
Rare Category Detection on Time-Evolving Graphs
Dawei Zhou

Arizona State University
davidchouzdw@gmail.com

Kangyang Wang
Arizona State University
wky91916@gmail.com

Nan Cao
IBM T.J. Watson Research

nan.cao@gmail.com

Jingrui He
Arizona State University
jingrui.he@gmail.com

Abstract—Rare category detection(RCD) is an important topic
in data mining, focusing on identifying the initial examples from
rare classes in imbalanced data sets. This problem becomes more
challenging when the data is presented as time-evolving graphs,
as used in synthetic ID detection and insider threat detection.
Most existing techniques for RCD are designed for static data
sets, thus not suitable for time-evolving RCD applications.

To address this challenge, in this paper, we first propose
two incremental RCD algorithms, SIRD and BIRD. They are
built upon existing density-based techniques for RCD, and
incrementally update the detection models, which provide ‘time-
flexible’ RCD. Furthermore, based on BIRD, we propose a
modified version named BIRD-LI to deal with the cases where
the exact priors of the minority classes are not available. We
also identify a critical task in RCD named query distribution. It
aims to allocate the limited budget into multiple time steps, such
that the initial examples from the rare classes are detected as
early as possible with the minimum labeling cost. The proposed
incremental RCD algorithms and various query distribution
strategies are evaluated empirically on both synthetic and real
data.

Index Terms—Rare Category Detection, Time-evolving Graph
Mining, Incremental Learning

I. INTRODUCTION

In the era of big data, tremendous amount of data in a
variety of areas is being generated at an unprecedented speed.
However, it is often the case that, only a small percentage
of the data is of interest to us. For example, in synthetic
ID detection [13], only a very small number of identities are
faked ones generated by mixing the identifying information
from multiple sources. Such identities are created for the sole
purpose of committing financial fraud. Another example is
insider threat detection [4], where only a small number of users
in a big organization are malicious insiders, aiming to attack
the organization or its employees via sabotage, espionage, etc.
The small percentage of data of interest to us is called the
minority class, or rare category, since such examples are often
self-similar. Due to their rarity nature and the limited budget on
querying the labeling oracle, who can provide the true label of
any example at a fixed cost, it is difficult to identify examples
from such classes via simple random sampling. To address this
problem, rare category detection has been proposed to identify
the very first example from the minority class, by requesting
only a small number of labels from the oracle.

Most, if not all, of existing rare category detection tech-
niques are designed for static data. However, in many real-
world applications, the data is evolving over time, so is the
minority classes. For example, in synthetic ID detection, each
identity may keep updating his/her information over time, such

as daily transactions and real-time online banking activities; in
insider threat detection, the insiders intentionally change their
behavior patterns over time to avoid being caught. For such
applications, straight-forward application of existing RCD
techniques would be very time-consuming by constructing the
models from scratch at each time step. Furthermore, besides
the limited budget on querying the labeling oracle, in these
applications, it is also critical to detect the initial rare examples
as early as possible to avoid further damage.

To address this problem, in this paper, for the first time,
we study the problem of incremental RCD. To be specific, we
first propose two incremental algorithms, i.e., SIRD and BIRD,
to detect the initial examples from the minority classes under
different dynamic settings. The key idea is to efficiently update
our detection model by local changes instead of reconstructing
it from scratch on the updated data at a new time step, so as to
reduce the time cost of redundant and repeating computations.
Furthermore, we provide a modified version – BIRD-LI, which
relaxes the requirement of the exact priors with a soft upper
bound for all the minority classes. Finally, we study a unique
problem of query distribution in the dynamic settings, which
distributes allocated labeling budget to different time steps,
and propose five query distribution strategies.

The rest of our paper is organized as follows. In Section II,
we briefly review the related work on both RCD and time-
evolving graph mining. In Section III, we study incremental
RCD and propose three algorithms for addressing different
dynamic settings, i.e., SIRD, BIRD and BIRD-LI. Then, in
Section IV, we introduce the unique problem of query dis-
tribution in the dynamic settings, and propose five strategies
for allocating the labeling budget to different time steps. In
Section V, we demonstrate our models on both synthetic and
real data sets. Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Rare Category Detection
Lots of technologies have been developed for the problem

of RCD in the past few years. [12] proposed a mixture
model-based algorithm, which is the first attempt in this area.
In [6] [7], the author developed an innovative method to de-
tect rare categories via unsupervised local-density-differential
sampling strategy. [3] presented an active learning scheme via
exploiting the cluster structure in data sets. In [8], RACH was
proposed for rare category characterization by an optimization
framework. More recently, in [11], two prior-free methods
were proposed in order to address the rare category detection

problem without any prior knowledge. In [16], the authors
proposed a framework named MUVIR, which could leverage
multiple existing rare-category-detection methods in the multi-
view vision. However, few works have been found to address
the dynamic-setting rare category detection. In this paper, we
study the problem of how to efficiently and incrementally learn
from time-evolving graph and effectively detect rare categories
over time.

