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Abstract
Dense subgraphs are fundamental patterns in graphs, and
dense subgraph detection is often the key step of numerous
graph mining applications. Most of the existing methods
aim to find a single subgraph with a high density. However,
dense subgraphs at different granularities could reveal more
intriguing patterns in the underlying graph. In this paper,
we propose to hierarchically detect dense subgraphs. The
key idea of our method (HiDDen) is to envision the density
of subgraphs as a relative measure to its background (i.e.,
the subgraph at the coarse granularity). Given that the
hierarchical dense subgraph detection problem is essentially
a nonconvex quadratic programming problem, we propose
effective and efficient alternative projected gradient based
algorithms to solve it. The experimental evaluations on
real graphs demonstrate that (1) our proposed algorithms
find subgraphs with an up to 40% higher density in almost
every hierarchy; (2) the densities of different hierarchies
exhibit a desirable variety across different granularities;
(3) our projected gradient descent based algorithm scales
linearly w.r.t the number of edges of the input graph; and
(4) our methods are able to reveal interesting patterns in
the underlying graphs (e.g., synthetic ID in financial fraud
detection).

Keywords— Hierarchical dense subgraph detec-
tion, financial fraud detection, graph mining

1 Introduction
Dense subgraphs offer many meaningful insights in
graphs. More often than not, extracting dense sub-
graphs (i.e., to find cohesively connected subgraphs with
a large density) is of key importance in numerous ap-
plication domains. For example, in the co-authorship
networks, a dense subgraph could represent a group of
researchers with similar research interests [10]. In the
product-review bipartite network, extracting dense sub-
graphs could help find suspicious fake reviews and detect
fraudsters [13]. Moreover, by finding dense subgraphs
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from a protein-protein interaction (PPI) network, sci-
entists could discover new protein complexes [25].

A major difference behind different dense subgraph
detection techniques lies in the specific definition of the
density. For example, [4] proposed a greedy algorithm
to maximize the average degree ( 2ms

nS
) and extract the

densest subgraphs. Moreover, the edge surplus (i.e., the
surplus between the number of edges in the extracted
subgraph and its corresponding α-quasi-clique) is used
to find a denser subgraph than the densest subgraph [24].

However, the implicit assumption behind these ex-
isting works is to find dense subgraphs at a single granu-
larity, that is, to extract one or more exclusive partitions
from the given graph. On the other hand, we might
gain more insights by finding dense subgraphs at differ-
ent granularities. For example, given a co-authorship
network, the existing methods may successfully extract
a dense subgraph containing a group of well established
researchers who closely collaborate with each other. By
finding dense subgraphs at coarser granularities, we
could find a larger subgraph containing those senior re-
searchers as well as other mid-career researchers in the
related areas. We can further extract an even larger sub-
graph containing all those researchers and their Ph.D
students. In this example, detecting dense subgraphs
at different granularities helps reveal a more compre-
hensive view of the intrinsic collaboration relationships
in the underlying graph.

Despite its key importance, it remains a challenging
task to hierarchically detect dense subgraphs. Specif-
ically, the following questions have largely remained
open. First (Q1. Formulation), it is not clear how
to formulate the hierarchical dense subgraph detection
from the optimization perspective. Some existing meth-
ods model the flat dense subgraph detection (i.e., with
only one hierarchy) as a quadratic programming opti-
mization problem constrained on a simplex. Yet, limited
by the simplex constraint, it is unknown how to gener-
alize those methods to different hierarchies in a single
optimization problem. Second (Q2. Algorithm), despite
the various density definitions, most of them lead to a
problem with an unknown complexity [24] or a NP-hard



problem [3], even though there exist some approximate
algorithms to solve those problems in polynomial time.
How can we develop an effective and scalable solver for
hierarchical dense subgraph detection problem? Third
(Q3. Generalizations), most of the existing methods
are designed for unipartite graphs, independent of the
specific queries. How can we detect dense subgraphs
on rich graphs (e.g., bipartite graphs)? How can we
find (hierarchical) dense subgraphs w.r.t certain query
nodes (i.e., query-specific hierarchical dense subgraph
detection problem)?

This paper addresses the hierarchical dense sub-
graph detection problem, aiming to answer all these
questions. The main contributions of this paper are:

1. Formulation. We formulate the hierarchical dense
subgraph detection problem from optimization per-
spective. The key idea is to maximize the number
of edges and minimize the total penalties on the
missing edges in the subgraphs in all hierarchies.

2. Algorithms and Analysis. We propose an effec-
tive algorithm (HiDDen) based on the alternative
projected gradient descent method. Our analysis
shows that the proposed method converges to a sta-
tionary point with a linear time complexity w.r.t
the number of edges in the graph.

