
A Local Algorithm for Structure-Preserving Graph Cut
Dawei Zhou

Arizona State University

dzhou23@asu.edu

Si Zhang

Arizona State University

szhan172@asu.edu

Mehmet Yigit Yildirim

Arizona State University

yigityildirim@asu.edu

Scott Alcorn

Early Warnings LLC.

scott.alcorn@earlywarning.com

Hanghang Tong

Arizona State University

hanghang.tong@asu.edu

Hasan Davulcu

Arizona State University

HasanDavulcu@asu.edu

Jingrui He
∗

Arizona State University

jingrui.he@asu.edu

ABSTRACT

Nowadays, large-scale graph data is being generated in a variety

of real-world applications, from social networks to co-authorship

networks, from protein-protein interaction networks to road traf-

fic networks. Many existing works on graph mining focus on the

vertices and edges, with the first-order Markov chain as the under-

lying model. They fail to explore the high-order network structures,

which are of key importance in many high impact domains. For

example, in bank customer personally identifiable information (PII)

networks, the star structures often correspond to a set of synthetic

identities; in financial transaction networks, the loop structures

may indicate the existence of money laundering. In this paper, we

focus on mining user-specified high-order network structures and

aim to find a structure-rich subgraph which does not break many

such structures by separating the subgraph from the rest.

A key challenge associated with finding a structure-rich sub-

graph is the prohibitive computational cost. To address this prob-

lem, inspired by the family of local graph clustering algorithms

for efficiently identifying a low-conductance cut without explor-

ing the entire graph, we propose to generalize the key idea to

model high-order network structures. In particular, we start with a

generic definition of high-order conductance, and define the high-

order diffusion core, which is based on a high-order random walk

induced by user-specified high-order network structure. Then we

propose a novelHigh-Order Structure-Preserving LOcalCut (HOS-
PLOC) algorithm, which runs in polylogarithmic time with respect

to the number of edges in the graph. It starts with a seed vertex

and iteratively explores its neighborhood until a subgraph with

a small high-order conductance is found. Furthermore, we ana-

lyze its performance in terms of both effectiveness and efficiency.

The experimental results on both synthetic graphs and real graphs

∗
To whom correspondence should be addressed

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098015

demonstrate the effectiveness and efficiency of our proposed HOS-
PLOC algorithm.

KEYWORDS

Local Clustering Algorithm, High-Order Network Structure

1 INTRODUCTION

Given a massive graph and an initial vertex, to identify a good par-

tition from the original graph - a subset of vertices with minimum

conductance, is an NP-complete problem [19]. Graph-based local

clustering algorithms [2, 3, 29] provide an important class of tools

to efficiently discover a dense subgraph that contains or is close

to a given vertex without exploring the whole graph. Despite the

elegant theoretical analysis, most existing works are inherently

limited to simple network structures, i.e., vertices and edges, with

the first-order Markov chain as the underlying model.

However, in many real-world applications, high-order network

structures, e.g., triangles, loops, and cliques, are essential for explor-

ing useful patterns on networks. For example, the multi-hop loop

structure may indicate the existence of money laundering in finan-

cial networks [11]; the star structure may correspond to a set of

synthetic identities in PII networks of bank customers [18]. There-

fore, an intriguing research question is whether graph-based local

clustering algorithms can be generalized to model user-specified
network structures in an efficient way. Specifically, the traditional

graph-based local clustering algorithms aim to find a cut by ex-

ploring the first-order connectivity patterns on the level of vertices

and edges, while we aim to find the best cut based on high-order

connectivity patterns on the level of network motifs.

Despite its key importance, it remains a challenge to general-

ize graph-based local clustering algorithms to model high-order

network structures. Specifically, we need to answer the following

questions. First (Q1. Model), it is not clear that how to conduct the

generalized random walk with respect to high-order network struc-

tures. Some existing works [5, 23, 32] have studied the second-order

random walks based on the 3
𝑟𝑑
-order network structures. However,

it is unknown how to construct high-order random walks on the

basis of the user-specified network structures. Second (Q2. Algo-

rithm), how can we design a high-order local clustering algorithm

that produces a graph cut rich in the user-specified network struc-

tures in an efficient way? This question has been largely overlooked

https://doi.org/10.1145/3097983.3098015

in the previous researches. Third (Q3. Generalization), how can

we generalize our proposed algorithm to solve the real-world prob-

lems on various types of graphs, such as signed graphs, bipartite

graphs and multipartite graphs?

To address these problems, in this paper, we propose a novel

local algorithm for structure-preserving graph clustering named

HOSPLOC. The core of HOSPLOC is to approximately compute

the distribution of high-order random walk [23] that is directly

based on user-specified high-order network structures, and then

utilize the idea of vector-based graph partition methods [24, 25, 29]

to find a cut with a small high-order conductance. Our algorithm

operates on the tensor representation of graph data which allows

the users to specify what kind of network structures should be

preserved in the returned cluster. In addition, we provide analyses

regarding the effectiveness and efficiency of the proposed algorithm.

Furthermore, we present how HOSPLOC can be applied to the

applications with various types of networks, e.g., signed networks,

bipartite networks and multipartite networks. Finally, we evaluate

the performance of HOSPLOC from multiple aspects using various

real-world networks. Figure 1 compares the clusters returned by

the proposed HOSPLOC algorithm and the Nibble algorithm [29],

which shows that HOSPLOC is better at partitioning a subgraph

with the rich user-specified high-order network structure.

Figure 1: A synthetic network where vertex 0 is connected

with two kinds of network structures: clique and line. The

local clusters found by HOSPLOC (within the blue dash-dot

line) and the Nibble algorithm [29] (within the red dotted

line) with the same initial vertex, i.e., vertex 0, where HOS-

PLOC is conducted on the basis of 3-node line (illustrated in

Table 1).

The main contributions of the paper are summarized below.

(1) Definitions of adjacency tensor and transition tensor for high-

order random walk induced by high-order network structures.

(2) A local algorithm named HOSPLOC for structure-preserving

graph cut with polylogarithmic time complexity regarding the

number of edges.

(3) Theoretical analyses regarding the effectiveness and efficiency

of HOSPLOC.
(4) Generalizations and applications of HOSPLOC on signed net-

works, bipartite networks and multipartite networks.

(5) Extensive experimental results on both synthetic and real net-

works demonstrating the performance of the proposed HOS-
PLOC algorithm.

The rest of our paper is organized as follows. Related works are

reviewed in Section 2, followed by the introduction of notation

and preliminaries in Section 3. In Section 4, we present our pro-

posed HOSPLOC algorithm as well as the analyses regarding its

effectiveness and efficiency. Then we introduce its generalizations

and applications in Section 5. Experimental results are presented

in Section 6 before we conclude the paper in Section 7.

2 RELATEDWORK

2.1 Local Spectral Clustering on Graphs

Nowadays, large-scale networks data appear in a broad spectrum of

disciplines, from social networks [21, 22] to collaborative networks[8,

9], from rare category detection [34–37] to crowdsourcing [38, 39].

Local spectral clustering techniques provide a simple, efficient time

alternative to recursively identify a local sparse cut𝐶 with an upper-

bounded conductance. In [29], the authors introduce an almost-

linear Laplacian linear solver and a local clustering algorithm, i.e.,

Nibble, which conducts cuts that can be combined with balanced

partitions. In [2, 3], the authors extend Nibble algorithm [29] by

using personalized PageRank vector to produce cuts with less run-

ning time on undirected and directed graphs. More recently, [14]

proposes a local graph clustering algorithm with the same guaran-

tee as the Cheeger inequalities, of which time complexity is slightly

super linear in the size of the partition. In [4], the authors introduce

randomized local partitioning algorithms that find sparse cuts by

simulating the volume-biased evolving set process. However, to

my best of knowledge, this paper is the first local clustering frame-

work that focuses on modeling high-order network structures and

aims to find a structure-rich subgraph with a polylogarithmic time

complexity in the number of edges.

