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Stock Market

e Fact 1: Stock market is the aggregation of buyers and sellers (a
loose network of economic transactions) of stocks.
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Stock Market

* Fact 2: The asset prices represent the summarized expectation of
stocks from every players in the stock market.

* Any asset prices P; are expectations of the future.

* Efficient Market Theoryj[1] states a hypothesis in financial
economics that the asset prices P; reflect all available

information.
Stock prices at t Stock pricesatt + 1
log Py = 1081‘14 + IEPt+1TS(Pt+1)
Stochastic discount Expectation over |S|
factor information sources

[1] Malkiel, Burton G., and Eugene F. Fama. "Efficient capital markets: A review of theory and empirical work." The journal of Finance i

E 25.2 (1970): 383-417.
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Stock Market

e Fact 3: Stock in different domains exhibit multi-modal behaviors.
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Financial Forecasting

e Can we forecast the “circuit breaker” due to COVID-19?

Coronavirus impact on stock markets

E WHO declaring global emergency
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Challenges

* Challenge 1: Data Heterogeneity
* Q1: How to capture and incorporate various key factors into account which
might affect stock prices?

Efficient Market Theory
log Pt = logM + IEPt+1~S(Pt+1)
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Challenges

* Challenge 2: Task Heterogeneity

* Q2: How can we leverage the potentially noisy input data from various
domains to construct models with a satisfactory performance?
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Challenges

* Challenge 3: Data Interpretability
* Q3: How do we interpret the output results to the analysts by providing

the relevant clues?
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Clue 2: Important Timestamps
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Problem Definition

L3 VR
* Multi-Modality Multi-Variable Time Series L2 N N

L1 1 XN
* L1. Database-level: The given time series | Mbda,”“ AN "": N [?
database X = {Xy, ..., X;,} consists of n stocks. 1

I \ ' xln(l)“ i J [ -
* L2. Instance-level: Each observation X; € X is
composed of m modalities, i.e., X; =

|
|
I
x® x@ L xmy |
I
* L3. Modality-level: Each modality X( v) g X; |
|
|
|
|
!
!
\

consists of n(") variables, i.e., X( v) -
{x(v) (v) (v) ).

ll, l2' ------ ) ln(v)

* L4. Variable-level: Each variable x(f)

{x(v)(l) x(v)(Z) ...... (v) (T)} isa T length |

temporal Sequence / - gy EISIE \}([/




Problem Definition

* Multi-Modality Multi-Task Time Series Forecasting

* Given: (i) a multi-modality time series X = {X3, ..., X;;} fromtimet = 1 to
t = T; (i) the target signal Y = {yq, ..., y,,} fromtimet =1tot =T.

* Find: the prediction ¥ = {¥1, ..., Y} fromtimet =T+ 1tot =T + T".
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A Generic Framework Dandelion

* A Generic Joint Learning Framework for modeling Multi-
Modality Multi-Variable Time Series

> L1. Database-level

&~ L2. Instance-level _

EP We will present
==<< _ Dandelion in a
> L3. Modality-level bottom-up fashion
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) L4. Variable-level

Dandelion — Variable-Level

* Multivariate Forecasting Neural Network with Soft Attention.

* Assumption(i): Each observation X; for factor f at time 7,i.e.,
x;r(7), is assumed to have independent effect on y; (7).

e Soft attention mechanism
* Prediction: Vif (1) = ,Bi(]f) (T)hg)(‘[) @‘ W
* Hidden layer: hgf) (1) = tanh(thxi(})) (1) + by) ‘
* Attention: asc]) (r) = tanh(Wdfhg) (t) + by) h 4
gv) Attention
* Normalized Attention: ,Bi(}?) (1) = = alflv (Ti I ‘- puLy
i Zf 2t aif(T) A Bl 33

[1] Riemer, Matthew, et al. "Correcting forecasts with multifactor neural attention." International Conference on Machine Learning. i

E 2016. y




e :€ N 13. Modality-level

~
L4, Variable-level

Dandelion —Modality-Level

* Learning from multi-modality time series data.

* Observations|

* O1: Only a relatively small subset of variables are relevant to
making the prediction at a certain timestamp.

e 02: The different modalities is complementary, whereas the
variables within the same modality are redundant.

* Formulation
L(T) ZLY(T) + -Ls(T) + LC(T)

[1] Li, Jianboi, Jingrui He, and Yada Zhu. "HiMuV: Hierarchical framework for modeling multi-modality multi-resolution data." 2017 iy
E IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
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Dandelion — Instance-Level

* Fully-adaptive hierarchical multi-task learning.

* Intuition: different stocks from the same domain may
exhibit similar behaviors.

* EX: most healthcare stocks rely on the news from Food and
Drug Administration.

* Our Approach: Explore the domain relatedness via neural
network split and widen procedure[1,2] at each layer [.

e S1: Group the neurons with similar attention vectors into ¢ clusters
by spectral clustering.

e S2:Split layer [ into ¢ branches and back link to layer [ — 1.
 S3: Initialize each branches by directly cloning the original layer [.

