

A Data-Driven Graph Generative Model for Temporal Interaction Networks

Presenter: Dawei Zhou Contact: dzhou21@Illinois.edu

Dawei Zhou (UIUC)

Lecheng Zheng (UIUC)

Jiawei Han (UIUC)

Jingrui He (UIUC)

Temporal Networks

Temporal Network Representations

- Time-evolving graphs
 - Aggregate timestamps into a sequence of snapshots.
 - (+): Static graph-based algorithms can be easily applied.
 - (-): Designed for discrete timestamps.
 - (-): Lost fine-grained temporal information during time aggregation.
- Temporal interaction networks
 - Represented as a collection of timestamped edges.
 - (+): Designed for continuous timestamps.
 - (+): Preserve fine-grained dynamics.
 - (-): Traditional graph-based algorithms can not be applied.
- Sharma, Shalini, and Jerry Chou. "A survey of computation techniques on time evolving graphs." International Journal of Big Data Intelligence 7.1 (2020): 1-14.
- Kumar, Srijan, Xikun Zhang, and Jure Leskovec. "Predicting dynamic embedding trajectory in temporal interaction networks." Proceedings of the 25th ACM SIGKDD 2019.

Temporal Interaction Networks

 Kumar, Srijan, Xikun Zhang, and Jure Leskovec. "Predicting dynamic embedding trajectory in temporal interaction networks." Proceedings of the 25th ACM SIGKDD 2019.

Graph Generative Models

 Reason 1: Discovering structural "laws" in temporal networks

 Purohit, Sumit, Lawrence B. Holder, and George Chin. "Temporal graph generation based on a distribution of temporal motifs." Proceedings of the 14th International Workshop on Mining and Learning with Graphs. Vol. 7. 2018.

Graph Generative Models

Ι

E. W. T. Ngai, Yong Hu, Y. H. Wong, Yijun Chen, Xin Sun: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support System 50(3): 559-569 (2011)

Graph Generative Models

Reason 3: Downstream tasks

Data Augmentation

Anomaly Detection

Recommendation

- Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. ICML 2018: 5694-5703
- Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, Stephan Günnemann: NetGAN: Generating Graphs via Random Walks. ICML 2018: 609-618

Existing Graph Generative Models

- Traditional Generative Models
 - Rely on structural assumptions.
 - EX: degree distribution, motif distribution, etc.
 - Pros:
 - Simple while elegant mathematical properties.
 - Fast.
 - Cons:
 - Restrict to one/few structural assumptions.

- Deep Generative Models
 - Trained from the extracted network context information.
 - EX: BFS, random walks, adjacency matrix, etc.
 - Pros:
 - Minimum structural assumptions.
 - Superior performance in various metrics.
 - Cons:
 - High time complexity.

Existing Graph Generative Models

• A two-dimensional conceptual space

Existing Graph Generative Models

• A two-dimensional conceptual space

- C1: Can we directly learn from the temporal interaction networks, that are represented in timestamped edges?
- C2: Can we ensure the generated graphs preserve the structural and temporal characteristics of real graphs?
- C3: What is the impact of our generative model for the downstream applications, such as anomaly detection and recommendation?

Roadmap

- Motivation
- Problem Definition
- Proposed TagGen Framework
- Experiments
- Conclusion

Temporal Node and Temporal Occurrence

• Definition 1. Temporal Node and Temporal Occurrence

In a temporal interaction network, a node v is associated with a bag of temporal occurrences $v = \{v^{t_1}, v^{t_2}, ...\}$ which instantiate the occurrences of node v at $\{t_1, t_2, ...\}$ in the network.

Temporal Interaction Network

Definition 2. Temporal Interaction Network

A temporal interaction network $\tilde{G} = (\tilde{V}, \tilde{E})$ is formed by a collection of nodes $\tilde{V} = \{v_1, v_2, \dots, v_n\}$ and a series of timestamped edges $\tilde{E} = (e_1^{t_{e_1}}, e_2^{t_{e_2}}, \dots, e_m^{t_{e_m}})$, where $e_i^{t_{e_i}} = (u_{e_i}, v_{e_i})^{t_{e_i}}$.