3. Variants. We further generalize the proposed
HiDDen algorithm to (1) extract hierarchical
dense subgraphs on bipartite graphs, and (2) de-
tect query-specific hierarchical dense subgraphs.

4. Evaluations and Case Studies. We conduct
extensive experiments to validate the effectiveness
and the efficiency of our algorithms. Our exper-
imental results show that (1) our algorithms can
find unipartite/bipartite subgraphs with an up to
40% higher density than existing methods do in al-
most each hierarchy; (2) the densities of different
hierarchies exhibit a desirable variety across differ-
ent resolutions; (3) our algorithms achieve a better
tradeoff between the running time and density qual-
ity and scale linearly. Case studies on academic
group finding and synthetic identity fraud detec-
tion show that our methods are able to reveal some
interesting patterns in the underlying graphs.
The rest of paper is organized as follows. Section 2

defines the hierarchical dense subgraph detection prob-
lem. Section 3 presents an optimization-based solution,
followed by two variants in Section 4. Section 5 presents
experimental results. Related work and conclusion are
given in Section 6 and Section 7, respectively.

2 Problem Definitions
In this section, we give the formal definitions of hierar-
chical dense subgraph detection problems. Table 1 sum-

Table 1: Symbols and Notation
Symbols Definition
G = (V, E) a graph

A the adjacency matrix of the given graph G
I an identity matrix

0,1 a vector of all 0s and all 1s, respectively
xk,yk the indicator vectors of nodes in the kth hierarchy subgraph
m,n the number of edges and nodes of the graph G
ms, ns the number of edges and nodes of the subgraph
K the number of hierarchies
dk the density of the kth hierarchy subgraph
p the penalty parameter for the missing edges, p > 0
η the parameter that controls the density ratio, η > 1
β the coefficient of the regularization term
j, k hierarchy indices of subgraphs

marizes the main symbols and notations used through-
out the paper. We use bold uppercase letters for matri-
ces (e.g., A), bold lower cases for vectors (e.g., x), and
lower cases for scalars (e.g., d). We denote A′ as the
transpose of the matrix A. We use the superscript k to
index the kth hierarchy (e.g., xk as the indicator vector
of the kth hierarchy), and use the subscript i to index
the ith entry of a vector.

Given a graph G, we want to extract dense sub-
graphs in different hierarchies. Throughout our paper,
we represent the dense subgraphs by the corresponding
subgraph indicator vectors xk. The subgraph indicator
vector xk is a binary vector, and the ith node belongs to
the sugraph in the kth hierarchy iff xk

i = 1. In order to
find meaningful subgraphs in different hierarchies (e.g.,
to avoid finding identical dense subgraphs across differ-
ent hierarchies), we require that for two dense subgraphs
in adjacent hierarchies (k − 1 and k, ∀ 1 < k ≤ K), (1)
the corresponding densities should differ significantly
from each other (i.e., dk ≥ ηdk−1); and (2) the cor-
responding node sets are nested, i.e., Vk ⊆ Vk−1.

Figure 1 presents an illustrative example. In the
figure, the original graph (at the bottom) has three
obvious hierarchies, including (1) the first hierarchy
with three cliques (dense blocks with all except diagonal
entries nonzero) and some inter-clique edges, (2) the
second hierarchy with two of the three cliques and some
inter-clique edges, and (3) the third hierarchy with the
largest clique. A straightforward heuristic to find these
dense subgraphs is to run an existing dense subgraph
detection method recursively: it first runs on the input
graph and retrieves the first hierarchy; then it runs the
same algorithm on the resultant subgraph and extracts
the second hierarchy, so on and so forth. However, such
a recursive heuristic might return trivial solutions (e.g.,
identical dense subgraphs across different hierarchies).
Moreover, it is not clear what the overall objective
function the recursive heuristic aims to optimize. This
is exactly what this paper aims to address. Formally,
the hierarchical dense subgraph detection problem is
defined as follows.



Figure 1: An illustration of hierarchical dense subgraph
detection. Given an input graph, we want to detect a set
of nested subgraphs, with an increasingly higher density
across different hierarchies (from bottom to top).

Problem 1. Hierarchical Dense Subgraph De-
tection (HiDDen).

Given: (1) the adjacency matrix A of the input
graph G, (2) the penalty parameter p for each missing
edge in the graph, (3) the number of hierarchies K, and
(4) the density ratio between two adjacent hierarchies η.

Output: the subgraph indicator vectors x1,x2, · · · ,
xK representing the K hierarchical dense subgraphs.