2.2 High-order Markov Chain Models

There are many cases that one would like to model observed data

as a high-order Markov chain in different real-world problems,

such as airport travel flows [27], web browsing behavior [10] and

wind turbine design [26]. To solve these problems, many previous

works [1, 26, 30] approximate the limiting probability distribution

of high-order Markov chain as a linear combination of transition

probability matrix. More recently, in [23], the authors introduce

a rank-1 approximation of high-order Markov chain limiting dis-

tribution and propose a recursive algorithm to compute it. Later

on, [15] introduces a computationally tractable approximation of

the high-order PageRank named multi-linear PageRank, where

the underlying stochastic process is a vertex-reinforced random

walk. In [6], the authors introduce a novel stochastic process, i.e.,

spacey random walk, whose stationary distribution is given by

the tensor eigenvector, and show the convergence properties of

these dynamics. In [5, 32], the authors propose the similar spectral

clustering frameworks that allow for modeling third-order network

structures and conduct partition while preserving such structures

on the given graph. Followed by [5], [33] proposes a tensor spec-

tral co-clustering method by modeling higher-order data with a

novel variant of a higher-order Markov chain, i.e., the super-spacey

random walk. Compared to the existing high-order Markov chain

models, we propose a novel scalable local clustering algorithm that

can identify clusters with a small conductance and also preserve

the user-specified high-order network structures in a polylogarith-
mic time complexity. Besides, we also provide provable theoretical

bounds on the effectiveness and efficiency of the proposed HOS-
PLOC algorithm.

3 NOTATIONS AND PRELIMINARIES

In this section, we review the basics of random walks with the

Markov chain interpretation and the Nibble algorithm for local

clustering on graphs [29], which pave the way for the proposed

structure-preserving graph cut algorithm to be introduced in the

next section.

3.1 Notations

Given an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 consists of 𝑛 ver-

tices, and 𝐸 consists of𝑚 edges, we let 𝐴 ∈ R𝑛×𝑛 denote the ad-

jacency matrix of graph 𝐺 , 𝐷 ∈ R𝑛×𝑛 denote the diagonal matrix

of vertex degrees, and 𝑑 (𝑣) = 𝐷 (𝑣, 𝑣) denote the degree of vertex
𝑣 ∈ 𝑉 . The transition matrix of a lazy random walk on graph 𝐺

is 𝑀 = (𝐴𝑇𝐷−1 + 𝐼)/2, where 𝐼 ∈ R𝑛×𝑛 is an identity matrix. For

convenience, we define the indicator vector 𝜒𝐶 as follows.

𝜒𝐶 (𝑣) =
{

1 𝑣 ∈ 𝐶

0 Otherwise

.

In particular, the initial distribution of a random walk starting from

vertex 𝑣 could be denoted as 𝜒𝑣 .

The volume of a subset 𝐶 ⊆ 𝑉 is defined as the summation of

vertex degrees in𝐶 , i.e., 𝜇 (𝐶) = ∑
𝑣∈𝐶 𝑑 (𝑣). We let𝐶 be the comple-

mentary set of 𝐶 , i.e., 𝐶 = {𝑣 ∈ 𝐶 |𝑣 ∈ 𝑉 , 𝑣 ∉ 𝐶}. The conductance
of subset 𝐶 ⊆ 𝑉 is therefore defined as Φ(𝐶) = |𝐸 (𝐶,𝐶) |

min(𝜇 (𝐶),𝜇 (𝐶)) [7],

where 𝐸 (𝐶,𝐶) = {(𝑢, 𝑣) |𝑢 ∈ 𝐶, 𝑣 ∈ 𝐶}, and |𝐸 (𝐶,𝐶) | denotes the
number of edges in 𝐸 (𝐶,𝐶). Besides, we represent the elements in

a matrix or a tensor using the convention similar to Matlab, e.g.,

𝑀 (𝑖, 𝑗) is the element at the 𝑖th row and 𝑗 th column of the matrix

𝑀 , and𝑀 (𝑖, :) is the 𝑖th row of𝑀 , etc.

3.2 Markov Chain Interpretation

The 𝑜th order Markov chain 𝑆 describes a stochastic process that

satisfies [15]

𝑃𝑟 (𝑆𝑡+1 = 𝑖1 |𝑆𝑡 = 𝑖2, . . . , 𝑆𝑡−𝑜+1 = 𝑖𝑜+1, . . . , 𝑆1 = 𝑖𝑡+1)
=𝑃𝑟 (𝑆𝑡+1 = 𝑖1 |𝑆𝑡 = 𝑖2, . . . , 𝑆𝑡−𝑜+1 = 𝑖𝑜+1)

(1)

where 𝑖1, . . . , 𝑖𝑡+1 denote the set of states associated with differ-

ent time stamps. Specifically, this means the future state only de-

pends on the past 𝑜 states. If each vertex in graph 𝐺 corresponds

to a distinct state, we can interpret the transition matrix𝑀 as the

transition matrix of the 1
st
-order Markov chain. Specifically, the

transition probability between vertex 𝑖 and vertex 𝑗 is given by

𝑀 (𝑖, 𝑗) = 𝑃𝑟 (𝑆𝑡+1 = 𝑖 |𝑆𝑡 = 𝑗). In Section 4.1, we introduce the

idea of adjacency tensor and transition tensor for modeling the

high-order network structures, which will lead to the high-order

Markov chains and high-order random walks.

3.3 Nibble Algorithm

Given an undirected graph 𝐺 and a parameter 𝜙 > 0, to find a cut

𝐶 from 𝐺 such that Φ(𝐶) ≤ 𝜙 or to determine no such 𝐶 exists

is an NP-complete problem [28]. Nibble algorithm [29] is one of

the earliest attempts to partition a graph with a bounded conduc-

tance in polylogarithmic time. Starting from a given vertex, Nibble

provably finds a local cluster in time (𝑂 (2𝑏𝑙𝑜𝑔6𝑚)/𝜙4)), where 𝑏
is a constant which controls the lower bound of the output volume.

This is proportional to the size of the output cluster. The key idea

behind Nibble is to conduct truncated random walks by using the

following truncation operator

[𝑞]𝜖 (𝑢) =
{
𝑞(𝑢) if 𝑞(𝑢) ≥ 𝑑 (𝑢)𝜖
0 Otherwise

(2)

where 𝑞 ∈ R𝑛 is the distribution vector over all the vertices in the

graph, and 𝜖 is the truncation threshold that can be computed as

follows [29]

𝜖 =
1

(1800 · (𝑙 + 2)𝑡𝑙𝑎𝑠𝑡2
𝑏)

(3)

where 𝑙 can be computed as 𝑙 = ⌈𝑙𝑜𝑔2 (𝜇 (𝑉)/2)⌉, and 𝑡𝑙𝑎𝑠𝑡 can be

computed as 𝑡𝑙𝑎𝑠𝑡 = (𝑙 + 1)
⌈

2

𝜙2
𝑙𝑛

(
𝑐1 (𝑙 + 2)

√
𝜇 (𝑉)/2

)⌉
.

Then, Nibble applies the vector-based partition method [24, 25,

29] that sorts the probable nodes based on the ratio of function

𝐼𝑥 to produce a low conductance cut. To introduce function 𝐼𝑥
mathematically, we first define 𝑆 𝑗 (𝑞) to be the set of top 𝑗 vertices𝑢

that maximizes 𝑞(𝑢)/𝑑 (𝑢). That is 𝑆 𝑗 (𝑞) = {𝜋 (1), . . . , 𝜋 (𝑗)}, where
𝜋 is the permutation that follows

𝑞 (𝜋 (𝑖))
𝑑 (𝜋 (𝑖)) ≥ 𝑞 (𝜋 (𝑖+1))

𝑑 (𝜋 (𝑖+1)) . In addition,

we let 𝜆 𝑗 (𝑞) =
∑
𝑢∈𝑆 𝑗 (𝑞) 𝑑 (𝑢) denote the volume of the set 𝑆 𝑗 (𝑞).

Finally, the function 𝐼𝑥 is defined as follows

𝐼𝑥 (𝑞, 𝜆 𝑗 (𝑞)) =
𝑞(𝜋 (𝑗))
𝑑 (𝜋 (𝑗)) . (4)

In the next section, we will introduce the high-order structure

preserving graph cut framework, i.e., HOSPLOC. Compared to Nib-

ble, HOSPLOC can model the user-specified network structure and

conduct a structure-rich cut with a small conductance. Moreover,

similar to Nibble, HOSPLOC runs in polylogarithmic time with

respect to the number of edges in the graph.