B. Time-evolving Graph Mining
In recent years, more and more researches have been con-

ducting on time-evolving graph mining. For example, in [10],
the authors analyzed the properties of the time evolution
of real graphs and proposed a forest fire graph-generative
model; [2] studied the problem of community evolution
and developed a novel method to measure the movement of
individuals among communities; in [15], authors proposed a
fast proximity tracking method for dynamic graphs; in [9], the
authors focused on the difficulties of conversation dynamics
and proposed a simple mathematical model in order to gener-
ate basic conversation structures; in [5], the authors proposed a
new graph-pattern matching algorithm, which can avoid cubic-
time computation; [1] raised a divide-and-conquer framework,
which could find the k-nearest-neighbors efficiently on large
time-evolving graphs; in [14], the authors launched a fast
algorithm which could detect the node relationships for lo-
calizing anomalous changes in time-evolving graphs. In this
paper, we propose several fast-updating RCD methods which
could incrementally update the models based on local changes
on time-evolving graphs. The correctness of our algorithms is
demonstrated by both theoretical proof and experiments.

III. INCREMENTAL RARE CATEGORY DETECTION

In this section, we introduce the proposed framework for
time-evolving rare category detection.

A. Notation

+ΔS(2) S(1) +ΔS(3) S(2) +ΔS(T) S(T-1) S(T)

 M(1) M
(2)

…
 M
(T-1) M(T)

Normalization

Time-evolving Graphs

1 2 … T-1 T

Fig. 1: Time-evolving Graphs

Suppose we are given n unlabeled examples {x1, · · · , xn},
and observe m(t) updated edges at time step t. We assume
yi = 1 corresponds to the majority class with prior p(t)1 , and
the remaining classes are the minority classes with prior p(t)c .
We use capital S(t) to represent the aggregated adjacency
matrix and ∆S(t) to denote the new edges and updated
weights that appear at time step t. Specifically, we have
∆S(t) = S(t)−S(t−1). We use M (t) to denote the normalized
aggregated adjacency matrix, which is calculated from S(t).

In the following part of this paper, we use the convention
in Matlab to represent matrix elements, e.g., M (t)(i, j) is the

element at ith row and the jth column of matrix M (t), and
M (t)(:, j) is the jth column of matrix M (t), etc.

B. Static Rare Category Detection
Static RCD refers to a problem of repeatedly selecting ex-

amples to be labeled by oracle until all the minority classes in a
static data set are discovered. One very successful approach for
static RCD is to make use of manifold structure and identify
rare category examples. In [7], authors developed a graph-
based RCD method named GRADE. In GRADE algorithm,
they first construct a pair-wise similarity matrix W ′ and its
corresponding diagonal matrix D, whose elements are the row
sum of W ′. And then, they calculate the normalized matrix
W as follows:

W = D−1/2W ′D−1/2

Based on the normalized pair-wise similarity matrix W , they
construct a global similarity matrix A by applying random
walk with restart (RWR), which is shown as follows:

A = (In×n − αW)−1

By constructing the global similarity matrix, the changes of
local density would become sharper near the boundary of
the minority classes. Based on this intuition, GRADE could
identify minority classes with much less queries than random
sampling. However, the time complexity of calculating the
global similarity matrix and finding each example’s (K)th

nearest neighbor is O(n3 + K · n2), which is not efficient
enough for time-evolving RCD applications.

C. Dynamic Rare Category Detection
In this subsection, we introduce two fast-updating incremen-

tal RCD algorithms (SIRD and BIRD) for dealing with the
RCD problem on time-evolving graphs. These two methods
greatly reduce the computation cost for both updating global
similarity matrix and finding each example’s Kth nearest
neighbor. To specify this problem, we have the following
assumptions: (i) the number of examples is fixed, and only
edges change over time; (ii) dataset is imbalanced; (iii)
minority classes are not separable from the majority classes.

