariance of

the data from the overlaid layers, thus allowing a sta-

tistical understanding of spatial patterns of various

processes mapped with different techniques and

instruments.

Whether pixel classes are defined manually or

automatically using clustering algorithms, their inter-

pretation is based on the analyst’s understanding of the

images being classified or the objects in the image. The

user must create enough classes to allow for all possible

types of area on the image. Since classes can be merged

but not split after they are created, generally it is better

to initially classify the image into more classes than

necessary. When classification algorithms are per-

formed on satellite imagery, the meaning of each class

is defined after ‘‘ground-proofing’’, which entails

inspecting the ground area corresponding to each pixel

class. Thus one or more pixel classes may be labeled as

forest ecosystem, cornfield, or parking lot. Similarly,

pixel classes isolated on spatial maps of physiological

processes across leaf surfaces are assigned meaning or

labels based on the area they correspond to on the

original images and the analyst’s understanding of the

leaf processes generating the underlying data. Thus

pixel classes on images of leaves may represent fungal

infections, holes, veins, areas of depressed photosyn-

thesis, or closed stomata.

To investigate the relationships between the data in

each layer of an image stack, pixel intensities in all

layers can be plotted against each other in two-

dimensional plots known as feature-space diagrams

(Figs. 2e and 3d). Pixel clusters can be plotted as

standard deviation ellipses around means in feature-

space diagrams, thus providing a visual representation

of the statistical analyses. The covariance between the

data layers can be examined within and between the

classes, thus affording insights into possible functional

relationships between the physiological processes

mapped in the layers of the image stack.
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Classification algorithms and the map image

Spatial relationships between pixel classes can be

examined by plotting their location using supervised

classification algorithms (e.g., minimum distance,

maximum likelihood; Swain and Davis 1978). For the

types of images used in plant physiology (Table 1),

Bayes maximum likelihood classification algorithms

(Swain and Davis 1978) are best suited (though com-

putationally intensive) to assign all the pixels in the

image stack into the pixel classes formed by clustering

algorithms. The location of the pixel classes can thus be

spatially mapped by assigning each pixel in the image

to a class using Bayes maximum likelihood decision

rules (Swain and Davis 1978). The result of this type of

analysis is a statistical representation of the spatial

patterns observed in an image, as well as the rela-

tionships between the data contained in all layers. To

investigate the accuracy of this type of classification, it

is possible to create maps of the probability for each

pixel to be assigned in its class. As with all Bayesian

statistics a priori probabilities (default = 1 for all

classes) can be used to reduce classification errors in

areas where multiple classes overlap, and where pixels

Fig. 2 The spatial patterns of Photosystem II quantum operating
efficiency (FPSII) and ROS, and a map image derived from
quantitative image analysis for a soybean leaf exposed to ozone
and SMV infection. (a) False color image of FPSII (false color
scale for variation in pixel intensity is illustrated to the right).
Values for FPSII were from 0.38 to 0.68; (b) False color image of
ROS distribution (false color scale to the right, bar = 40 mm);
(c) RG rendering of a two-layer image: FPSII layer (green band)
was stacked over the ROS map (red band) after registration.
Combinations of red and green appear as yellow and orange; (d)
An image map derived by a Bayes maximum likelihood
algorithm that classified all pixels of the image (c) into two
classes based on their intensity in the overlaid FPSII and ROS
layers. Green regions of the map represent areas with low ROS

and high PSII efficiency values, while the yellow areas had high
ROS and lower FPSII. Images (a), (c), and (d) are on the same
spatial scale and the bar in (a) represents 10 mm. (e) A feature-
space diagram plotting the intensities of all pixels (8-bit) in the
image stack (c). FPSII pixel intensity is plotted on the x-axis and
ROS on the y-axis. Ellipses (1-SD) around means (stars) for the
two clusters were overlaid on this plot to evaluate the spectral
properties of each class and their relationship to each other. This
type of analysis quantitatively shows that pixels with high ROS
values have lower FPSII than areas with low ROS intensity. The
color scale of feature-space plots represents the density of pixels
plotted in a particular location; the gradient from no pixels to
most pixels is illustrated by the color continuum: black, purple,
blue, cyan, yellow, and orange
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may be more likely to belong in a different class than

the one to which they were initially assigned.

