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▪ Def: A subgraph of a high density

▪ Examples:

– Clique: each node connects to every other node in the graph

– 𝛼-Quasi-Clique: a graph that has 𝑛 nodes and at least 
𝛼𝑛 𝑛−1

2
edges

– K-core: each node has a degree at least 𝑘

Dense Subgraph: What?

𝐾5

density=1

0.8-Quasi-Clique

density=0.8

3-core

density=0.8
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Dense Subgraph: Why?

▪ Applications
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Spam Link Farms [Gibson’05]

Community Detection [Sozio’10]

Story Identification [Angel’13]

Fraud Detection [Hooi’16]
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Dense Subgraph: Why?
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▪ Synthetic Identity Detection



Arizona State University

Dense Subgraph: How?

▪ Density Measures

– Edge density: 𝑑 =
2𝑚

𝑛(𝑛−1)

– Average degree: 𝑑 =
2𝑚

𝑛

– Triangle density: 𝑑 =
# 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛(𝑛−1)(𝑛−2)/6

▪ Existing Methods

– Densest subgraph: greedy method [Charikar’00]

– k-clique [Tsourakakis’15], k-core, k-plex

– Denser than the densest [Tsourakakis’13]

▪ Key Idea: to flatly extract one or more partitions in a graph
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edge density=0.8

average degree=3.2

triangle density=0.3
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Why Hierarchical Dense Subgraphs?

▪ A more comprehensive view of dense subgraph structures

▪ Example:
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Philip S. Yu

Jiawei Han Christos 

Faloutsos

Mid-career researchers

Early-stage 

researchers
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▪ C1. Optimization Formulation

– Flat detection: quadratic optimization constrained on simplex

– Question: how to formulate multiple hierarchies together?

▪ C2. Optimization Algorithm

– Flat detection: non-convex or polynomial approximation 

– Question: how to develop an effective and scalable algorithm?
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Challenges: Hierarchical Dense Subgraphs

max
𝒙

𝒙𝑇𝑨𝒙

𝑠. 𝑡 ෍

𝑖=1

𝑛

𝒙𝑖
𝛽
= 1, 𝒙𝑖 ≥ 0

To maximize the number of 

edges in the subgraph
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▪ C3. Generalizations

– Question: How to generalize to bipartite graphs?

– Question: How to detect for a set of certain query nodes?

Challenges: Hierarchical Dense Subgraphs
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Outline

▪Motivations

▪Q1: HiDDen Formulation

▪Q2: HiDDen Algorithm

▪Q3: HiDDen Generalizations

▪ Experimental Results

▪ Conclusions
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Prob. Def: Hierarchical Dense Subgraph Detection

▪ Given:

– (1) adjacency matrix 𝑨; (2) missing edge penalty 𝑝

– (3) number of hierarchies 𝐾; (4) density increase ratio 𝜂.

▪ Output: subgraph node indicator vectors 𝒙1, 𝒙2, … , 𝒙𝐾 .

▪ An Illustrative Example
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▪ Given:

– (1) adjacency matrix 𝑨; (2) missing edge penalty 𝑝

– (3) number of hierarchies 𝐾; (4) density increase ratio 𝜂;

– (5) query node set 𝑉𝑠.

▪ Output: subgraph node indicator vectors 𝒙1, 𝒙2, … , 𝒙𝐾 .

▪ An Illustrative Example
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Prob. Def: Query-Specific Hierarchical Dense 

Subgraph Detection
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HiDDen Formulation: Density Measure

▪ Intuition:

– #1: Maximize the number of existing edges

– #2: Minimize the penalty of the missing edges

▪ Mathematical Details:

▪ Correctness:

– Equivalent to edge surplus density w.r.t quasi-clique

▪ Relaxation:
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max
𝒙

𝐽 𝒙 = 𝒙𝑇𝑨𝒙 − 𝑝𝒙𝑇 𝟏𝑛×𝑛 − 𝑰 − 𝑨 𝒙

𝑠. 𝑡 𝒙 ∈ 0,1 𝑛

Intuition #1 Intuition #2

𝒙 ∈ 0,1 𝑛 𝟎 ≤ 𝒙 ≤ 𝟏
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HiDDen Formulation: Constraints for Hierarchies