4 HIGH-ORDER NETWORK STRUCTURE

AND THE HOSPLOC ALGORITHM

In the previous section, we introduced the notations and prelimi-

naries. Now, we generalize the idea of truncated local clustering to

produce clusters that preserve the user-specified high-order network
structures. We start by introducing the adjacency tensor and the

associated transition tensor based on the user-specified high-order
network structures, followed by the discussion on the stationary

distribution of high-order random walk. Then, we introduce the

definitions of high-order conductance and high-order diffusion core.

Finally, we present the proposed high-order local clustering algo-

rithm HOSPLOC with theoretical analyses on the effectiveness and

efficiency.

4.1 Adjacency Tensor and Transition Tensor

For an undirected graph 𝐺 , the corresponding adjacency matrix 𝐴

could be considered as a matrix representation of the existing edges

on 𝐺 . However, in many real applications, we may want to explore

and capturemore complex and high-order network structures. Table

1 summarizes the examples of network structures N of different

N Example Illustration Markov Chain

1
st
-order Vertex

0
th
-order

2
nd
-order Edge

1
st
-order

3
rd
-order

3-node Line

2
nd
-order

Triangle

𝑘th-order 𝑘-node Star (𝑘 − 1)th-order
Table 1: Network Structures N and Markov Chains.

orders and the corresponding Markov chain. Notice that the order

of the network structure is different from the order of the Markov

chain (or random walk). For example, the edges in 𝐸 are considered

as the 2
nd
-order network structures, and they correspond to the 1

st
-

orderMarkovChain (randomwalk) due to thematrix representation

of 𝐸. We use 𝑘 to denote the order of the network structure N.
As what will be explained next, the 𝑘th-order network structures

correspond to the (𝑘 − 1)th-order Markov chain (random walk).

To model the user-specified network structure N, we introduce
the definition of adjacency tensor T and the transition tensor P to

represent the high-order random walk induced by the high-order

network structures N.

Definition 4.1 (Adjacency Tensor). Given a graph 𝐺 = (𝑉 , 𝐸),
the 𝑘th-order network structure N on 𝐺 could be represented in a

𝑘-dimensional adjacency tensor T as follows

𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) =
{

1 {𝑖1, 𝑖2, . . . , 𝑖𝑘 } ⊆ 𝑉 and form N.

0 Otherwise.

(5)

Definition 4.2 (Transition Tensor). Given a graph 𝐺 = (𝑉 , 𝐸)
and the adjacency tensor T for the 𝑘th-order network structure N,
the corresponding transition tensor P could be computed as

𝑃 (𝑖1, 𝑖2, . . . , 𝑖𝑘) =
𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)∑𝑛
𝑖1=1

𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
(6)

By the above definition, we have

∑
𝑖1 𝑃 (𝑖1, . . . , 𝑖𝑘) = 1. Therefore,

if each vertex in𝐺 is a distinguishable state, we can interpret the𝑘th-

order transition tensor P as a (𝑘−1)th-order Markov chain (random

walk), i.e., 𝑃𝑟 (𝑆𝑡+1 = 𝑖1 |𝑆𝑡 = 𝑖2, . . . , 𝑆𝑡−𝑘+2
= 𝑖𝑘) = 𝑃 (𝑖1, . . . , 𝑖𝑘).

Intuitively, if 𝑖1 ≠ 𝑖 ′
1
, and they both form N together with 𝑖2, . . . , 𝑖𝑘 ,

then the probabilities of the next state being 𝑖1 and being 𝑖 ′
1
are

the same given 𝑆𝑡 = 𝑖2, . . . , 𝑆𝑡−𝑘+2
= 𝑖𝑘 . Notice that the transition

matrix𝑀 of a lazy random walk defined in Subsection 3.1 can be

considered as a special case of Definition 4.2 with the 2
nd
-order

network structure N, if we allow self-loops.

4.2 Stationary Distribution

For the 𝑘th-order network structure N and the corresponding (𝑘 −
1)th-order random walk with transition tensor P, if the stationary
distribution X exists, where X is a (𝑘 − 1)-dimensional tensor, then

it satisfies [15]

𝑋 (𝑖1, 𝑖2, . . . , 𝑖𝑘−1
) =

∑
𝑖𝑘

𝑃 (𝑖1, 𝑖2, . . . , 𝑖𝑘)𝑋 (𝑖2, . . . , 𝑖𝑘) . (7)

where 𝑋 (𝑖1, . . . , 𝑖𝑘−1
) denotes the probability of being at states

𝑖1, . . . , 𝑖𝑘−1
in consecutive time steps upon convergence of the ran-

dom walk, and

∑
𝑖1,...,𝑖𝑘−1

𝑋 (𝑖1, . . . , 𝑖𝑘−1
) = 1.

However, for this system, storing the stationary distribution re-

quires 𝑂 (𝑛 (𝑘−1)) space complexity. For the sake of computational

scalability, in high-order random walks, a commonly held assump-

tion is ‘rank-one approximation’ [5, 23], i.e.,

𝑋 (𝑖2, . . . , 𝑖𝑘) = 𝑞(𝑖2) . . . 𝑞(𝑖𝑘) (8)

where 𝑞 ∈ R𝑛×1

+ with

∑
𝑖 𝑞(𝑖) = 1. Then, we have∑

𝑖2,...,𝑖𝑘

𝑃 (𝑖1, . . . , 𝑖𝑘)𝑞(𝑖2) . . . 𝑞(𝑖𝑘) = 𝑞(𝑖1) .

In this way, the space complexity of the stationary distribution

of high-order random walk is reduced to 𝑂 (𝑛). Although 𝑞 is an

approximation of the true stationary distribution of the high-order

random walk, [23] theoretically demonstrates the convergence and

effectiveness of the nonnegative vector 𝑞 if P satisfies certain prop-

erties.

Following [5, 23], in this paper, we also adopt ‘rank-one approx-

imation’ and assume the stationary distribution of the high-order

random walk satisfies Eq. 8. To further simplify the notation, we let

𝑃 denote the (𝑘 − 2)-mode unfolding matrix of the 𝑘-dimensional

transition tensor 𝑃 . Thus, the (𝑘 − 1)th-order random walk satisfies:

𝑞 = 𝑃 (𝑞 ⊗ . . . ⊗ 𝑞) (9)

where ⊗ denotes the Kronecker product symbol. For example, for

the third-order network structure N (e.g., triangle), the transition

tensor P ∈ R𝑛×𝑛×𝑛 can be constructed based on Definition 4.2.

Then, the 1-mode unfolding matrix 𝑃 of P can be written as follows

𝑃 = [𝑃 (:, :, 1), 𝑃 (:, :, 2), . . . , 𝑃 (:, :, 𝑛)]

where 𝑃 ∈ R𝑛×𝑛2

. In this way, the associated second-order random

walk with respect to the triangle network structure satisfies

𝑞 = 𝑃 (𝑞 ⊗ 𝑞) .

4.3 High-Order Conductance

Given a high-order network structure N, it is usually the case that

the user would like to find a local cluster𝐶 on the graph𝐺 such that:

(1)𝐶 contains a rich set of network structures N; (2) by partitioning
all the vertices into 𝐶 and 𝐶 , we do not break many such network

structures. For example, in financial fraud detection, directed loops

may refer to money laundering activities. In this case, we want to

ensure the partition preserves rich directed loops inside the cluster

and breaks such structure as less as possible. It is easy to see that

the traditional definition of the conductance Φ(𝐶) introduced in

Subsection 3.1 does not serve this purpose. Therefore, we introduce

the following generalized definition of conductance to preserve

user-defined high-order network structure N.