1) Single Update: We first consider the simplest case: only
one self-loop edge (a, a) changes at time step t. In other
words, there is only one non-zero element (a, a) in 4S(t).

To address this problem, we first introduce Theorem 1 to
update the global similarity matrix A(t) more efficiently. Due
to page limitation, all proofs in this paper are omitted.

Theorem 1. The global similarity matrix A(t) at time step t
can be exactly updated from global similarity matrix A(t−1)

at last time step t− 1 by the following equation:

A(t) = A(t−1) + α
A(t−1)uvTA(t−1)

I + vTA(t−1)u

where u and vT are the two vectors decomposed from updating
matrix δM (t)

In our methods, we use an approximate method to calculate
two column vectors u and v. The details are described as
follows. We firstly assume that the updated edges at time step

t have little impact on the row sum of adjacency matrix M t

when the number of updated edges are extremely smaller than
total number of edges. Thus, we have

D(t) ∼= D(t−1)

To normalize S(t) and S(t−1), we have:

M (t) = (D(t))−1/2S(t)(D(t))−1/2 (1)

M (t−1) = (D(t))−1/2S(t−1)(D(t−1))−1/2 (2)

Let Eq. 1 	 Eq. 2, we have

∆M (t) = (D(t−1))−1/2∆S(t)(D(t−1))−1/2 (3)

As ∆M (t) = uvT , we could easily assign u = D(:, a)−1/2

and v = ∆S(t)(a, b)D(:, b)−1/2.
Besides, as the time complexity of constructing a new

neighbor information matrix NN (t) is O(K(t) · n2). We
introduce the Theorem 2 to efficiently update NN (t).

Theorem 2. Suppose there is only one self loop edge (a, a)
being updated at time step t. If it satisfies the condition that

α
I+vTA(t−1)u

≤ δ
(t−1)
i

A
(t−1)
i,a φa

, the first K(t) elements in NN (t)(i, :)

are the same as NN (t−1)(i, :).

The single-update incremental RCD algorithm (SIRD) is
shown in Algorithm 1. In Step 1 to Step2, we firstly initial-
ize the diagonal matrix D and neighbor information matrix
NN (1) at time step 1. In Step 4, let K(t) represents the number
of examples in the largest minority class at time step t. Then,
from Step 5 to Step 6, we update the global similarity matrix
at each time step. Step 7 to Step 9 updates the rows in NN (t),
of which the K(t) largest elements are changed. Step 11 to
20 is the query process. First of all, we calculates the class
specific ac in Step 13, which is the largest global similarity
to the k(th)c nearest neighbor. Then, in Step 14, we count the
number of its neighbors whose global similarity larger than or
equal to ac, and let nci denote the counts for each example xi.
In Step 16, we calculate the score of each example xi, which
represents the change of local density. At last, we select the
examples with the largest score and let them be labeled by
oracle. The query process only terminates as long as all the
minority classes are discovered.

The efficiency of the updating process for Algorithm 1 is
given by the following lemma.

Lemma 1. The computational cost of updating process at each
time step in Algorithm 1 is O(n2 + l ·K(t) · n).

2) Batch Update: In most real world applications, we may
always observe that a batch of edges change at the same
period. Specifically, the updated aggregated adjacency matrix
∆M (t) may have more than one non-zero elements. Hence,
∆M (t) can not be decomposed into two column vectors, and
Theorem 2 could not be applied in this condition. In this part,
we introduce Theorem 3 to helps us to update the neighbor
information matrix NN (t) when batch of edges are changed.

Theorem 3. Suppose there are m edges
{(a1, b1), · · · , (am, bm)} being updated at time step t.

The first K(t) elements in NN (t)(i, :) are the same as
NN (t−1)(i, :), if it satisfies the condition that

α

I + V TA(t−1)U
≤ min
i=1,...,m

{Ti}

where Ti = min{ δ
(t−1)
i

A
(t−1)

i,ai φbi

,
δ
(t−1)
i

A
(t−1)

i,bi
φai

}.

Algorithm 1 SIRD Algorithm

Input: M (1), A(1), ∆S(2), . . . ,∆S(T), p(t)c , α.
Output: The set I of labeled examples

1: Construct the n × n diagonal matrix D, where Dii =∑n
(j=1) S

(1), i = 1, . . . , n.
2: Sort row i of A(1) and saved into NN (1)(i, :), where i =

1, . . . , n.
3: for t=2:T do
4: Let K(t) = maxCc=2 n× p

(t)
c .