▪ Constraints:

– #1 – Density variety: densities in two hierarchies exhibit a difference

– #2 – Nested node set: larger subgraphs contain smaller subgraphs

▪ Mathematical Details:

– Density variety:

– Nested node set:

𝑉𝑘+1 ⊆ 𝑉𝑘 ⊆ 𝑉𝑘−1 𝒙𝑘+1 ≤ 𝒙𝑘 ≤ 𝒙𝑘−1

𝒙𝑘
𝑇
𝑨𝒙𝑘

𝒙𝑘 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑘
≥ 𝜂

𝒙𝑘−1
𝑇
𝑨𝒙𝑘−1

𝒙𝑘−1 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑘−1

Example: 𝑑3 ≥ 1.1 × 𝑑2

Example: 𝑉3 ⊆ 𝑉2 ⊆ 𝑉1 ⊆ 𝑉
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▪ Objective function:

▪ Observation: a non-convex quadratic constrained quadratic 

programming problem (QCQP)

▪ Question: can we simplify the problem?

HiDDen Formulation: Objective Function
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max
𝒙1,𝒙2,…,𝒙𝐾

෍

𝑘=1

𝐾

𝒙𝑘
𝑇

1 + 𝑝 𝑨 − 𝑝 𝟏𝑛×𝑛 − 𝑰 𝒙𝑘

𝑠. 𝑡
𝒙𝑗

𝑇
𝑨𝒙𝑗

𝒙𝑗 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑗
≥ 𝜂

𝒙𝑗−1
𝑇
𝑨𝒙𝑗−1

𝒙𝑗−1 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑗−1

𝒙𝑗+1 ≤ 𝒙𝑗 ≤ 𝒙𝑗−1

∀ 𝑗 = 1, 2, … , 𝐾

edge surplus in 

k-th hierarchy

density 

variety

nested node set
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HiDDen Formulation: QCQP Relaxation

▪ Constraint #1 Relaxation:

– Relax it to a regularization, i.e.,

– Relax to a quadratic optimization

– Intrinsically increase the missing edge penalties in each hierarchy
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𝒙𝑗
𝑇
𝑨𝒙𝑗

𝒙𝑗 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑗
≥ 𝜂

𝒙𝑗−1
𝑇
𝑨𝒙𝑗−1

𝒙𝑗−1 𝑇 𝟏𝑛×𝑛 − 𝑰 𝒙𝑗−1

max
𝒙𝑗

𝒙𝑗
𝑇
𝑨𝒙𝑗 − 𝐶𝑗−1 𝒙𝑗

𝑇
𝟏𝑛×𝑛 − 𝑰 𝒙𝑗

where 𝐶𝑗−1 = 𝜂
𝒙𝑗−1

𝑇
𝑨𝒙𝑗−1

𝒙𝑗−1
𝑇
𝟏𝑛×𝑛−𝑰 𝒙

𝑗−1
is a constant w.r.t 𝒙𝑗

relax
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▪ Overall objective function

– 𝑝 is the parameter of missing edge penalty

– 𝛽 controls the importance of the constraint relaxation

– 𝑝 + 𝛽𝐶𝑗−1 is the increased penalty for the k-th hierarchy
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HiDDen Formulation: Overall Objective Function

min
𝒙1, 𝒙2,…,𝒙𝐾

− 1 + 𝑝 𝒙1 𝑇𝑨𝒙1 + 𝑝 𝒙1 1
2 − 𝒙1 2

2

− 1 + 𝑝 + 𝛽 ෍

𝑘=2

𝐾

𝒙𝑘
𝑇
𝑨𝒙𝑘 +෍

𝑘=2

𝐾

𝑝 + 𝛽𝐶𝑘−1 𝒙𝑘
1

2
− 𝒙𝑘

2

2

𝑠. 𝑡. 𝒙𝑗+1 ≤ 𝒙𝑗 ≤ 𝒙𝑗−1, ∀ 𝑗 = 1, 2, … , 𝐾

for 1st hierarchy

for k-th hierarchy
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Outline

▪Motivations

▪Q1: HiDDen Formulation

▪Q2: HiDDen Algorithm

▪Q3: HiDDen Generalizations

▪ Experimental Results

▪ Conclusions

- 16 -



Arizona State University

HiDDen Algorithm
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▪ Observation: a non-convex quadratic optimization problem