Definition 4.3 (𝑘th-order Conductance). For any cluster 𝐶 in

graph 𝐺 and the 𝑘th-order network structure N, the 𝑘th-order con-
ductance Φ(𝐶,N) is defined as

Φ(𝐶,N) = 𝑐𝑢𝑡 (𝐶,N)
𝑚𝑖𝑛{𝜇 (𝐶,N), 𝜇 (𝐶,N)}

(10)

where 𝑐𝑢𝑡 (𝐶,N) denotes the number of network structures broken

due to the partition of 𝐺 into 𝐶 and 𝐶 , i.e.,

𝑐𝑢𝑡 (𝐶,N) =
∑

𝑖1,...,𝑖𝑘 ∈𝑉
𝑇 (𝑖1, . . . , 𝑖𝑘) −

∑
𝑖1𝑖2,...,𝑖𝑘 ∈𝐶

𝑇 (𝑖1, . . . , 𝑖𝑘)

−
∑

𝑖1,...,𝑖𝑘 ∈𝐶
𝑇 (𝑖1, . . . , 𝑖𝑘)

(11)

and 𝜇 (𝐶,N) (𝜇 (𝐶,N)) denotes the total number of network struc-

tures N incident to the vertices within 𝐶 (𝐶), i.e.,

𝜇 (𝐶,N) =
∑

𝑖1∈𝐶 ;𝑖2,...,𝑖𝑘 ∈𝑉
𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)

𝜇 (𝐶,N) =
∑

𝑖1∈𝐶 ;𝑖2,...,𝑖𝑘 ∈𝑉
𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) . (12)

Claim 1. Definition 4.3 provides a generic definition of network
conductance with respect to any network structure, and it subsumes
existing measures of network conductance. In particular.

• When N represents edges, Φ(𝐶,N) is twice the traditional con-
ductance Φ(𝐶) introduced in Subsection 3.1.

• When N represents triangles, Φ(𝐶,N) is the same as the ‘high-
order conductance’ 𝜙3 introduced in [5].

4.4 High-Order Diffusion Core

Similar to the Nibble algorithm, we are given a seed vertex 𝑣 , and

our goal is to find a cluster 𝐶 containing or near 𝑣 without looking

at the whole graph. The main advantage of our proposed work is

that, given the user-specified high-order network structure N, we
are able to produce a local cluster that preserves such structure

within the cluster 𝐶 and does not break many such structures by

partitioning the graph into 𝐶 and 𝐶 .

To this end, we perform high-order random walk with transition

tensor P defined in Definition 4.2, starting from the seed vertex 𝑣 .

Let 𝑞 (𝑡) denote the distribution vector over all the vertices after the

𝑡 th iteration of the high-order random walk. Ideally, a seed vertex

chosen within a cluster 𝐶 with low conductance should lead to the

discovery of this cluster. However, as pointed out in [29], for the

2
nd
-order network structure and the associated 1

st
-order random

walk, if the vertices within the cluster are more strongly attached

to vertices outside the cluster than inside it, they may not be good

candidates for the seed, as the random walk will have a relatively

high chance of escaping the cluster after a few iterations. Therefore,

they propose the definition of the diffusion core to characterize the

subset of vertices within the cluster, such that the random walks

starting from such vertices stay inside the cluster for a long time.

Here, we generalize the definition of a diffusion core to high-order

network structures as follows.

Definition 4.4 (𝑘th-Order 𝜉-Diffusion Core). For any cluster 𝐶 ,

we define 𝐶𝑘,𝜉 ∈ 𝐶 to be the 𝑘th-order 𝜉-diffusion core of 𝐶 , such

that

𝜒𝑇
𝐶𝑘,𝜉𝑞

(𝑡) ≤ 𝜉
𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) (13)

where 𝑞 (𝑡) denotes the diffusion distribution of 𝑡-step high-order

random walks, and 𝜉 is a positive constant that controls the com-

pactness of the diffusion core.

Note that the left hand side of Eq. 13, 𝜒𝑇
𝐶𝑘,𝜉

𝑞 (𝑡) , represents the
probability that a high-order random walk terminates outside the

cluster𝐶 after 𝑡 steps, which is also called the escaping probability of

the cluster𝐶 . On the right hand side of Eq. 13, the numerator could

be considered as the total number of the 𝑘th-order random walk

paths to escape cluster𝐶 , while the denominator could be regarded

as the total number of the 𝑘th-order random walk paths starting

from 𝐶 . It is easy to see that 𝜒𝑇
𝐶𝑘,𝜉

𝑞 (𝑡) is positively correlated with

𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) . Since, for a given 𝐶 , 𝜒𝑇

𝐶𝑘,𝜉
𝑞 (𝑡) is a computable constant,

we consider Eq. 13 as the compactness constraint for the 𝑘th-order

𝜉-diffusion core 𝐶𝑘,𝜉 ∈ 𝐶 .

Proposition 4.5. For any cluster 𝐶 and the 𝑘 th-Order 𝜉-diffusion
core 𝐶𝑘,𝜉 ∈ 𝐶 , we have

𝜒𝑇
𝐶𝑘,𝜉𝑞

(𝑡) ≤ 𝜉Φ(𝐶,N). (14)

Proof. Given a cluster𝐶 ∈ 𝑉 and a 𝑘th-order network structure

N, the corresponding 𝑘th-order conductance can be computed as

Φ(𝐶,N) = 𝑐𝑢𝑡 (𝐶,N)
𝑚𝑖𝑛{𝜇 (𝐶,N), 𝜇 (𝐶,N)}

.

Obviously, we can divide the proof into the following two cases.

Case 1 : when 𝜇 (𝐶,N) ≥ 𝜇 (𝐶,N), Φ(𝐶,N) = 𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) ≥ 𝑐𝑢𝑡 (𝐶,N)

𝜇 (𝐶,N) .

Case 2 : when 𝜇 (𝐶,N) < 𝜇 (𝐶,N), Φ(𝐶,N) = 𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) .

Thus, we haveΦ(𝐶,N) ≥ 𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) . Meanwhile, byDefinition. 4.4,

it turns out that

𝜒𝑇
𝐶𝑘,𝜉𝑞

(𝑡) ≤ 𝜉
𝑐𝑢𝑡 (𝐶,N)
𝜇 (𝐶,N) ≤ 𝜉Φ(𝐶,N).

□

4.5 The Proposed HOSPLOC Algorithm

Basically, the proposed HOSPLOC could be decomposed into three

main steps: (1) approximately compute the distribution of high-

order random walk starting at any vertex from which the walk

does not mix rapidly; (2) truncate all small entries in 𝑞 (𝑡) to 0, thus

we can limit the computation to the neighborhood of the seed; (3)

apply the vector-based graph partition method [24, 25, 29] to search

for a structure-rich cut with a small conductance.

Now, we are ready to present our proposed HOSPLOC algorithm.

The given input are the transition tensor P, the transition matrix𝑀 ,

the seed vertex 𝑣 , the conductance upper-bound 𝜙 , the maximum

iteration number 𝑡max, and the constants 𝑏, 𝑐1, 𝜉 . Note that constant

𝑏 controls the volume lower bound of the returned set 𝐶 , i.e., 2
𝑏 ≤

𝜇 (𝐶), and 𝑐1 is a constant which guarantees that the elements in

𝐶 have a large probability of staying within 𝐶 . Step 1 to Step 4 are

the initialization process. Step 1 constructs unfolding matrix 𝑃 of

the transition tensor P. Step 2 to Step 4 compute the truncation

constant 𝜖 and the truncated initial distributions vectors 𝑟 (𝑚)
,𝑚 =

1, . . . , 𝑘 − 1. The iterative process between Step 5 and Step 16 aims

to identify the proper high-order local cluster 𝐶: Step 6 calculates

the updated distribution over all the vertices in current iteration;

Step 7 calculates the truncated local distribution 𝑟 (𝑡) ; the iterative
process stops when it finds a proper cluster which satisfies the three

constraints in Step 9 to Step 11, where condition (𝑎) guarantees
that the conductance of 𝐶 is upper-bounded by 𝜙 , condition (𝑏)
ensures that the volume of𝐶 is lower-bounded by 2

𝑏
, and condition

(𝑐) enforces that elements in 𝐶 have a large probability mass.

Algorithm 1 High-Order Structure-Preserved Local Cut (HOS-
PLOC)
Input:

(1) Transition tensor P and transition matrix𝑀 ,

(2) Initial vertex 𝑣 ,

(3) Conductance upper bound 𝜙 ,

(4) Maximum iteration number 𝑡max,

(5) Parameters 𝑏, 𝑐1, 𝜉 .