In some applications, there might be one or more
query nodes. In this setting, we are also interested in
finding the hierarchical dense subgraphs containing all
the query nodes, which is formally defined as below.
Problem 2. Query-Specific Hierarchical Dense
Subgraph Detection (HiDDen-Query).

Given: (1) the adjacency matrix A of the input
graph G, (2) the penalty parameter p for each missing
edge in the graph, (3) the number of hierarchies K, (4)
the density ratio between two adjacent hierarchies η, and
(5) the query node set Vs.

Output: a set of subgraph indicator vectors
x1,x2, · · · ,xK , representing the K hierarchical dense
subgraphs that contain all the nodes in the query set Vs.

In the both definitions, we require that dK ≥
ηdK−1 ≥ · · · ≥ ηK−1d1 and VK ⊆ VK−1 ⊆ · · · ⊆ V1.

3 Hierarchical Dense Subgraph Detection
In this section, we present our solutions to hierarchical
dense subgraph detection problem. We first formulate
Problem 1 from optimization perspective, then propose
the algorithms to solve it, followed by some analyses.

3.1 Optimization Formulation.
A - Density Measure. Given an input graph G,

a straightforward way to measure the density is by

2ms

ns(ns−1) , where ms, ns is the number of the edges and
nodes in the subgraph. However, directly maximizing
this density leads to some trivial solutions, e.g., a
clique with only two nodes. Another possible way is to
maximize x′Ax, i.e., to maximize the number of edges
in the subgraph. Nevertheless, one trivial result is the
graph G itself. In order to avoid such trivial solutions,
we need an alternative formulation.

The key idea behind our proposed formulation is to
simultaneously (1) maximize the number of edges, and
(2) minimize the number of the missing edges in the sub-
graph. To be specific, we have the following formulation
to detect the dense subgraph in one hierarchy

(3.1)
max
x

J(x) = (1 + p)x′Ax− px′(1n×n − I)x

s.t x ∈ {0, 1}n.
where 1n×n and I are the matrix with all entries equal
to 1 and the identity matrix with the same size of A
respectively, and x is the subgraph indicator vector.
Each existing edge in the resultant subgraph contributes
a value of 1 to the objective function, while each missing
edge is penalized by a value of p, where p > 0 is the
penalty parameter. In this way, the above objective
function maximizes the total number of the edges in
the resultant dense subgraph while minimizing the total
penalty of the missing edges. We remark that the
objective function in Eq. (3.1) has a close relationship
with the classic α-quasi-clique detection problem [24],
as summarized in the following lemma.
Lemma 1. Maximizing Eq. (3.1) is equivalent to maxi-
mizing the edge surplus density.
Proof. By dividing Eq. (3.1) by 1 + p, the first term
x′Ax is the number of edges of the inferred dense
subgraph S. Since x′(1n×n − I)x is essentially the
number of the edges in the clique of size ns, the second
term represents the number of edges in the ( p

1+p )-
quasi-clique. The edge surplus density defined in [24]
means the difference in the number of edges between the
inferred dense subgraph and the corresponding quasi-
clique. Therefore, maximizing Eq. (3.1) is equivalent to
maximizing the edge surplus density.

B - Constraints and Relaxation. The binary con-
straint in Eq. (3.1) makes the corresponding optimiza-
tion problem an integer programming problem, which is
very hard to solve due to its combinatorial nature. To
address this issue, we relax the constraint to 0 ≤ x ≤ 1.
The relaxed constraint represents the possibility of each
node belonging to the dense subgraph.

In order to detect dense subgraphs hierarchically,
we basically want to maximize the objective func-
tion in Eq.(3.1) for each hierarchy, i.e., to maximize∑K

k=1 J(x
k). As mentioned before, we have two ad-

ditional constraints. First (density variety), for the kth



hierarchy, we require that dk ≥ ηdk−1 where η > 1 is the
density increase ratio to make sure that the densities in
two adjacent hierarchies exhibit a significant difference.
Here, we define the density of the subgraph in the kth

hierarchy as
dk =

(xk)′Axk

(xk)′(1n×n − I)xk

Second (nested node sets), we require that Vk+1 ⊆ Vk ⊆
Vk−1. This could be done by introducing an additional
constraint xk+1 ≤ xk ≤ xk−1.