5: Let column vector u = D(:, a)−1/2 and column vector
v = ∆S(t)(a, a)D(:, a)−1/2, where ∆S(t)(a, a) is the
non-zeros element in ∆S(t).

6: Update the global similarity matrix as follows:

A(t) = A(t−1) + α
A(t−1)uvTA(t−1)

I + vTA(t−1)u

7: for i=1:n do
8: Based on Theorem 2, identify whether the first K(t)

elements of NN (t) (i,:) is changed. If true, update
the first K(t) element in NN (t)(i, :); otherwise, let
NN (t)(i, :) = NN (t−1)(i, :).

9: end for
10: end for
11: for c = 2:C do
12: Let kc = n× p(T)

c

13: Find the first kc element in each row of NN (T). Set ac

to be the largest value of them.
14: Let KNN c(xi, a

c) = {x|NN (T)(i, j) > ac}, and
nci = |KNN c|, where i = 1, . . . , n and j = 1, . . . , n.

15: for index = 1: n do
16: For each nodes xi has been labeled yi, if

A(T) > ayi , scorej = −∞; else, let scorei =
maxA(T)(i,j)> ac

index
(nci − ncj)

17: Select the examples x with largest score to oracle.
18: If the label of x is exact class c, break; else, mark

the class that x belongs to as discovered
19: end for
20: end for

The Batch-update Incremental Rare Category Detection
(BIRD) is shown in Algorithm 2. Step 1 and Step 2 are the
initialization process. Step 3 to 12 updates the global similarity
matrix A(t) and neighbor information matrix NN (t). Different
from Algorithm 1, Step 5 to Step 8 iteratively updates the
global similarity matrix A(t) based on m(t) changed edges.
Another difference is that, in Step 10, T is the minimum value
of the thresholds calculated from m(t) updated edges. At last,
Step 13 to Step 20 is the query process, which is the same as
what we have described in Algorithm 1.

The efficiency of batch-edges updating in Algorithm 2 is
proved by the following lemma.

Lemma 2. In Algorithm 2, the computational cost of the
updating process at each time step is O(m(t)n2 + l ·K(t) ·n).

Algorithm 2 BIRD Algorithm

Input: M (1), A(1), ∆S(2), . . . ,∆S(T), p(t)c , α.
Output: The set I of labeled examples

1: Construct the n × n diagonal matrix D, where Dii =∑n
(j=1) S

(1), i = 1, . . . , n.
2: Sort row i of A(1) and saved into NN (1)(i, :), where i =

1, . . . , n.
3: for t=2:T do
4: Let K(t) = maxCl=c n× p

(t)
c .

5: for m = 1: m(t) do
6: Let column vector u = D(:, am)−1/2 and col-

umn vector v = ∆S(t)(am, bm)D(:, bm)−1/2, where
∆S(t)(a, a) is the non-zeros element in ∆S(t).

7: Update the global similarity matrix as follows:

A(t) = A(t−1) + α
A(t−1)uvTA(t−1)

I + vTA(t−1)u

8: end for
9: for i=1:n do

10: Based on Theorem 3, identify whether the first
K(t) elements of NN (t) (i,:) is changed. If true,
update the K(t) element in NN (t)(i, :); otherwise,
let NN (t)(i, :) = NN (t−1)(i, :).

11: end for
12: end for
13: while not all the classes have been discovered do
14: Calculate ni for each examples, where i = 1, . . . , n.
15: for index = 1: n do
16: For each nodes xi has been labeled yi, if

A(T) > a, scorej = −∞; else, let scorei =
maxA(T)(i,j)> a

index
(ni − nj)

17: Select the examples x with largest score to labeling
oracle.

18: mark the class that x belongs to as discovered.
19: end for
20: end while

D. BIRD with less information
In many applications, it may be difficult to obtain the

exact priors of all the minority classes. In this subsection,
we introduce BIRD-LI, a modified version of BIRD, which
requires only an upper bound pt for all the minority classes
existing at time step t. To be specific, BIRD-LI firstly calcu-
lates NN (1) and diagonal matrix D at the first, which is the
same as BIRD. Then, the global similarity matrix A(T) and the
neighbor information matrix NN (T) could be updated from
the first time step to the time step T . The only difference
between BIRD and BIRD-LI is the size of minority class K(t)

is calculated based on an estimated upper bound prior instead
of the exact ones for all minority classes. After the updating
process, it calculates an overall score for the minority classes

and select the examples with the largest overall score to be
labeled by oracle. BIRD-LI only terminates the loop until all
the classes are discovered.