Output:

Local cluster 𝐶;

1: Construct the unfolding matrix 𝑃 of the transition tensor P.

2: Compute constant 𝜖 based on Eq. 3.

3: Set initial distribution vectors 𝑞 (𝑡) = 𝑀 (𝑡−1) 𝜒𝑣 , where 𝑡 =

1, . . . , 𝑘 − 1.

4: Compute truncated initial local distribution vectors 𝑟 (𝑡) =

[𝑞 (𝑡)]𝜖 , 𝑡 = 1, . . . , 𝑘 − 1.

5: for 𝑡 = 𝑘 : 𝑡max do

6: Update distribution vector 𝑞 (𝑡) = 𝑃 (𝑟 (𝑡−1) ⊗ . . . ⊗ 𝑟 (𝑡−𝑘+1)).
7: Update truncated distribution vectors 𝑟 (𝑡) = [𝑞 (𝑡)]𝜖 .
8: if there exists a 𝑗 such that:

9: (a)Φ(𝑆 𝑗 (𝑞 (𝑡))) <= 𝜙 ,

10: (b)2
𝑏 <= 𝜆 𝑗 (𝑞 (𝑡)),

11: (c)𝐼𝑥 (𝑞 (𝑡) , 2𝑏) >= 𝜉

𝑐1 (𝑙+2)2𝑏 . then

12: return 𝐶 = 𝑆 𝑗 (𝑞 (𝑡)) and quit.

13: else

14: Return 𝐶 = ∅.
15: end if

16: end for

Next, we analyze the proposed HOSPLOC algorithm in terms of

effectiveness and efficiency. Regarding the effectiveness, we will

show that for any cluster 𝐶 , if the seed vertex comes from the 𝑘th-

order 𝜉-diffusion core, i.e., 𝑣 ∈ 𝐶𝑘,𝜉
, then the non-empty set 𝐶 ′

returned by HOSPLOC has a large overlap with 𝐶 . To be specific,

we have the following theorem.

Theorem 4.6 (Effectiveness of HOSPLOC). Let𝐶 be a clus-
ter on graph𝐺 such that Φ(𝐶,N) ≤ 1

𝑐2 (𝑙+2) , where 2𝑐1 ≤ 𝑐2. If HOS-

PLOC runs with starting vertex 𝑣 ∈ 𝐶𝑘,𝜉 and returns a non-empty set
𝐶 ′, then we have 𝜇 (𝐶 ′ ∩𝐶) ≥ 2

𝑏−1.

Proof. Let 𝑞 (𝑡) , 𝑡 ≤ 𝑡max, be the distribution of 𝑡 − 𝑠𝑡𝑒𝑝 high-

order random walk when the set 𝐶 ′ = 𝑆 𝑗 (𝑞 (𝑡)) is obtained. Then,
based on Proposition 4.5, we have the following inequality

𝜒𝑇
𝐶
𝑞 (𝑡) ≤ 𝜒𝑇

𝐶𝑘,𝜉𝑞
(𝑡) ≤ 𝜉Φ(𝐶,N) ≤ 𝜉

𝑐2 (𝑙 + 2) . (15)

In Step 11 of Algorithm 1, condition (𝑐) guarantees that

𝐼𝑥 (𝑢) =
𝑞 (𝑡) (𝑢)
𝑑 (𝑢) ≥ 𝜉

𝑐1 (𝑙 + 2)2𝑏
(16)

where 𝑢 ∈ 𝑆 𝑗 (𝑞 (𝑡)). Since 𝑑 (𝑢) ≥ 0 and 𝑐1 (𝑙 + 2)2𝑏 ≥ 0, we can

infer the following inequality from Eq. 16

𝑑 (𝑢) ≤ 1

𝜉
𝑐1 (𝑙 + 2)2𝑏𝑞 (𝑡) (𝑢) . (17)

Let 𝑗 ′ be the smallest integer such that 𝜆 𝑗 ′ (𝑞 (𝑡)) ≥ 2
𝑏
. In Step

10 of Algorithm 1, condition (𝑏) guarantees that 𝑗 ′ ≤ 𝑗 . By Eq. 15

and Eq. 17, we have

𝜇 (𝑆 𝑗 ′ (𝑞 (𝑡)) ∩𝐶)

=
∑

𝑢∈𝑆 𝑗′ (𝑞 (𝑡))∩𝐶
𝑑 (𝑢)

≤
∑

𝑢∈𝑆 𝑗′ (𝑞 (𝑡))∩𝐶

1

𝜉
𝑐1 (𝑙 + 2)2𝑏𝑞 (𝑡) (𝑢)

≤ 1

𝜉
𝑐1 (𝑙 + 2)2𝑏 (𝜒𝑇

𝐶
𝑞 (𝑡))

≤ 𝜉𝑐1 (𝑙 + 2)2𝑏
𝜉𝑐2 (𝑙 + 2) ≤ 2

𝑏−1 .

(18)

Due to 2
𝑏 ≤ 𝜆 𝑗 ′ (𝑞 (𝑡)), it turns out that 𝜇 (𝑆 𝑗 ′ (𝑞 (𝑡)) ∩ 𝐶) ≥ 2

𝑏−1
.

Since 𝑗 ≥ 𝑗 ′, we have the final conclusion

𝜇 (𝑆 𝑗 (𝑞 (𝑡)) ∩𝐶) ≥ 𝜇 (𝑆 𝑗 ′ (𝑞 (𝑡)) ∩𝐶) ≥ 2
𝑏−1 . (19)

□

Regarding the efficiency of HOSPLOC, we provide the following
lemma to show the polylogarithmic time complexity of HOSPLOC
with respect to the number of edges in the graph.

Lemma 4.7 (Efficiency of HOSPLOC). Given graph 𝐺 and
the 𝑘 th-order network structure N, 𝑘 ≥ 3, the time complexity of

HOSPLOC is bounded by 𝑂
(
𝑡𝑚𝑎𝑥

2
𝑏𝑘

𝜙2𝑘 𝑙𝑜𝑔
3𝑘𝑚

)
.

Proof. To bound the running time of HOSPLOC, we first show
that each iteration in Algorithm 1 takes time 𝑂 (1

𝜖𝑘
). Instead of

conducting dense vector multiplication or Kronecker product, we

track the nonzeros in both matrixes and vectors. Here, we let 𝑉 𝑡

denote the set of vertices such that {𝑢 ∈ 𝑉 (𝑡) |𝑟 (𝑡) (𝑢) > 0}, and
𝑉 (𝑡)

be the set with the maximum number of nonzero elements

in {𝑉 (𝑡) |1 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 }. In Step 6, the Kronecker product chain

𝑟 (𝑡−1) ⊗ . . . ⊗ 𝑟 (𝑡−𝑘+1)
can be performed in time proportion to

|𝑉 (𝑡−1) | . . . |𝑉 (𝑡−𝑘+1) | ≤ |𝑉 (𝑡) | (𝑘−1) ≤ 𝜇 (𝑉 (𝑡)) (𝑘−1) .

Also, [29] shows that 𝜇 (𝑉 (𝑡)) ≤ 1/𝜖 for all 𝑡 . Therefore, to compute

𝑟 (𝑡−1) ⊗ . . . ⊗ 𝑟 (𝑡−𝑘+1)
takes 𝑂 (𝜇 (𝑉 (𝑡)) (𝑘−1)) ≤ 𝑂 (1/𝜖 (𝑘−1)) time.

After that, the matrix vector product can be computed in

𝑂 (𝜇 (𝑉 (𝑡) ,N)) ≤ 𝑂 (𝜇 (𝑉 (𝑡) ,N)) ≤ 𝑂 (𝜇 (𝑉 (𝑡)))𝑘 ≤ 𝑂 (1

𝜖𝑘
) .

The truncation in Step 7 can be computed in time 𝑂 (|𝑉 (𝑡) |). Step
8 to Step 15 require sorting the vertices in |𝑉 𝑡 | according to 𝑟 (𝑡) ,
which takes time 𝑂 (|𝑉 (𝑡) | log |𝑉 (𝑡) |). In sum, the time complexity

of each iteration in HOSPLOC is 𝑂 (1

𝜖𝑘
).