[1] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. S. Feris. 2017. Fully-Adaptive Feature Sharing in Multi-Task Networks with i
E Applications in Person Attribute Classification. (2017).
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Dandelion —Instance-Level

* Fully-adaptive hierarchical multi-task learning.
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Dandelion — Database-Level © 1| [/

* End-User Oriented Interpretation via Trinity Attention.

* The interpretability of the predictive model is critical for
end users to understand and evaluate the model outputs.

* Interpretation over tasks, time and variables via
summarization function f,,,(:).
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Dandelion — An Overview

View 1

Input Data
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Experiment Setup

* Data set
e 396 Stocks of public US companies

* 4 modalities, including finance data, news, Google Trends and weather
data

e 4 stock sectors

* 14 years
Sector # of stocks Starting Ending
time stamp time stamp
Consumer Cyclical 90 5-6-2004 6-26-2018
Healthcare 105 5-3-2004 5-20-2018
Industrial 98 5-4-2004 6-27-2018
Technology 103 5-3-2004 6-25-2018




Experiment Setup

 Comparison Methods

ConEst: the Wall Street consensus estimates.
ARIMAX: an Auto Regressive Integrated Moving Average based method.

MVR: a multi-view regression approach that uses canonical correlation
analysis ) to make predictions via ridge regression..

Bi-LSTM: a bi-directional LSTM architecture.

MNA: a neural attention network that is designed for demand forecasting
using multi-modality event data.

Dandelion-M: a variation of Dandelion framework, which ignores the task
heterogeneity.

Dandelion-D: a variation of Dandelion framework, which ignores the data
heterogeneity but adopts the hierarchical multitask learning mechanism.




Experimental Results

e Sector-Level Prediction Performance

We compare prediction accuracy based on the median absolute deviation
(Med-abs).

« Med-abs = median(|X; — X|), where X = median(X)
* The lower the better!

|

Methods

Con. Cyc. [ Healthcare ] Indus. Tech. [ All
Industry Benchmark ConEst 0.01575 0.02247 0.01587 0.02133 0.01857
. ARIMAX 1.22291 1.95461 1.28935 2.08068 1.55457
Regression e o

MVR 0.48691 0.48922 0.51235 0.57606 0.51599

Neural Networks Bi-LSTM 0.93098 1.54184 0.97901 1.44376 1.19222

_ MNA o o = =061692= = = = 002251 — T = 60469 — L =0.02132 0.01960
_ our Appma:h; Dandelion 0.01430 (] 9.2%) | 0.02119 (| 5.7%) | 0.01560 (| 1.7%) | 0.01883 (| 11.7%) |T0.61731(] 6.8%)
( (v:s ConEst) Dandelion-M | 0.01582 (1 0.4%) | 0.02173 (| 3.2%) | 0.01579 (| 0.5%) | 0.02032 (| 4.8%) | 0.01806 (| 2.8%

L Dandelion-D | 0.01387 (| 11.9%) | 0.02127 (| 5.3%) | 0.01567 (| 1.3%) | 0.01970 (| 7.6%)

001753 (| 5.6%)

Table™s: Results of four sector companies. Dandelion and its variations (i.e., Dandelion-M, Dandellon-D) ach&v&sml‘fer Med-
abs values than all benchmaTk metheds-on-each-individual sectoraswell as the-overaH performance. (rhe lower the better)




Experimental Results

e Stock-Level Prediction Performance over Time.
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Figure 3: Individual prediction performance of six companies over time. Dandelion consistently performs better than all other
methods in most of the time. (The lower the better)




Experimental Results

* Profitability Performance
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Figure 4: Portfolio value across the testing period if starting
with $1. Dandelion outperforms all the benchmark portfo-
lios and increased more than 1.6 times in less than 3 years.
(The larger the better)




Experimental Results

* Data Interpretation
* Amgen: a biotechnology company
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* Learning from Multi-Modality Multi-Variable Time Series

Challenge #1: Data Heterogeneity (L4. and L3.)
Solution #1: Multi-modality multi-variable learning.

* Challenge #2: Task Heterogeneity (L2.)
* Solution #2: Fully-adaptive hierarchical multi-task learning. ==
* Challenge #3: Data Interpretation (L1.) ==
* Solution #3: Trinity attention.
* Results SR

(a) Attention heat map (the darker, the higher importance)

* Dandelion outperforms other baseline methods in flnanC|aI forecasting.

Dandelion outperforms other baseline methods in a case study of
profitability analysis.

* Dandelion provides interpretation w.r.t. tasks, variables, and time.




Back Up Slides

* Multi-Modality Multi-Task Time Series Forecasting

* Given: (i) a multi-modality time series X = {X3, ..., X;;} fromtimet = 1 to
t = T; (i) the target signal Y = {yq, ..., y,,} fromtimet =1tot =T.

* Find: the prediction ¥ = {¥1, ..., Y} fromtimet =T+ 1tot =T + T".
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