C - Overall Formulation. Putting everything to-
gether, we obtain the following formulation:

(3.2)

max
x1,··· ,xK

K∑
k=1

(xk)′Mxk

s.t dj+1 ≥ ηdj (density variety)

xj+1 ≤ xj ≤ xj−1 (nested node sets)
∀j = 1, 2, · · · ,K

where x0 = 1, xK+1 = 0, M = (1+ p)A− p(1n×n − I).
Notice that the first constraint (i.e., density vari-

ety) is a quadratic constraint, which makes the above
optimization problem to be a non-convex quadratic
constrained quadratic programming problem (QCQP).
Since QCQP itself is typically very time-consuming
to solve, we further relax the quadratic constraint to
a regularization term in the objective function. De-
note Cj−1 = ηdj−1 and note that it is a constant
w.r.t xj , so the regularization term can be written as
(xj)′Axj−Cj−1(xj)′(1n×n−I)xj . After the relaxation,
the hierarchical dense subgraph detection problem can
be formulated as the following optimization problem:

(3.3)
max

x1,··· ,xK

K∑
k=1

(xk)′Mxk + β

K∑
k=2

(xk)′Qkxk

s.t xj+1 ≤ xj ≤ xj−1,∀j = 1, 2, · · · ,K
where x0 = 1, xK+1 = 0, andQk = A−Ck−1(1n×n−I)
and the parameter β controls the importance of the
second term. If we define Pk = (1 + p + β)A − (p +
βCk−1)(1n×n − I), Eq. 3.3 can be further re-written as
(x1)′Mx1 +

∑K
k=2(x

k)′Pkxk. The intuition is that, for
the kth hierarchy (k ≥ 2), this equivalent formulation
aims to maximize the number of edges while minimizing
the total penalty of the missing edges with a larger
penalty parameter compared with that for the (k− 1)th

hierarchy, in order to encourage density variety.

3.2 Optimization Algorithms. Let us start with a
baseline algorithm for solving the optimization problem
in Eq. (3.3) (referred to as HiDDen-Basic) as follows.
First, the optimization problem in Eq. (3.3) is essen-
tially a (non-convex) quadratic programming problem,
which can be solved by the conventional quadratic pro-
gramming methods. Second, the objective function in

Eq. (3.3) is essentially a nonconvex bounded quadratic
function w.r.t each indicator vector xk. This property
allows us to use the alternative optimization method,
that is, in each iteration, we fix all other variables as
constants except one variable. Third, the subgraph in-
dicator vectors are nested, that is, the feasible solution
of xk should be in the high-dimensional space bounded
by xk−1 and xk+1. In order to use the quadratic pro-
gramming method, we relax the nested constraints to
0 ≤ xk ≤ xk−1 and we can then solve x1,x2, · · · ,xK

in order. That is, we solve the x1 with the constraint
0 ≤ x1 ≤ 1 by ignoring the constraints of other vari-
ables. After we obtain the indicator vector x1 of the 1st

hierarchy, we solve x2 under the constraint 0 ≤ x2 ≤ x1

by ignoring the constraints of other variables. In this
way, we can solve the K dense subgraph detection sub-
problem hierarchy-by-hierarchy. To solve each noncon-
vex bounded quadratic programming subproblem, we
use the trust-region method [8]. We omit the full de-
tails of this baseline algorithm due to the space limit.

A major limitation of HiDDen-Basic lies in com-
putational efficiency. This is because the input matri-
ces of the conventional quadratic programming methods
(i.e., M and Pk) are full matrices with all nonzero en-
tries. Thus, these methods are very time and memory
consuming, and impractical for large-scale graphs.

In order to develop a more efficient solution, we
notice that because xk ≥ 0, the term (xk)′(1n×n− I)xk

can be viewed as an equivalent regularization term
‖xk‖21 − ‖xk‖22. In this way, the optimization problem
in Eq. (3.3) can be re-written as follows.

(3.4)

min
x1,··· ,xK

f(x1, · · · ,xK) =

− (1 + p)(x1)′Ax1 + p(‖x1‖21 − ‖x1‖22)

− (1 + p+ β)

K∑
k=2

(xk)′Axk

+

K∑
k=2

(p+ βCk−1)(‖xk‖21 − ‖xk‖22)

s.t xj+1 ≤ xj ≤ xj−1, ∀j = 1, 2, · · · ,K

To solve the optimization method in Eq. (3.4),
we resort to the alternative projected gradient descent
method [16]. The gradient of f(x1, · · · ,xK) w.r.t the
variable x1 and xk (k ≥ 2) can be computed by
5x1 f = −2(1 + p)Ax1 + 2p‖x1‖11− 2px1

5xk f = −2(1 + p+ β)Axk + 2(p+ βCk−1)(‖xk‖11− xk)

To update xk, we use xk
new = P [xk − a 5xk f ] as the

update rule, where the operator P [·] projects the vector
back to its bounded feasible region. Recap that the well-
known Armijo’s rule line search is to compute a good
step size a until the following condition is satisfied.
(3.5) f(xk

new)− f(xk) ≤ σ(5xkf)′(xk
new − xk)



However, it is often very time consuming to search
for a good step size a. Thus, we adopt the adjusted
Armijo’s rule line search [16] as follows. We assume
the step size for updating xk and xk

new to be similar.
Therefore, we use the step size for xk as the initial
guess of the step size for xk

new and then either increase
or decrease it to satisfy Eq. (3.5). The algorithm of
updating one variable xk is summarized in Algorithm
1. The key of Algorithm 1 is to search a good step
size efficiently (Lines 6-10). That is, if the condition
Eq. (3.5) is not satisfied, we reduce the step size by the
factor b; otherwise, we increase the step size by 1√

b
.