Since the algorithm runs at most 𝑡𝑚𝑎𝑥 iterations, the overall

time complexity of HOSPLOC is 𝑂 (𝑡𝑚𝑎𝑥

𝜖𝑘
). By Eq. 3, we can expand

𝑂 (𝑡max

𝜖𝑘
) as follows

𝑂

(
𝑡max

𝜖𝑘

)
= 𝑂

©­«𝑡𝑚𝑎𝑥

(
2
𝑏𝑙𝑜𝑔3𝜇 (𝑉)

𝜙2

)𝑘ª®¬ = 𝑂

(
𝑡𝑚𝑎𝑥

2
𝑏𝑘

𝜙2𝑘
𝑙𝑜𝑔3𝑘𝑚

)
.

□

Remark 1: The major computation overhead of Algorithm 1

comes from Step 6. Note that 𝑂

(
𝑡𝑚𝑎𝑥

2
𝑏𝑘

𝜙2𝑘 𝑙𝑜𝑔
3𝑘𝑚

)
is a strict upper-

bound for considering extreme cases. While, due to the power

law distribution in real networks, we may usually have |𝑉 (𝑡) | ≤√
𝜇 (𝑉 (𝑡)). Then, the time complexity of Algorithm 1 can be reduced

to 𝑂 (𝑡𝑚𝑎𝑥/𝜖𝑘/2) = 𝑂 (𝑡𝑚𝑎𝑥 (2𝑏/𝜙2)𝑘/2𝑙𝑜𝑔3𝑘/2𝑚).
Remark 2: Suppose the maximum iteration number of Nibble

and HOSPLOC are both upper-bounded by 𝑡𝑚𝑎𝑥 , then the time

complexity of Nibble is 𝑂

(
𝑡𝑚𝑎𝑥 2

𝑏𝑙𝑜𝑔4𝑚

𝜙2

)
. Considering the 𝑘 = 3

case, the time complexity of HOSPLOC is𝑂

(
𝑡𝑚𝑎𝑥

2
3𝑏

𝜙6
𝑙𝑜𝑔9𝑚

)
. With-

out considering the impact from the other constants, we can see

that similar to Nibble, HOSPLOC also runs in polylogarithmic time

complexity with respect to the number of edges in the graph.

5 GENERALIZATIONS AND APPLICATIONS

In this section, we will to introduce several generalizations and ap-

plications of our proposedHOSPLOC algorithm on signed networks,

bipartite networks and multipartite networks.

5.1 Community Detection on Signed Network

First, we extend our proposed framework, i.e., HOSPLOC, to solve

problems on signed graphs. In many real applications, the high-

order network structures of interest to us are presented with signed

edges. For instance, Fig. 2 presents an unstable 3-node network

structure and a stable 3-node network structure based on social

status theorem [17]. In community detection [13], we may want to

ensure (1) the stable configurations to be rich within communities

and sparse in-between different communities; (2) the unstable con-

figurations to be sparse within communities and rich in-between

different communities. For this purpose, the adjacency tensor can

be constructed as follows

𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) =


1 {𝑖1, 𝑖2, . . . , 𝑖𝑘 } is stable structure
0 {𝑖1, 𝑖2, . . . , 𝑖𝑘 } is unstable structure
𝛼 Otherwise

(20)

where {𝑖1, 𝑖2, . . . , 𝑖𝑘 } ∈ 𝑉 and constant 0 < 𝛼 < 1. By this way,

we can ensure: (1) the returned cluster of HOSPLOC contains rich

stable structures; (2) the partition would most likely break unstable

structures.

5.2 User Behavior Modeling on Bipartite

Network

We now turn our attention to the problem of user behavior model-

ing on the advertisement networks. Given an advertisement net-

work 𝐵 = (𝑉𝐵, 𝐸𝐵), the bipartite graph 𝐵 contains two types of

Figure 2: Social Status Theory Example: (Left) A directed “+"

edge fromnode 𝑣1 to node 𝑣2 shows that 𝑣2 has a higher status

than 𝑣1. (Right) A directed “-" edge from node 𝑣1 to node 𝑣2

shows vice versa.

nodes, i.e., user nodes 𝑉𝑈 and advertiser campaign nodes 𝑉𝐴 , i.e.,

𝑉𝐵 = {𝑉𝑈 ,𝑉𝐴}. The edges 𝐸𝐵 only exist between user nodes𝑉𝑈 and

advertiser campaign nodes 𝑉𝐴 . Intuitively, the customers with sim-

ilar activities on the advertisement network should be included in

the same cluster. For this reason, we choose 4-node loop as the base

network structure for HOSPLOC algorithm. Specifically, suppose

both user nodes 𝑢1, 𝑢2 have user-campaign interactions with the

advertiser campaign nodes 𝑎1 and 𝑎2, then we have a 4-node loop,

i.e., 𝑢1 → 𝑎1 → 𝑢2 → 𝑎2 → 𝑢1. In this problem, we consider the

advertisement network as an undirected graph, and the adjacency

tensor can be constructed as follows

𝑇 (𝑖1, 𝑖2, 𝑖3, 𝑖4) =
{

1 {𝑖1, 𝑖2, 𝑖3, 𝑖4} form a 4-nodes loop

0 Otherwise

(21)

where {𝑖1, 𝑖2, 𝑖3, 𝑖4} ∈ 𝑉𝐵 . Starting from an initial vertex, the re-

turned cluster𝐶𝐵 byHOSPLOC would represent a local user-campaign

community, which consists of both similar users and the users’ fa-

vorite advertiser campaigns.

5.3 Synthetic ID Detection on Multipartite

Network

Now we will explain how to detect synthetic IDs on PII network by

using our proposed HOSPLOC algorithm. PII network is a typical

multipartite network, where each partite set of nodes represents a

particular type of PII, such as users’ names, users’ accounts, and

email addresses, and the edges only exist between different partite

sets of nodes. In synthetic ID fraud [18], criminals often use modi-

fied identity attributes, such as phone number, home address and

email address, to combine with real users’ information and create

synthetic IDs to do malicious activities. Hence, for the synthetic

IDs, there is a high possibility that their PIIs would be shared by

multiple identities, which may compose rich star-shaped structures.

In this case, the adjacency tensor can be constructed as

𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) =
{

1 {𝑖1, 𝑖2, . . . , 𝑖𝑘 } form a 𝑘-node star

0 Otherwise

(22)

where {𝑖1, 𝑖2, . . . , 𝑖𝑘 } ∈ 𝑉𝐵 . Note that the returned partition may

consist of various types of nodes. However, it is viable to trace

back from the extracted PII nodes and discover the set of synthetic

identities.

(a) Conductance (b) The 3
𝑟𝑑
-Order Conductance (c) Triangle Density

Figure 3: Effectiveness.

6 EXPERIMENTAL RESULTS

Now, we demonstrate the performance of our proposed HOSPLOC
algorithm in the sense of effectiveness, efficiency, and parameter

sensitivity. Moreover, we also present two interesting case studies

on bipartite graph and multipartite graph.

6.1 Experiment Setup

Category Network Type Nodes Edges

Citation Author Undirected 61,843 402,074

Paper Undirected 62,602 10,904

Infrastructure Airline Undirected 2,833 15,204

Oregon Undirected 7,352 15,665

Power Undirected 4,941 13,188

Social Epinion Undirected 75,879 508,837

Review Rating Bipartite 8,724 90,962

Financial PII Multipartite 375 519

Table 2: Statistics of the Networks.

Data sets: We evaluate our proposed algorithm on both synthetic

and real-world network graphs. The statistics of all real data sets

are summarized in Table 2.

• Collaboration Network: We use two collaboration networks from
∗
.

In network (Author), the nodes are authors, and an edge only

exists when two authors have a co-authored paper. In network

(Paper), the nodes are distinct papers, and an edge only exists

when one paper cites another paper.

• Infrastructure Network: In network (Airline)
†
, the nodes represent

2,833 airports, and the edges represent the U.S. flights in a one-

month interval. Network (Oregon) [20] is a network of routers in

Autonomous Systems inferred from Oregon route-views between

March 31, 2001, and May 26, 2001. Network (Power)
‡
contains

the information of the power grid of the western states of U.S. A

node represents a generator, a transformator or a substation, and

an edge represents a power supply line.