Results and discussion

Analysis of fine-grained heterogeneity

Damage caused by exposure to ozone or viral infection

tends to produce fine-grained spatial heterogeneity

where small damaged areas are interspersed in healthy

tissue. The potential contribution of high levels of ROS

to reductions in photosynthesis following simultaneous

exposure to O3 and SMV was examined by overlaying

images of ROS and Photosystem II quantum operating

efficiency (FPSII; Fig. 2). Because of the low within-

patch covariance between the data in the image layers

and large between-patch differences, the results of

automated clustering were not biologically meaningful.

Therefore, biologically significant initiation points

were manually selected: three areas with low FPSII

(~2,400 pixels) were defined as one class of pixels,

while three with high FPSII (~2,400 pixels) constituted

another class. Upon examining these two classes in

feature-space it was evident that pixels with low FPSII

also had high ROS intensity, while pixels with higher

FPSII had lower intensity in the ROS layer (Fig. 2e).

Based on these manually defined classes, a Bayes

maximum likelihood classification mapped all the pix-

els in the image stack into two discreet areas, using the

pixel intensity values in the FPSII and ROS layers

(Fig. 2d). Instead of analyzing the data pixel by pixel,

we examined the relationship between the two classes

in the entire data set (Fig. 2e), one class with low FPSII

(mean ± SD, 59 ± 17 pixel intensity units, 8-bit scale)

and high ROS concentration (206 ± 28) and another

class with higher FPSII (120 ± 20) and lower ROS

(86 ± 51). A strong negative correlation was observed

between PSII operating efficiency and the concentra-

tion of superoxide radicals within this soybean leaf

(dotted line, Fig. 2e). As expected, the two different

Fig. 3 The spatial patterns of Photosystem II quantum operating
efficiency (FPSII) and leaf surface temperature, and a map image
derived from quantitative image analysis for a soybean leaf
exposed to bright light at 4�C. (a) False color image of FPSII

(false color scale for variation in pixel intensity is illustrated to
the right). Values for FPSII were from 0.39 to 0.76; (b) False color
image of leaf surface temperature. Temperature was from 24�C
to 29�C; (c) RG rendering of a two-layer image: thermal layer
(red band) was stacked over FPSII layer (green band) after
registration. Combinations of red and green appear as yellow and
orange; (d) A feature-space diagram plotting the intensities of all
pixels in the image stack (c). FPSII pixel intensity is plotted on
the x-axis and thermal on the y-axis. Ellipses (1-SD) around
means (stars) for the three clusters were overlaid on this plot to
evaluate the spectral properties of each class and their
relationship to each other. This analysis quantitatively shows
that pixels with high thermal values have lower FPSII than those
with lower thermal intensity. The color scale of feature-space
plots represents the density of pixels plotted in a particular
location; the gradient from no pixels to most pixels is illustrated
by the color continuum: black, purple, blue, cyan, yellow, and
orange. (e) Based on the signatures created by a clustering
algorithm (ISODATA), a Bayes maximum likelihood classifica-
tion placed all pixels of the image (c) into one of three classes.
Green regions of the map represent areas with low temperature
and high PSII efficiency values, while the red areas had high
temperature and lower FPSII. Transition areas with intermediate
values in both the FPSII and thermal layers are rendered in
yellow; (f) A plot of pixel intensities along the arrow in (c) for
the FPSII and thermal bands. This type of plot illustrates the
sharp transition from undamaged to damaged tissue in each layer
as well as the relationship between the FPSII and thermal data for
the 1-pixel wide line along the arrow. Dotted reference lines
indicate mean pixel intensity in each layer for the healthy areas
of the leaf. Images (a), (b), (c), and (e) are on the same spatial
scale and the bar in (a) represents 10 mm