Algorithm 1 Updating one variable (Update-One).
Input: (1) the current indicator vector xk to be updated,

(2) the initial step size a, (3) the ratio of decreasing the
step size 0 < b < 1, and (4) the parameter 0 < σ < 1.

Output: the new subgraph indicator vector xk
new.

1: Compute the gradient 5xkf of xk by Eq. 3.5;
2: Compute the objective function value of xk by Eq. 3.4;
3: while Amijo’s condition is not satisfied do
4: xk

new = P [xk − a5xk f ];
5: Compute the new value Fn of xk

new by Eq. 3.4;
6: if Fn − F > σ(5xkf)′(xk

new − xk) then
7: a← ba;
8: else
9: a← a√

b
;

10: end if
11: end while
12: Return the updated subgraph indicator vector xk

new.

To solve all variables x1, · · · ,xK , we run the Algo-
rithm 1 for each variable in an alternative way in each
iteration. At the beginning, we initialize each node to
have a possibility of 0.5 to be in the first hierarchy, i.e.,
x1 = 0.5×1. In order to avoid trivial solutions, we also
set xk = 0.01× 1, for 2 ≤ k ≤ K. We adopt the follow-
ing stopping criterion [16] for the alternative projected
gradient descent method
(3.6) ‖[5P

x1f, · · · ,5P
xKf ]‖2 ≤ ε‖[5P

x1
init
f, · · · ,5P

xK
init
f ]‖2

where the operator 5P
xkf is defined as

(5P
xkf)i =


(5xkf)i if xk+1

i < xk
i < xk−1

i

min(0, (5xkf)i) if xk
i = xk+1

i

max(0, (5xkf)i) if xk
i = xk−1

i

The complete algorithm to solve the optimization
problem Eq. (3.4) is summarized in Algorithm 2.

3.3 Proof and Analysis. In this subsection, we an-
alyze the convexity, the convergence and the complexity
of HiDDen-OPT. We start with Theorem 1, which says
our problem of Eq. (3.4) is nonconvex.
Theorem 1. The optimization problem in Eq. (3.4) is
a nonconvex optimization.

Proof. We prove this by showing the Hessian matrix
of each subproblem of xk is not a positive semi-definite

Algorithm 2 Hierarchical Dense Subgraph Detection
(HiDDen-OPT).
Input: (1) the adjacency matrix A of the given graph, (2)

the penalty value of each missing edge p, (3) the number
of hierarchies K, (4) the density ratio η between two
adjacent hierarchies, and (5) the maximum number of
iterations tmax.

Output: the subgraph indicator vectors x1, · · · ,xK for
each hierarchy.

1: Initialize x1, · · · ,xK , and set t = 1;
2: Compute the initial norm ‖[5P

x1
init
f, · · · ,5P

xK
init
f ]‖2;

3: while Eq. 3.6 is not satisfied and t ≤ tmax do
4: for k = 1→ K do
5: xk ← Update-One(xk);
6: end for
7: t← t+ 1;
8: end while
9: Return the subgraph indicator vectors x1, · · · ,xK .

matrix. We have that the Hessian matrix of the variable
xk is
∂f2

∂2x1
= −2(1 + p)A+ 2p(1n×n − I)

∂f2

∂2xk
= −2(1 + p+ β)A+ 2(p+ βCk−1)(1n×n − I)

By the Weyl’s inequality theorem [6], since the matrix
−2(1 + p)A has negative eigenvalues and so does the
matrix 2p(1n×n−I), the Hessian matrix w.r.t x1 has the
negative eigenvalues. Similarly, the Hessian matrix w.r.t
xk, for 2 ≤ k ≤ K, also has the negative eigenvalues.
In this way, the subproblem of each xk is a nonconvex
optimization problem, so the whole problem of Eq. (3.4)
is a nonconvex optimization problem.

Lemma 2. HiDDen-OPT algorithm converges to a
stationary point.

Proof. Omitted for space.

Lemma 3. The time complexity of HiDDen-OPT al-
gorithm is O(mKtlinetmax) where tline is the number of
iterations for line search.