• Social Network: Network (Epinion) [20] is a who-trust-whom

online social network. Each node represents a user, and one edge

exits if and only if when one user trusts another user.

• Review Network: Network (Rating) [16] is a bipartite graph, where
one side of nodes represent 643 users, and another side of nodes

∗
https://aminer.org/data

†
http://www.levmuchnik.net/Content/Networks/ NetworkData.html

‡
http://konect.uni-koblenz.de/networks/opsahl-powergrid

represent 7,483 movies. Edges refer to the positive ratings, i.e.,

rating score larger than 2.5, on MovieLens website. Note that

this network is a subgraph from the original one, due to storing

the 4
th
-order transition tensor of the original graph, i.e., 100s K

vertices and millions edges, requires too much memory.

• Financial Network: Network (PII) is a multipartite graph, which

consists of five types of vertices, i.e., 112 bank accounts, 71 names,

80 emails, 35 addresses, and 77 phone numbers. Edges only exist

between account vertices and PII vertices.

Comparison Methods: In our experiments, we compare our

methods with both local and global graph clustering methods.

Specifically, the comparison algorithm includes three local algo-

rithms, i.e., (1) Nibble [29]; (2) NPR [2]; (3) LS-OQC [31], and two

global clustering algorithms, i.e., (1) NMF [12]; (2) TSC [5]. Among

these five baseline algorithms, TSC algorithm is designed based on

high-order Markov chain, which can model high-order network

structures, i.e., triangle.

Repeatability: Most of the data sets are publicly available. The

code of the proposed algorithms will be released on the authors’

website. For all the results reported, we set 𝑐1 = 140 and 𝜉 = 1. The

experiments are mainly performed on a Windows machine with

four 3.5GHz Intel Cores and 256GB RAM.

6.2 Effectiveness Comparison

The effectiveness comparison results conducted on six real undi-

rected graphs by the following three evaluation metrics are shown

in Fig. 3. Among them, (1) Conductance [7] measures the general

quality of a cut on graph, which quantitatively indicates the com-

pactness of a cut; (2) The 3
𝑟𝑑
-Order Conductance could be com-

puted based on Eq. 10 by treating triangle as the network structure

N, which estimates how well the network structure N is preserved

in the returned cut from being broken by the partitions; (3) Tri-

angle Density [7] computes the ratio of how rich the triangle is

included in the returned cluster.

Moreover, to evaluate the convergence of local algorithms, we

randomly select 30 vertices from one cluster on each testing graph

and run all the local algorithms multiple times by treating each of

these nodes as an initial vertex. In Fig. 3, the heights of bars indicate

the average value of evaluation metrics, and the error bars (only

for local algorithms) represent the standard deviation of evaluation

metrics in multiple runs. We have the following observations: (1) In

general, local algorithms perform better than the global algorithm,

and our HOSPLOC algorithm consistently outperforms the others

on all the evaluation metrics. For example, compared to the best

competitor, i.e., TSC, on network (Airline), HOSPLOC algorithm is

97% smaller on conductance, 12.2% smaller on the 3
𝑟𝑑
-order con-

ductance, 80% larger on triangle density. (2) High-order Markov

chain models, i.e., HOSPLOC and TSC, could better preserve tri-

angles in the returned cluster. For example, on network (Epinion),

both HOSPLOC and TSC return a cluster with much higher triangle

density and much lower the 3
𝑟𝑑
-order conductance. (3) HOSPLOC

algorithm shows a more robust convergence property than the

other local clustering algorithm by comparing the size of error bars.

For example, among the three local algorithms, only HOSPLOC
algorithm returns the identical cluster on network (Paper) with

different initial vertexes.

(a) The number of vertices (b) The lower bound of 𝐶’s volume

Figure 4: Scalability Analysis.

6.3 Scalability Analysis

Here, we evaluate the efficiency of our proposed HOSPLOC algo-

rithmwith triangle as the specified network structure, by comparing

with Nibble algorithm on synthetic graphs. Since our method is

built on higher order of random walk than Nibble, we consider Nib-

ble as the running time lower bound of HOSPLOC algorithm. Notice

that all the results in Fig. 4 are the average values of multiple runs

by using 30 different initial vertexes on the same graph. In Fig. 4

(a), we show the running time of HOSPLOC and Nibble on a series

of synthetic graphs with increasing number of vertices but fixed

edge density of 0.5%. We observe that although HOSPLOC requires

more time than Nibble in each run, the running time of HOSPLOC
increases polylogarithmically with the size of the graph |𝑉 |. In Fig. 4

(b), we show the running time of HOSPLOC and Nibble versus the

lower bound of output volume on the synthetic graph with 5000

vertices and 0.5% edge density, by keeping the other parameters

fixed. We can see that the running time of HOSPLOC is polynomial

with respect to 2
𝑏
, which is consistent with our time complexity

analysis.

0.5

(a) Conductance (b) The 3
𝑟𝑑
-order conductance

Figure 5: Parameter Analysis w.r.t. Conductance Upper-

bound 𝜙 .

6.4 Parameter Analysis

In this subsection, we analyze the parameter sensitivity of our pro-

posed HOSPLOC algorithm with triangle as the specified network

structure, by comparing with Nibble algorithm on the synthetic

graph with 5000 vertices and 0.5% edge density. In the experiments,

we evaluate the conductance and the 3
𝑟𝑑
-order conductance of the

returned cut with different values of input parameter 𝜙 . In Fig. 5, we

have the following observations: (1) HOSPLOC returns the optimal

cut even with a very loose conductance upper bound 𝜙 . In Fig. 5

(a), we can see the output conductance of HOSPLOC converges to

the minimum value when 𝜙 = 0.4, while the output conductance of

Nibble converges to its minimum value until 𝜙 = 0.1. (2) Both the

conductance and the 3
𝑟𝑑
-order conductance of HOSPLOCś cut are

always smaller than Nibble’s cut with different 𝜙 .

6.5 Case Study

In this subsection, we will consider more complex network struc-

tures and perform our proposed HOSPLOC algorithm on bipartite

and multipartite networks.

Figure 6: Case study on bipartite network Rating. (a) An ex-

ample of detected community by HOSPLOC on Rating. (b)

An example of 4-node loop on Rating.

Case Study on Bipartite Graph.We conduct a case study on

the network (Rating) to find a local community consisting of sim-

ilar taste users and their favorite movies. In this case study, we

construct the transition tensor on the basis of 4-node loop based

on Eq. 21. Fig. 6 (a) presents a miniature of the cluster identified

by our proposed HOSPLOC algorithm regarding 4-node loop that

illustrated in Fig. 6 (b). For example, in Fig. 6, the highlighted red

loop shows that both of the third and the fourth users like the first

and the fourth movies, while the highlighted blue loop represents

that both of the third and the fifth users like the fifth and the last

movies. It seems the fifth user does not like the first movie due to

no direct connection between them. While the interesting part is

the first, the fifth and the last movies are from the same series, i.e.,

Karate Kid I, II, III. Moreover, the fourth movie, i.e., Back to School,

and Karate Kid I, II, III, are all from the category of comedy. It turns

out that our HOSPLOC algorithm returns a community of comedy

movies and their fans.

Case Study on Multipartite Graph. Here, we conduct a case

study on the network (PII) to identify suspicious systemic IDs. In

this case, we treat 5-node star as the underlying network struc-

ture, and the corresponding transition tensor could be generated

by Eq. 22. Fig. 7 (a) presents a subgraph of the returned cut by

our proposed HOSPLOC algorithm regarding 5-node star that illus-

trated in Fig. 7 (b). We can see that many PIIs are highly shared by

different accounts. For example, the account connected with blue

lines shares the home address and email address with the account

connected with purple lines, while the account connected with red

lines shares the holder’s name and phone number with the account

connected with blue lines. Comparing with the regular dense sub-

graph detection methods, our method can better identify the IDs

who share their PIIs with others, by exploring the nature structure

of PII, i.e., 5-node star, on the given graph.