c

168 Photosynth Res (2006) 90:161–172

123



classes (green and yellow, Fig. 2e) did not have sig-

nificant internal correlation between ROS concentra-

tion and FPSII (Pearson R < 0.01) and occupied similar

areas (High ROS area = 86 · 103 pixels; Low ROS

area = 76 · 103 pixels). Also, when the intensities of

all pixels in the two-layer image were plotted in fea-

ture-space (disregarding the two classes), FPSII and

ROS were negatively correlated (Pearson R = 0.34;

n = 195,349; Fig. 2e). These statistical relationships

may suggest that a threshold ROS concentration was

required for a measurable decrease in FPSII.

Whereas correlation does not automatically imply

causality, using our understanding of oxidative stress

mechanistic inferences can be made about the rela-

tionship between ROS concentration and depressions

of FPSII (Fryer et al. 2002, 2003; Ort and Baker 2002;

Zou et al. 2005). Areas of the leaf affected by the virus

responded with an oxidative burst (Heiser et al. 1998;

Hernandez et al. 2004) and the damage caused by ROS

to the cellular machinery may have depressed photo-

synthetic efficiency, as illustrated by the coincidence of

high ROS and low FPSII areas on the image, as well as

the overall negative trend of their respective relation-

ship.

Analysis of coarse-grained heterogeneity

Damage by fungal pathogens or by herbivorous insects

often causes coarse-grained heterogeneity character-

ized by large contiguous patches of lower photosyn-

thesis. This type of damage requires a different

analytical approach from the analysis of fine-scaled

heterogeneity. For the purposes of illustration, discrete

patches of low photosynthesis (i.e., coarse-grained

heterogeneity) were generated by exposing a defined

area of a leaf to a photoinhibition treatment of bright

light and chilling similar to Gray et al. (2003). Photo-

damage to PSII reaction centers and stomatal closure

may contribute to the observed reduction in FPSII

within areas exposed to light. To illustrate the rela-

tionship between stomatal conductance and the

depression of FPSII for leaves exposed to bright light at

low temperature, we registered and overlapped spatial

maps of FPSII and leaf surface temperature. A sharp

increase in photodamage from the areas that were kept

in the dark during the chilling treatment to the areas

exposed to the brightest light was observable as a state

change in FPSII and temperature (Fig. 3f). This

knowledge about the cause and spatial pattern of het-

erogeneity suggested that it can be effectively charac-

terized by an automated clustering algorithm into three

classes of pixels representing unaffected areas of the

leaf, areas that were strongly photoinhibited, and a

relatively small transition zone. Similar patterns of

heterogeneity may be caused in nature by physical or

insect damage to leaves (e.g., Aldea et al. 2005; Tang

et al. 2006). An automated clustering algorithm (ISO-

DATA) isolated this type of heterogeneity into three

classes, based on the variance of the data in the FPSII

and thermal layers. The classes were then spatially

mapped using Bayes maximum likelihood statistics (as

described above).

Insofar as leaf surface temperature (Fig. 3b) is pro-

portional to evapotranspiration rates (Jones 1999;

Omasa and Takayama 2003), the higher temperature

of areas exposed to bright light during the cold treat-

ment suggests stomatal closure. These areas of the leaf

also had lower quantum efficiency of Photosystem II

(Fig. 3d and f). Our analysis illustrates two large, dis-

crete patches on the leaf surface, one area with high

leaf temperature (closed stomata) and low FPSII

(area = 84�103 pixels) and another area with control

values of operating efficiency and low leaf temperature

(normal stomatal operation; area = 200 · 103 pixels).