▪ Solution: alternative projected gradient descent method

– 𝛻𝒙1𝑓 = −2 1 + 𝑝 𝑨𝒙1 + 2𝑝 𝒙1 1𝟏 − 2𝑝𝒙1

– 𝛻𝒙𝑘𝑓 = −2 1 + 𝑝 + 𝛽 𝑨𝒙𝑘 + 2 𝑝 + 𝛽𝐶𝑘−1 𝒙𝑘
1
𝟏 − 𝒙𝑘

– Armijo’s rule line search

– Stopping criterion: adopted from [Lin 2007]

▪ Benefits:

– Converge to a stationary point

– Time complexity: 𝑂 𝑚𝐾

▪ Question: how to generalize to bipartite graph & query-specific



Arizona State University

Outline

▪Motivations

▪Q1: HiDDen Formulation

▪Q2: HiDDen Algorithm

▪Q3: HiDDen Generalizations

▪ Experimental Results

▪ Conclusions
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▪ Key idea: indicator vectors for two 

types of nodes, 𝒙𝑘& 𝒚𝑘 (𝑘 = 1,⋯ ,𝐾)

▪ Objective function:

▪ Solution: alternative projected gradient descent method

– Alternate between 𝒙1, … , 𝒙𝐾 and 𝒚1, … , 𝒚𝐾

– Stopping criterion: similar to previous
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HiDDen Generalizations: Bipartite Graph

min
𝒙1,…,𝒙𝐾,𝒚1,…,𝒚𝐾

− 1 + 𝑝 𝒙1 𝑇𝑨𝒚1 + 𝑝 𝒙1 1 𝒚1 1

− 1 + 𝑝 + 𝛽 ෍

𝑘=2

𝐾

𝒙𝑘
𝑇
𝑨𝒚𝑘 +෍

𝑘=2

𝐾

𝑝 + 𝛽𝐶𝑘−1 𝒙𝑘
1
𝒚𝑘

1

𝑠. 𝑡. 𝒙𝑗+1 ≤ 𝒙𝑗 ≤ 𝒙𝑗−1, 𝒚𝑗+1 ≤ 𝒚𝑗 ≤ 𝒚𝑗−1, ∀ 𝑗 = 1, 2,… , 𝐾

for 1st hierarchy

for k-th hierarchy

𝒙1
𝒚1



Arizona State University

HiDDen Generalizations: Query–Specific

▪ Intuition: constrain 𝑥𝑖
𝑘 = 1, for 𝑖 ∈ 𝑉𝑠

▪ Challenges: could lead to a mixed integer problem

▪ Key Idea: relax to 𝑥𝑖
𝑘 ≥ 𝛿, where 𝛿 ∈ (0, 1) is relatively large

▪ Objective function:

– Example: query for node-1 and node-2
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min
𝒙1, 𝒙2,…,𝒙𝐾

− 1 + 𝑝 𝒙1 𝑇𝑨𝒙1 + 𝑝 𝒙1 1
2 − 𝒙1 2

2 − 1 + 𝑝 + 𝛽 ෍

𝑘=2

𝐾

𝒙𝑘
𝑇
𝑨𝒙𝑘

+෍

𝑘=2

𝐾

𝑝 + 𝛽𝐶𝑗−1 𝒙𝑘
1

2
− 𝒙𝑘

2

2

𝑠. 𝑡. 𝒙𝑗+1 ≤ 𝒙𝑗 ≤ 𝒙𝑗−1, ∀ 𝑗 = 1, 2, … , 𝐾
𝒙𝑖
𝐾+1 = 𝛿, if 𝑖 ∈ 𝑉𝑠; otherwise, 𝒙𝑖

𝐾+1 = 0

𝑥1
𝑘 ≥ 0.9, 𝑥2

𝑘≥ 0.9, for 𝑘 = 1,⋯ ,𝐾
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Outline