Temporal Network Neighborhood

- Definition 3. Temporal Network Neighborhood Given a temporal occurrence v^{t_v} , the neighborhood of v^{t_v} is defined as

$$N_{FT}(v^{t_{v}}) \coloneqq \{v_{i}^{t_{v_{i}}} | f_{sp}\left(v_{i}^{t_{v_{i}}}, v^{t_{v}}\right) \le d_{N_{FT}}, \left|t_{v} - t_{v_{i}}\right| \le t_{N_{FT}}\}$$

where f_{sp} denotes the shortest path distance, $d_{N_{FT}}$ is the user-defined neighborhood range, and $t_{N_{FT}}$ refers to the user-defined neighborhood time window.

Temporal Interaction Network Generation

• Problem 1. Temporal Interaction Network Generation

- Given: a temporal interaction network \tilde{G} , which is represented as a collection of timestamped edges $\tilde{E} = (e_1^{t_{e_1}}, e_2^{t_{e_2}}, \dots, e_m^{t_{e_m}})$.
- Find: a synthetic temporal interaction network \tilde{G}' that accurately captures the structural and temporal properties of the observed temporal network \tilde{G} .

Roadmap

- Motivation
- Problem Definition
- Proposed TagGen Framework
- Experiments
- Conclusion

An Overview of TagGen

1. A novel context extraction strategy for temporal interaction networks.

2. A family of local operations to perform addition and deletion of nodes and edges.

> 3. A bi-level self-attention mechanism.

18

S1: Context Sampling

Importance of v^{t_v}

- Goal: select initial nodes for conducting temporal random walks.
- Assumption: weak dependence.

Sampling distribution For any $v^{t_v} \in \tilde{G}$, the corresponding temporal neighborhood distribution and topology neighborhood distribution satisfy a weak dependence, just in case, for δ >0,

$$p(v^{t_{\upsilon}}|\mathcal{N}_{FT}(v^{t_{\upsilon}})) \geq \delta[p(v^{t_{\upsilon}}|\mathcal{N}_{T}(v^{t_{\upsilon}}))p(v^{t_{\upsilon}}|\mathcal{N}_{S}(v^{t_{\upsilon}}))].$$

- S1: Context Sampling
 - Solution: context sampling rule.

Lemma 1. For any $v^{t_v} \in \tilde{G}$, if the corresponding temporal neighborhood distribution and topology neighborhood distribution satisfy a weak dependence, then the following inequality holds:

- S2: Sequence Generation
 - Goal: generate synthetic temporal random walks.

• Solution: mimic dynamic network evolution via local operations.

Add a temporal node

Remove a temporal node

- S3: Sequence Discrimination
 - Goal: select synthetic random walks that are plausible in the input graph.
 - Solution: a bi-level self-attention mechanism.
 - maximize the action likelihood $p(\widetilde{W}^{(i)}_{action}|W^{(1\sim l)})$ via the deep autoregressive model $f_{\theta}(\cdot)$.

$$p(\widetilde{W}_{action}^{(i)}|W^{(1\sim l)}) \propto p_{action}(action)f_{\theta}(\widetilde{W}_{action}^{(i)})$$

- $p_{action} = \{p_{add}, p_{delete}\}$, where $p_{add} + p_{delete} = 1$.
- \widetilde{W}_{action} : generated random walk sequence after a sampled action.

- 53: Sequence Discrimination
 - Solution: a bi-level self-attention mechanism.

- 54: Graph Assembling
 - Goal: assemble all the generated temporal random walks and generate the temporal interaction networks.
 - Solution: assembling rules to avoid some rare temporal occurrences (i.e., with a small degree) are not sampled.
 - Sample at least one temporal edge starting from each temporal node with probability $p(v^{t_v})$.
 - Sample at least one temporal edge at each timestamp with probability $p(e^{t_e})$.
 - Stop until the generated graph has the same edge density as the input graphs.