Proof. Omitted for space.

4 Generalization
In this section, we generalize the proposed HiDDen al-
gorithm in two scenarios: (1) hierarchical dense sub-
graph detection on bipartite graphs, and (2) query-
specific hierarchical dense subgraph detection. Due to
the limited space, we highlight the key points of these
two variants and omit the full description of the corre-
sponding algorithms.



4.1 Hierarchical Dense Subgraph Detection on
Bipartite Graphs. Given a bipartite graph G =
(Bn1×n2

,V, E), whereB has n1 rows and n2 columns, we
want to extract K hierarchical dense subgraphs. Here,
the nuance is that the number of edges in a bipartite
clique is equal to |Vr| × |Vc| (e.g., n1 × n2 for the whole
bipartite graph). In addition, we need two subgraph in-
dicator vectors to define a bipartite subgraph, i.e., the
vector x to select row nodes and the vector y to select
column nodes. In this way, the corresponding optimiza-
tion problem becomes as follows.

min f(x1, · · · ,xK ,y1, · · · ,yK) =

− (1 + p)(x1)′Ay1 − (1 + p+ β)

K∑
k=2

(xk)′Ayk

+ p‖x1‖1‖y1‖1 +
K∑

k=2

(p+ βCk−1)‖xk‖1‖yk‖1

s.t xj+1 ≤ xj ≤ xj−1, yj+1 ≤ yj ≤ yj−1

∀j = 1, 2, · · · ,K
where x0 = 1n1 , xK+1 = 0n1 , y0 = 1n2 , yK+1 = 0n2 .

To solve the above optimization problem, we use the
similar alternative projected gradient descent method
as in Algorithm 1 and Algorithm 2. We refer to this
algorithm as HiDDen-BP. The main difference is that
in each iteration we need to alternate between xk and
yk to update the indicator vectors in the kth hierarchy.
The stopping criterion Eq. (3.6) is changed to

‖[5P
x1f, · · · ,5P

xKf,5P
y1f, · · · ,5P

yKf ]‖2 ≤

ε‖[5P
x1

init
f, · · · ,5P

xK
init
f,5P

y1
init
f, · · · ,5P

yK
init
f ]‖2

4.2 Query-Specific Hierarchical Dense Sub-
graphs. In Problem 2, we want to find the hierarchical
dense subgraphs containing a set of pre-specified query
nodes Vs. Mathematically, we can set all the entries cor-
responding to the query nodes of the indicator vectors
x1, · · · ,xK to be 1s. However, with this treatment, the
optimization problem becomes to a mixed integer pro-
gramming problem which is typically solved by compu-
tationally exhaustive search. To resolve this issue, we
relax these entries to be a number that is smaller than
but close to 1 (say 0.9 in this paper). Thus, the cor-
responding optimization problem becomes the same as
Eq. (3.4), except the lower bound

xK+1
i =

{
0.9 if i ∈ Vs
0 otherwise

Thus, we can use the same algorithm as Algorithm
1 and Algorithm 2 to solve Problem 2 with new con-
straints. We refer to this algorithm as HiDDen-Query.

5 Experimental Results
In this section, we present the experimental results, to
evaluate:

1. Effectiveness: How effective are our proposed algo-
rithms?

2. Efficiency : How fast and scalable are our proposed
algorithms?

5.1 Experimental Setup
Datasets. We evaluate our proposed algorithms on

three real-world datasets.
• Co-Authorship Network (CO). We construct our co-

author network based on a snapshot of AMiner
citation dataset, which collects all papers up to
year 2011, and consists of 1,632,442 papers and
1,036,999 authors [21]. We build our graph upon all
papers in 5 research areas, including data mining
(DM), machine learning (ML), database (DB), in-
formation retrieval (IR), and bioinformatics (BIO)
[18]. The constructed graph consists of 38,624 au-
thors and 200,332 co-authorship relationships.

• Financial Network (FN). The dataset contains in-
formation about 25,813,372 bank accounts. We
build a bipartite graph with two types of nodes.
One type is account nodes, each of which repre-
sents a unique account number. The other type is
the personal identity information (PII), e.g., mail-
ing address, email address. Each edge between an
account node and a PII node represents the account
has the corresponding personal identity informa-
tion. From the constructed graph, we use a sub-
graph with 29,851 account nodes, 61,159 PII nodes
and 98,577 edges for evaluation.

• Autonomous System Network (AS). This graph has
6,474 nodes and 25,142 edges. Each node represent
an autonomous system and each edge means there
is a traffic flow exchanging (or communication)
between two autonomous systems [24].