Figure 7: Case study on multipartite network PII. (a) An ex-

ample of detected community by HOSPLOC on PII. (b) An

example of 5-node star on PII.

7 CONCLUSION

In this paper, we propose a local clustering framework, i.e., HOS-
PLOC, that gives users the flexibility to model any high-order net-

work structures and returns a small high-order conductance cluster

which largely preserves the user-specified network structures. Be-

sides, we analyze its performance in terms of the optimality of the

obtained cluster and the polylogarithmic time complexity on mas-

sive graphs. Furthermore, we generalize the proposed HOSPLOC
algorithm and try to solve multiple real problems on signed net-

works, bipartite networks and multipartite networks, by exploring

the useful high-order network connectivity patterns, such as loops

and stars. Finally, the extensive empirical evaluations on a diverse

set of networks demonstrate the effectiveness and scalability of our

proposed HOSPLOC algorithm.

ACKNOWLEDGMENT

This work is supported by National Science Foundation under Grant

No. IIP-1430144, No. IIS-1552654 and No. IIS-1651203, ONR un-

der Grant No. N00014-15-1-2821 and No. N00014-16-1-2015, DTRA

under Grant No. HDTRA1-16-0017, Army Research Office under

the contract number No. W911NF-16-1-0168, National Institutes

of Health under the grant number No. R01LM011986, Region II

University Transportation Center under the project number No.

49997-33 25, an IBM Faculty Award and a Baidu gift.

REFERENCES

[1] SR A and SR D. 1988. Limit distribution of a high order Markov chain. J R Stat
Soc (1988).

[2] R. Andersen, F. Chung, and K. Lang. 2006. Local graph partitioning using pagerank

vectors. In IEEE FOCS (2006).

[3] R. Andersen, F. Chung, and K. Lang. 2007. Local partitioning for directed graphs

using PageRank. In International Workshop on Algorithms and Models for the
Web-Graph. Springer.

[4] R. Andersen, S. O. Gharan, Y. Peres, and L. Trevisan. 2016. Almost Optimal Local

Graph Clustering Using Evolving Sets. JACM (2016).

[5] A. R Benson, D. F Gleich, and J. Leskovec. 2015. Tensor spectral clustering for

partitioning higher-order network structures. In SIAM SDM (2015).
[6] A. R Benson, D. F Gleich, and L.-H. Lim. 2016. The Spacey Random Walk: A

stochastic Process for Higher-Order Data. arXiv preprint arXiv:1602.02102 (2016).
[7] B Bollobás. 2013. Modern graph theory. Springer Science & Business Media

(2013).

[8] C. Chen, J. He, N. Bliss, and H. Tong. 2015. On the connectivity of multi-layered

networks: Models, measures and optimal control. In IEEE ICDM (2015).
[9] C. Chen, H. Tong, L. Xie, L. Ying, and Q. He. 2016. FASCINATE: Fast Cross-Layer

Dependency Inference on Multi-layered Networks. In ACM SIGKDD (2016).
[10] F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlos. 2012. Are web users really

markovian?. In ACM WWW (2012).
[11] K.-K. R. Choo. 2008. Money laundering risks of prepaid stored value cards. Aus-

tralian Institute of Criminology (2008).

[12] C. Ding, T. Li, and M. I Jordan. 2008. Nonnegative matrix factorization for

combinatorial optimization: Spectral clustering, graph matching, and clique

finding. In IEEE ICDM (2008).
[13] S. Fortunato. 2010. Community detection in graphs. Physics reports (2010).
[14] S. O. Gharan and L. Trevisan. 2012. Approximating the expansion profile and

almost optimal local graph clustering. In IEEE FOCS (2012).
[15] D. F Gleich, L.-H. Lim, and Y. Yu. 2015. Multilinear PageRank. SIMAX (2015).

[16] F M. Harper and J. A Konstan. 2016. The movielens datasets: History and context.

TiiS (2016).
[17] A. B Hollingshead et al. 1975. Four factor index of social status. (1975).

[18] C. J. Hoofnagle. 2007. Identity theft: Making the known unknowns known. Harv.
JL & Tech. (2007).

[19] T. Leighton and S. Rao. 1999. Multicommodity max-flow min-cut theorems and

their use in designing approximation algorithms. JACM (1999).

[20] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset

Collection. http://snap.stanford.edu/data.

[21] J. Li, H. Dani, X. Hu, and H. Liu. 2017. Radar: Residual Analysis for Anomaly

Detection in Attributed Networks. In IJCAI (2017).
[22] J. Li, X. Hu, L. Jian, and H. Liu. 2016. Toward Time-Evolving Feature Selection

on Dynamic Networks. In IEEE ICDM (2016).
[23] W. Li and M. K Ng. 2014. On the limiting probability distribution of a transition

probability tensor. Linear and Multilinear Algebra (2014).
[24] L. Lovász and M. Simonovits. 1990. The mixing rate of Markov chains, an

isoperimetric inequality, and computing the volume. In IEEE FOCS (1990).
[25] L. Lovász and M. Simonovits. 1993. Random walks in a convex body and an

improved volume algorithm. Random structures & algorithms (1993).
[26] A. E Raftery. 1985. A model for high-order Markov chains. J R Stat Soc Series B

Stat Methodol (1985).
[27] M. Rosvall, A. V Esquivel, A. Lancichinetti, J. D West, and R. Lambiotte. 2014.

Memory in network flows and its effects on spreading dynamics and community

detection. Nature communications (2014).
[28] J. Šíma and S. E. Schaeffer. 2006. On the NP-completeness of some graph cluster

measures. In Springer SOFSEM (2006).
[29] D. A Spielman and S.-H. Teng. 2013. A local clustering algorithm for massive

graphs and its application to nearly linear time graph partitioning. SICOMP
(2013).

[30] J. L Teugels. 2008. Markov Chains: Models, Algorithms and Applications. JASA
(2008).

[31] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. 2013. Denser than

the densest subgraph: extracting optimal quasi-cliques with quality guarantees.

In ACM SIGKDD (2013).
[32] C. E Tsourakakis, J. Pachocki, and M. Mitzenmacher. 2017. Scalable motif-aware

graph clustering. In WWW (2017).
[33] T. Wu, A. R Benson, and D. F Gleich. 2016. General tensor spectral co-clustering

for higher-order data. In NIPS (2016).
[34] D. Zhou, J. He, K.-S. Candan, and H. Davulcu. 2015. MUVIR: Multi-View Rare

Category Detection.. In IJCAI (2015).
[35] D. Zhou, J. He, Y. Cao, and J. Seo. 2016. Bi-level Rare Temporal Pattern Detection.

In IEEE ICDM (2016).
[36] D. Zhou, A. Karthikeyan, K. Wang, N. Cao, and J. He. 2016. Discovering rare

categories from graph streams. Springer DMKD (2016).

[37] D. Zhou, K. Wang, N. Cao, and J. He. 2015. Rare category detection on time-

evolving graphs. In IEEE ICDM (2015).
[38] Y. Zhou and J. He. 2016. Crowdsourcing via tensor augmentation and completion.

In IJCAI (2016).
[39] Y. Zhou, L. Ying, and J. He. 2017. MultiC2: an Optimization Framework for

Learning from Task and Worker Dual Heterogeneity. In SIAM SDM (2017).

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related Work
	2.1 Local Spectral Clustering on Graphs
	2.2 High-order Markov Chain Models

	3 Notations and Preliminaries
	3.1 Notations
	3.2 Markov Chain Interpretation
	3.3 Nibble Algorithm

	4 High-Order Network Structure and the HOSPLOC Algorithm
	4.1 Adjacency Tensor and Transition Tensor
	4.2 Stationary Distribution
	4.3 High-Order Conductance
	4.4 High-Order Diffusion Core
	4.5 The Proposed HOSPLOC Algorithm

	5 Generalizations and Applications
	5.1 Community Detection on Signed Network
	5.2 User Behavior Modeling on Bipartite Network
	5.3 Synthetic ID Detection on Multipartite Network

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Effectiveness Comparison
	6.3 Scalability Analysis
	6.4 Parameter Analysis
	6.5 Case Study

	7 Conclusion
	References