IV. QUERY DYNAMICS

A. Query Locating
First of all, we introduce the query locating problem. In real

world applications, it could be the case that we are given a
series of unlabeled time-evolving graphs S(1), S(2), . . . , S(T),
and we need to select an optimal time step Topt for identifying
minority class.

Before talking about our methods, let us introduce the two
main factors that affect the required number of queries in rare
category detection. The first factor is P (y = 2|xi), which is
the probability that example xi belongs to minority class given
the features of xi. Many works have already studied it before,
such as MUVIR [16], GRADE [7] and NNDM [6]. Another
factor is the density Di of xi. Because when the proportions
of minority classes are fixed, the density of minority classes
located area would directly impact the hardness of RCD.
When the density of neighborhood is higher, it means we
need identify rare category examples from a larger set of
candidates. Considering the second factor, we introduce the
following theorem to estimate density Di based on the global
similarity matrix constructed before.
Theorem 4. For each example xi, the density of xi is positive
correlated with D(t)

i , where D(t)
i = Σnj=1A

(t)
i,j , i = 1, · · · , n.

We let score(t) = P (y = 2|x(t)i), which could be obtained
using existing techniques such as MUVIR [16] or GRADE [7].
Under this circumstance, we propose to assign the hardness
of identifying minority class at time step t as follows:

I(t) =

{
kc max

i=1,...,kc

score
(t)
i

D
(t)
i

}−1
(4)

where kc is the number of examples in minority class c.
Let RS(t) denote the number of required queries by ran-

dom sampling at time step t. And, Let C = RS(1)−RS(T)

T .
Intuitively, we could achieve optimal solution Topt, when the
difference between the “exact” saved number of queries and
estimate saved number of queries C ∗Topt is maximized. The
formulation is shown as follows:

max
t=1,...,T

I(1) − I(t)

I(1) − I(T)
· (RS(1) −RS(T))− C · t (5)

B. Query Distribution
In this subsection, we will talk about a more general

problem: Query Distribution. In real world applications, it
could be the case that the updated graphs come as streams, and
we need to allocate our query budget into multiple incoming
time steps. So, is there a method to allocate the queries
properly into different time steps, and enable us to find the
minority class examples with both minimum query budget and
minimum time budget?

To further study the query dynamic problem, we propose
5 potential strategies for the query distribution problem: S1

Allocate all the budget at the first time step; S2 Allocate all the
budget at the last time step; S3 Allocate all the budget at time
step Topt; S4 Allocate the query budget evenly into different
time steps; S5 Allocate the query budget into different time
steps following exponential distribution, such as e−αt.

For query distribution problem, we propose Algorithm 3.
Different from the query process of Algorithm 2, in Step 3,
we need to apply a strategy to calculate the certain budget
B(t) for time step t. If we have not found the minority class
within B(t) at time step t, then we go to the next time step.
The overall algorithm stops either when minority classes are
discovered or there is no budget to use.

We compare the performance of these five strategies with
both synthetic data set and real data set in Section V.

Algorithm 3 Query Distribution Algorithm

Input: S,M (1),A(1),NN (1),∆S(2), . . . ,∆S(T),p(t),α.
Output: The set I of labeled examples and the L of their

labels
1: for t = 1:T do
2: Let K(t) = maxCl=c n× p

(t)
l .

3: Calculate B(t) as Given Strategy S.
4: Calculate NN (t) as described in Algorithm 2.
5: while not all the classes have been discovered do
6: Find the (K(t))th element in each row of NN (t). Set

ac to be the largest value of them.
7: Let KNN c(xi, a

c) = {x|NN (T)(i, j) > ac}, and
nci = |KNN c|, where i = 1, . . . , n and j = 1, . . . , n.

8: for index = 1: B(t) do
9: For each nodes xi has been labeled yi, if

A(T) > ayi , scorej = −∞; else, let scorei =
maxA(T)(i,j)> ac

index
(nci − ncj)

10: Select the examples x with largest score to labeling
oracle.