▪Motivations

▪Q1: HiDDen Formulation

▪Q2: HiDDen Algorithm

▪Q3: HiDDen Generalizations

▪ Experimental Results

▪ Conclusions

- 21 -



Arizona State University

Experimental Setup

▪ Datasets:

– DBLP co-author network (nodes: 38,624, edges: 200,332)

– Autonomous system network (nodes: 6,474, edges: 25,142)

– Financial network (account nodes: 29,851, PII nodes: 61,159)

– Trafficking network (traffickers: 1416, word nodes: 4225)

▪ Evaluation Objectives:

– Effectiveness: density of each hierarchy and density variety

– Efficiency: running time and scalability

▪ Comparison Methods:
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HiDDen (Our Methods) Baseline Methods

 HiDDen-Basic (quadratic programming separately)

 HiDDen-OPT (alternative gradient descent)

 GreedyOQC [Tsourakakis’13]

 MURMS-Uni [Ding’08]

 R1NdM [Belachew’15]
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R1. Effectiveness Results – Unipartite Network

Observation: densities are higher and increase up to 1
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R2. Case Study on Co-Authorship Network

▪ Differences between 1st and 5th hierarchy:

▪ Differences between 5th and 10th hierarchy:

Observation: (1) difference in research area; (2) most of 

people in 5th hierarchy are in mid-career

Observation: 10th hierarchy contain only flagship researchers
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R3. Effectiveness Results – Bipartite Network

Observation: densities exhibit a good variety and are up to 1
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R4. Case Study on Financial Network

▪ Differences among hierarchies for synthetic identity fraud 

detection problem:

Observation: multiple hierarchies of dense subgraph can 

more accurately detect the synthetic identity fraud
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R5. Case Study on Trafficking Network

▪ Differences among hierarchies for trafficking problem:

7th Hierarchy 33 traffickers: some of them are 

from same family; 8 words

3rd Hierarchy 815 traffickers (nearly half); 

words (30 in total): prostitution, 

girls, victims, police, underage, 

sex, trafficked, recruited, minor, 

adult, drugs, arrested, money, 

women, hotel

1st Hierarchy 1326 traffickers and 284 words

Observation: (1) most of the traffickers are forcing the underage 

girls for prostitution in hotels in exchange for cash, drugs, and 

other items; (2) some are from same family
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R6. Quality-Speed Balance

Observation: HiDDen gains a better balance between 

running time and avg. density, as well as density variety
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R7. Scalability of HiDDen

Observation: HiDDen has a linear time complexity w.r.t 

# of edges 
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Outline

▪Motivations

▪Q1: HiDDen Formulation

▪Q2: HiDDen Algorithm

▪Q3: HiDDen Generalizations

▪ Experimental Results

▪ Conclusions

- 30 -



Arizona State University

Conclusions

▪ Hierarchical Dense Subgraph Detection

– Q1: Formulation 

– A1: HiDDen

– Q2: Algorithm

– A2: Alternative Projected Gradient Descent Method

– Q3: Generalizations

– A3: Algorithms for bipartite graphs & query-specific

▪ Results

– HiDDen outperform other baseline methods

in density and variety

– HiDDen has a linear time complexity
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min
𝒙1, 𝒙2,…,𝒙𝐾

− 1 + 𝑝 𝒙1 𝑇𝑨𝒙1 + 𝑝 𝒙1 1
2 − 𝒙1 2

2 − 1 + 𝑝 + 𝛽

෍

𝑘=2

𝐾

𝒙𝑘
𝑇
𝑨𝒙𝑘 +෍

𝑘=2

𝐾

𝑝 + 𝛽𝐶𝑗−1 𝒙𝑘
1

2
− 𝒙𝑘

2

2

𝑠. 𝑡. 𝒙𝑗+1 ≤ 𝒙𝑗 ≤ 𝒙𝑗−1, ∀ 𝑗 = 1, 2,… , 𝐾