Comparison Methods. For the proposed HiDDen
algorithms, we test our HiDDen-Basic and HiDDen-
OPT on the unipartite graphs and compare the results
with the following existing algorithms, including (1)
GreedyOQC [24], (2) MURMS-Uni [9], and (3) R1NdM
[5]. To evaluate our HiDDen-BP algorithm on bipar-
tite graphs, we compare it with (1) GreedyOQC, (2)
MURMS-Bi [9], and (3) R1NBi [11].

5.2 Effectiveness Analysis
Quantitative Results on Unipartite Graphs. We

first evaluate how density changes across different hi-
erarchies on unipartite graphs. Note that all baseline
methods are solely for flat dense subgraph detection
(i.e., one hierarchy). To extract multiple hierarchies
of dense subgraphs, we (1) run the corresponding al-
gorithm on background graph and treat the extracted
dense subgraph as new background graph for next hier-
archy, (2) adjust input parameters to avoid trivial solu-
tions (e.g., to return an identical subgraph as the input
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Figure 2: Subgraph densities vs. the hierarchies.
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Figure 4: Densities vs.
hierarchies number on fi-
nancial network.

subgraph). We measure the density defined by 2ms

ns(ns−1) .
The results are summarized in Figure 2. As we can see,
our algorithms (two solid lines) obtain denser subgraphs
than three existing methods in almost every hierarchy in
both graphs. Specifically, our method HiDDen-OPT
can find subgraphs with an up to 40% higher density
than existing methods do in almost each hierarchy. The
densities of the subgraphs detected by our methods
exhibit a desirable variety across different hierarchies,
i.e., starting with a relative low density (yet still dense
enough) in the first hierarchy, the densities of the de-
tected subgraphs consistently increase up to 1 (i.e., cor-
responding to a clique) w.r.t the increasing hierarchies.
Case Studies on Unipartite Graphs. We conduct
a case study on the co-authorship network to find
dense subgraphs in 10 hierarchies, which reveal some
interesting patterns. For example, by comparing the
difference between the 1st and the 5th hierarchy, those
unique authors who appear in the 1st hierarchy but
not in the 5th hierarchy mainly consist of researchers
who (1) publish their papers in database conferences
(e.g., ICDE and VLDB) as shown in Figure 3, or (2)
obtain their Ph.D degree around 2011. And many
of the researchers in the 5th hierarchy are in their
mid-careers (either as assistant/associate professors in
academy or in the leading industrial research labs, e.g.,
IBM, Microsoft). On the other hand, the authors in the
10th hierarchy (the highest hierarchy) are all flagship
researchers in both databases and data mining fields
with close collaborations with each other, e.g., Jiawei
Han, Philip S. Yu, Jian Pei, etc.

Quantitative Results on Bipartite Graphs. Here,
we evaluate our HiDDen-BP algorithm on bipartite
graphs. Notice that GreedyOQC algorithm is designed
for unipartite graphs. Therefore, we first transform the
original bipartite graph into unipartite graph in order
to run GreedyOQC. The result is shown in Figure 4. As
we can see, our method can extract hierarchical dense
bipartite subgraphs with a desirable density variety, i.e.,
starting from a relative dense subgraph up to a biclique.
Meanwhile, neither GreedyOQC or R1NBi is able to
find hierarchies with noticeable density increases (i.e.,
the corresponding curves are almost flat across different
hierarchies). Although MURMS-Bi can also extract a
biclique, it only differentiates dense subgraphs in two
hierarchies (i.e., the first hierarchy vs. the remaining).
Case Studies on Bipartite Graphs. We conduct a
case study on the Financial Network (FN) dataset. The
dense subgraphs in different hierarchies by the proposed
HiDDen-BP algorithm collectively reveal some inter-
esting patterns in relation to potential synthetic iden-
tity fraud [26]. A typical approach that the synthetic
identity fraudsters utilize is to open bank accounts us-
ing the stolen PII of other people. This means that
some suspicious accounts may share the same PII with
other accounts. Consequently, in the bipartite finan-
cial network, suspicious account nodes and PII nodes
are likely to form dense subgraphs with many legiti-
mate nodes. Figure 5 presents a miniature of our re-
sults on the financial network. In order to protect user
privacy, we have anonymized the actual PII informa-
tion. As we can see, the 7th hierarchy contains a bi-
clique with only Address1, Phone1 and HolderName1
as PII nodes and all the account nodes associated with
them. However, it is very risky to flag it as synthetic
identity solely based on this biclique, because a legit-
imate user could open multiple accounts using exactly
the same Address/Phone/HolderName. By further ex-
amining the detected dense subgraph in the 1st hierar-
chy, we find that these accounts also use various email
addresses and other phone numbers; yet there is a suspi-
cious similarity between different email address names
(e.g., one address name seems to be a robotic editing
of another). In this case, flat dense subgraph detection
would either miss the potential fraud, or lead to a false
alarm (e.g., using the 7th hierarchy only).
Case Studies on Query-Specific Hierarchical
Dense Subgraph Detection. Finally, to demonstrate
the effectiveness of our HiDDen-Query algorithm, we
query the hierarchical dense subgraphs with Geoffrey
E. Hinton as the query in the co-authorship network.
We visualize the results in three hierarchies in Figure
6. The subgraph in the first hierarchy, consists of the
researchers who share the same research interest as the