The transition between these two larger clusters

occupied a small area (area = 19 · 103 pixels). Based

on all pixels in the image (n = 304,803), FPSII and

surface temperature were negatively correlated (R = –

0.44, P < 0.01). The negative correlation between FPSII

and surface temperature also was illustrated by the

three classes generated by ISODATA clustering

(Fig. 3d). The negative correlation between leaf tem-

perature and presumably stomatal conductance with

FPSII as well as the image map generated from this

relationship suggests that these processes were func-

tionally related following the photoinhibition treat-

ment.

Challenges and limitations

While providing a number of advantages, the appli-

cation of geographical imaging methods to research in

plant physiology is not without limitations. For

example, images acquired with very different resolu-

tions or images of non-flat leaves may prove difficult

to register accurately, especially if not enough

features are visible on both images for registration

reference points. Problems with registration may be

severe when analyzing fine-grained heterogeneity or

around edges of an image, but these errors are

quantifiable and most of the time correctable. Images

taken at an angle to the surface (as opposed to per-

pendicular) or images of non-flat surfaces such as

leaves severely infected by pathogens also may prove

challenging to accurately overlap even with complex

transformations.
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The multivariate statistics used for analysis of

multi-layered images have the same limitations and

sources of error as their classical analogues (McGarigal

et al. 2000). Cluster analysis is inefficient with highly

correlated data, but a principal component transfor-

mation may be performed to resolve this issue. Also,

classification algorithms (e.g., Bayesian maximum

likelihood) work best when the pixel classes are clearly

separated in multivariate space. Misclassified pixels

can be identified (see Methods) and the errors

(generally minor) corrected either manually or by

adjusting the a priori probabilities of the Bayesian

maximum likelihood algorithm.

Conclusions

To take advantage of the full potential of spatially-

resolved data, we now have the ability to statistically

investigate the relationships between physiological

processes with accurate spatial resolution, thus facili-

tating mechanistic inferences (Aldea et al. 2006).

Heterogeneity can thus be quantitatively investigated

on the basis of mechanistic, spatial, and functional

relationships between the many physiological pro-

cesses that can be measured using imaging techniques

(Table 1). The covariance of data in different maps of

physiological processes overlaid in an image stack can

be statistically examined by cluster analysis and

graphically in feature-space diagrams. Finally, classifi-

cation algorithms allow the creation of map images and

thus the examination of spatial relationships among

heterogeneity features on an image (e.g., area mea-

surements, shape, spatial distribution).

Whereas the mechanisms of photoinhibition are

fairly well understood (Gray et al. 2003), the link

between ROS and depression of photosynthetic effi-

ciency warrants further investigation. Using image

analysis tools we observed a statistical relationship

between the accumulation of ROS and reductions in

photosynthetic efficiency (FPSII) in leaves damaged

simultaneously by O3 and viral infection. There is

increasing evidence that many types of damage—from

mechanical, insect, and pathogen injuries to photo-

inhibition and cold stress—trigger a fast, potentially

self-destructive oxidative burst in the affected tissues

immediately following injury (Bi and Felton 1995;

Thordal-Christensen et al. 1997; Leon et al. 2001;

Bown et al. 2002; Gray et al. 2003; Hall et al. 2004;

Zou et al. 2005). This type of stress response includes

localized production of H2O2, superoxide radicals, and

other ROS (Bi and Felton 1995; Thordal-Christensen

et al. 1997; Repka 2002; Fryer et al. 2003) that impair

physiological processes or kill cells (Wright et al. 2000;

Chaerle et al. 2004). Using geographical imaging

methods we overlapped spatial maps of FPSII and ROS

and examined the covariance of the data in the two

spatially—resolved datasets. Areas with depressed

PSII operating efficiency corresponded to areas of high

ROS concentration (Fig. 2e) and there was a signifi-

cant overall negative covariance between FPSII and

ROS. This offered quantitative, spatial, and statistical

support for the hypothesis that stress-induced ROS

may lead to depressed photosynthesis.
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