Roadmap

- Motivation
- Problem Definition
- Proposed TagGen Framework
- Experiments
- Conclusion

Experimental Setup

- Comparison Methods
 - Random graph models: E-R, B-A.
 - Temporal network embedding models: HTNE, DAE.
 - Deep graph generative models: GAE, NetGAN.
- Datasets

Network	Nodes	Temporal Edges	Timestamps
EMAIL	986	332,334	26
DBLP	1,909	8,237	15
WIKI	7,118	95,333	6
MSG	1,899	20,296	28
BITCOIN	3,783	24,186	117
SO	3,262	13,077	36
MO	13,840	195,330	20

Experimental Setup

• Network Properties for Evaluating Graph Generation

Metric name	Computation	Description	
Mean Degree	$\mathbb{E}[d(a)]$	Mean degree of nodes in	
	$\mathbb{E}[a(0)]$	the graph.	
Claw Count	$\sum_{v \in \mathcal{A}} (d(v))$	Number of the claw of the	
	$\angle v \in V \begin{pmatrix} 3 \end{pmatrix}$	graph.	
Wedge Count	$\sum_{v \in \mathcal{A}} (d(v))$	Number of wedges of the	
	$\angle v \in V \begin{pmatrix} 2 \end{pmatrix}$	graph.	
LCC		Size of the largest connected	
		component of the graph,	
	$\max_{f \in F} \ f\ $	where F is the set of all	
		connected components in	
		the graph.	
PLE	$1 + n(\sum_{i=1}^{n} \log(\frac{d(u)}{u}))^{-1}$	Exponent of the power-law	
	$1 + n(\sum_{u \in V} \log(\frac{1}{d_{min}}))$	distribution of the graph.	
N-Component		Number of connected	
		components, where F is the	
		set of all connected	
		components in the graph.	

Experimental Setup

- Evaluation Metrics for Graph Generation
 - Original graph $\tilde{G} = {\tilde{G}^{(1)}, \tilde{G}^{(2)}, \dots, \tilde{G}^{(T)}}.$
 - Generated graph $\widetilde{G}' = \{\widetilde{G}'^{(1)}, \widetilde{G}'^{(2)}, \dots, \widetilde{G}'^{(T)}\}.$
 - Selected network property $f_m(\cdot)$, e.g., Mean Degree, LCC.
 - Average discrepancy.

$$f_{avg}(\widetilde{G}, \widetilde{G'}, f_m) = Mean_{t=1:T}(|\frac{f_m(\widetilde{S}^t) - f_m(\widetilde{S'}^t)}{f_m(\widetilde{S}^t)}|)$$

• Median discrepancy.

$$f_{med}(\widetilde{G}, \widetilde{G'}, f_m) = Median_{t=1:T}(|\frac{f_m(\widetilde{S}^t) - f_m(\widetilde{S'}^t)}{f_m(\widetilde{S}^t)}|)$$

Temporal Interaction Network Generation

$$f_{avg}(\widetilde{G}, \widetilde{G'}, f_m) = Mean_{t=1:T}(|\frac{f_m(\widetilde{S^t}) - f_m(\widetilde{S'})}{f_m(\widetilde{S^t})}|)$$

Quantitative Evaluation in Average Discrepancy

Temporal Interaction Network Generation

 Fine-Grained Quantitative Evaluation in BITCOIN across 117 Timestamps

Data Augmentation

• Data Augmentation in the Task of Anomaly Detection and Link Prediction

Scalability Analysis

 Scalability Analysis w.r.t. Controlled Increasing # of Nodes and Edge Density

5000

(pugae density) 5000 FinTech (pugae density) (pugae density)

(a)Running Time v.s # of nodes

(b) Running Time v.s edge density

Roadmap

- Motivation
- Problem Definition
- Proposed TagGen Framework
- Experiments
- Conclusion

Conclusion

Results

- Technical Innovations
 - A novel context extraction strategy for temporal interaction networks.
 - A bi-level self-attention mechanism to ensure quality of the generated temporal graph.

- TagGen outperforms baseline methods in the tasks of temporal interaction network generation and data augmentation.
- TagGen runs in linear time w.r.t. the size of graphs.

Thank You!

Dawei Zhou (UIUC)

Lecheng Zheng (UIUC)

Jiawei Han (UIUC)

Jingrui He (UIUC)

Paper: https://sites.google.com/view/dawei-zhou/publications?authuser=0

Data and code: <u>https://github.com/davidchouzdw/TagGen</u>