Figure 5: An example of suspicious synthetic ID fraud
revealed by our algorithms.

Figure 6: Hierarchical dense subgraph for Geoffrey E.
Hinton.

query Geoffrey E. Hinton (i.e., machine learning and
deep learning), including some of his former Ph.D stu-
dents. As we zoom into a denser subgraph, in the
4th hierarchy, there are more active researchers, mostly
his current and prior colleagues. In the last hierarchy,
we extract a full clique, with all prominent researchers
in the field of deep learning and machine learning, all
with very close collaboration with Geoffrey E. Hinton
in machine learning and deep learning, including Zoubin
Ghahramani, Lawrence K. Saul, etc.

5.3 Efficiency Analysis
Quality-Speed Trade-off. We first evaluate how

different methods balance between the running time
and the quality of all hierarchies of subgraphs on the
AS network. Ideally, we would like the densities of the
detected subgraphs across different hierarchy to exhibit
a high variety (i.e., high variance of the densities), in the
meanwhile the density of each detected subgraph should
be reasonably high (i.e., high average density). As we
can see from Figure 7, the running time of our HiDDen-
OPT algorithm is close to the existing methods, but
our method obtains a better average density with a
higher variance. Between the two proposed algorithms
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(HiDDen-Basic vs. HiDDen-OPT), even though the
quality of HiDDen-Basic is also good, it takes much
more time. Overall, HiDDen-OPT achieves the best
tradeoff between the running time and the quality.
Scalability. The scalability of HiDDen-OPT is sum-
marized in Figure 8. As we can see, the running time
is linear w.r.t the number of edges, which is consistent
with the complexity analysis.

6 Related Work
Dense subgraph detection is a fundamental problem in
both algorithmic graph theory and graph mining. It lies
in the heart of numerous domains, ranging from text
mining [12, 22], bioinformatics [25, 1], fraud detection
[13, 2], to community detection [14, 20].

Finding dense subgraphs has been studied for many
years. Different types of dense subgraphs can be
extracted with different density measures. For example,
the most straightforward density measure is edge density
defined by 2ms

ns(ns−1) . However, maximizing this type
of density could be trivial because a small subgraph
with only two nodes and an edge between them has the
highest edge density. densest subgraph problem is to find
subgraphs with a large average degree defined by ms

ns
.

Asashiro et al. propose a greedy algorithm to extract
the densest subgraphs [4] and Charikar shows that this
algorithm can run in linear time with approximation
guarantees [7]. Besides, Tsourakakis et al. define a
novel density measurement as the edge surplus between
the subgraph and the corresponding α-quasi-clique. By
maximizing the edge surplus density, they show that
the extracted dense subgraphs can be denser than the
densest subgraphs in terms of edge density [24].

In addition to these traditional dense subgraph de-
tection methods, there are some other related problems.
One of them is the maximum/maximal clique problem.
Motzkin and Straus proved that the maximal clique
problem is equivalent to maximizing the function x′Ax
with a simplex constraint [17]. Besides, [11, 5] propose
a rank-one nonnegative matrix factorization method to
extract maximum biclique/clique. Other related prob-
lems with size restrictions have also been studied, such
as k-clique [23], k-core [19] and k-plex problem [15].



7 Conclusions
In this paper, we study the hierarchical dense subgraph
detection problem. First, we formulate our problem
from optimization perspective, i.e., to maximize the
number of edges and minimize the penalties on the
missing edges, with carefully designed constraints. Sec-
ond, we propose an alternative projected gradient de-
scent based algorithm to solve the hierarchical dense
subgraph detection problem, which converges to the sta-
tionary point with a linear time complexity. In addition,
we also present two variants to handle bipartite graphs
and query-specific hierarchical dense subgraph detec-
tion. Finally, we conduct extensive evaluations on three
real graphs, which demonstrate the effectiveness and the
efficiency of the proposed algorithm (HiDDen). Future
work includes generalizing the proposed HiDDen algo-
rithm to tensors as well as time-varying graphs.
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