11: If the label of x is exact class c, break; else, mark
the class that x belongs to as discovered

12: end for
13: end while
14: If all the minority classes are discovered, break.
15: end for

V. EXPERIMENTS

A. Effectiveness

Name n d m Largest-Class Smallest-Class
Abalone 4177 8 5 56.93% 0.41%
Adult 48842 14 2 1.30% 98.70%
Statlog 58000 9 6 79.16% 0.04%

TABLE I: Real Datasets

First of all, we demonstrate the effectiveness upon 1000
synthetic datasets and 3 real data sets. For the synthetic
datasets, we generate 1000 synthetic datasets, and each of
them contains 5000 examples, two classes. And, we initialize
the priors of the minority classes as 1% and increase these
priors by 1% in each time step. For the real datasets, it

1 2 3 4 5 6 7
0

20

40

60

80

100

Time Step

Q
u

e
ri
e
s

RS

BIRD-LI

BIRD

GRADE

(a) Synthetic Data

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

450

Time Step

Q
u
e
ri
e
s

RS

BIRD-LI

BIRD

GRADE

(b) Abalone

1 2 3 4 5 6 7
0

20

40

60

80

100

120

Time Step

Q
u

e
ri
e

s

RS

BIRD-LI

BIRD

GRADE

(c) Adult

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Q
u
e
ri
e
s

Time Step

RS

BIRD-LI

BIRD

GRADE

(d) Statlog

Fig. 2: Effectiveness

is really difficult to find proper real datasets satisfying the
scenario setting of both rare category detection and time-
evolving graphs. In this case, we find 3 real datasets which
meet the scenario of rare category detection. The details of
these 3 real datasets are summarized in Table 1. And then, we
generate additional 6 time-evolving graphs in the latter time
steps. For these time-evolving graphs, we let the proportion of
one certain minority class increase by 1% and simultaneously
let the proportion of the majority class decrease by 1% in
each time step. Fig. 2(a) shows the comparison results of 4
different methods: random sampling(RS), BIRD, BIRD-LI and
GRADE. Notice that BIRD and BIRD-LI perform the query
process upon the approximate aggregated adjacency matrix,
while GRADE is performed on the exact adjacency matrix
at each time step. Besides, we input BIRD-LI with a much
looser prior upper bound, e.g., we input 5% as the upper bound
instead of using the exact prior of 1%. And then, we perform
the same comparison experiments on 3 real data sets, which
is shown in Fig. 2(b), Fig. 2(c) and Fig. 2(d). In general, we
have the following observations: (i) both BIRD and BIRD-
Li outperform random sampling in any conditions; (ii) all of
these 4 methods perform better when prior of minority class
is getting larger; (iii) BIRD gives a comparable performance
as GRADE; (iv) BIRD-LI is quite robust and requires only a
few more queries than BIRD in most cases.

B. Efficiency of Batch Update

For both BIRD and GRADE, the most time consuming step
is updating the global similarity matrix A(t) and neighbor in-
formation matrix NN (t) in each time step. In this subsection,
we report the running time of updating A(t) and NN (t) from
an initial time step to the second time step. To better visualize
the performance, we run the experiment on an increasing size
of graph, i.e., from 500 examples in graph to 1000 examples
in graph. And for each certain size, we have 100 identical-
setting datasets. Each point in Fig. 3 is computed based on
the average value of the 100 datasets in identical settings. As

we talked before, the computation cost of GRADE is O(n3),
and our method only costs O(n2). From Fig. 3, we can see
the difference of running time is largely increasing over time.
The difference is limited when the number of examples is
500. However, when the size of graph goes to 10000, the
running time of BIRD is 6.227 seconds, while the running
time of GRADE is 41.41 seconds, which is 7 times of BIRD.
Moreover, the difference will be extraordinarily enlarged again
when we run algorithms on a series of time steps. We ran the
experiments with Matlab 2014a on a workstation with CPU
3.5 GHz 4 processors, 256 GB memory and 2 T disk space.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

of Example in Grapha

R
u
n
in

g
 T

im
e

Exact Update (GRADE)

Fast-Batch-Update (BIRD)

Fig. 3: Efficiency

C. Query Dynamics
In this subsection, we perform the results of query locating

and query distribution. In Fig. 4, we apply the query locating
methods on 3 real datasets. As the proportion is increasing over
time, the labeling request is decreasing in general. Besides, we
also observe that Topt is always located at left bottom of each
graph, which meets our ALAP and AEAP intuitions.

0 2 4 6 8
0

50

100

150

200

Time Step

Q
u
e
ri
e
s

(a) Abalone

0 2 4 6 8
0

20

40

60

80

Time Step

Q
u
e
ri
e
s

(b) Adult

0 2 4 6 8
30

35

40

45

50

Time Step

Q
u
e
ri
e
s

(c) Statlog

Fig. 4: Query Locating

Furthermore, by applying Algorithm 3, we perform the
results of 5 different strategies on one binary-class synthetic
dataset and one binary-class real dataset, i.e. Adult. In both
Fig. 5(a) and F.g 5(b), we observe that Strategy S1 is always
located at the left top of the figure, which hold the time
optimal; Strategy S2 is always located at the right bottom
of the figure, which hold the budget optimal; Strategy S3 is
always located at the left bottom of the figure, which leverage
both the time and budget factor. All of these 3 observations
meet our intuitions.

0 2 4 6 8
0

20

40

60

80

Time Step

Q
u
e
ri
e
s

S1

S2

S3

S4

S5

(a) Synthetic Dataset

0 2 4 6 8
0

10

20

30

40

Time Step

Q
u
e
ri
e
s

S1

S2

S3

S4

S5

(b) Real Dataset(Adult)

Fig. 5: Query Distribution

VI. CONCLUSION AND FUTURE WORK

In this paper, we mainly focus on the problem of how to
efficiently and incrementally identify under-represented rare
category examples from time-evolving graphs. To the best
of our knowledge, we are the first attempt on RCD under
these dynamic settings. The major contribution of this paper
could be summarized as follows: (1)A novel problem setting
of rare category detection on time-evolving graphs; (2)Two
fast incremental RCD algorithms in dynamic settings, i.e.,
SIRD and BIRD, and the analysis regarding their efficiency
and effectiveness; (3)Fast update algorithm BIRD-LI for the
cases where the exact priors of minority classes are unknown;
(4)Preliminary study on query distribution, which is unique
in the dynamic settings; (5)Extensive experiments on both
synthetic and real data sets. In our future works, we will
continue studying RCD under dynamic settings, especially
the problem of query distribution. A very interesting and
challenging research direction is how to allocate optimal query
budget and detect rare categories in real time settings.

REFERENCES

[1] L. Akoglu, R. Khandekar, V. Kumar, S. Parthasarathy, D. Rajan,
and K.-L. Wu. Fast nearest neighbor search on large time-
evolving graphs. In ECML PKDD. Springer, 2014.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and
evolution. In ACM SIGKDD, 2006.

[3] S. Dasgupta and D. Hsu. Hierarchical sampling for active
learning. In ICML, 2008.

[4] W. Eberle, J. Graves, and L. Holder. Insider threat detection
using a graph-based approach. Journal of Applied Security
Research, 2010.

[5] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern
matching. TODS, 2013.

[6] J. He and J. G. Carbonell. Nearest-neighbor-based active
learning for rare category detection. In NIPS, 2007.

[7] J. He, Y. Liu, and R. Lawrence. Graph-based rare category
detection. In ICDM, 2008.

[8] J. He, H. Tong, and J. Carbonell. Rare category characterization.
In ICDM, 2010.

[9] R. Kumar, M. Mahdian, and M. McGlohon. Dynamics of
conversations. In ACM SIGKDD, 2010.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explana-
tions. In ACM SIGKDD, 2005.

[11] Z. Liu, K. Chiew, Q. He, H. Huang, and B. Huang. Prior-free
rare category detection: More effective and efficient solutions.
Expert Systems with Applications, 2014.

[12] D. Pelleg and A. W. Moore. Active learning for anomaly and
rare-category detection. In NIPS, 2004.

[13] C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive
survey of data mining-based fraud detection research. ICICTA,
2010.

[14] K. Sricharan and K. Das. Localizing anomalous changes in
time-evolving graphs. In ACM SIGMOD, 2014.

[15] H. Tong, S. Papadimitriou, S. Y. Philip, and C. Faloutsos.
Proximity tracking on time-evolving bipartite graphs. In SIAM
SDM, 2008.

[16] D. Zhou, J. He, K. Candan, and H. Davulcu. Multi-view rare
category detection. In IJCAI, 2015.

