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Abstract
Rare category detection refers to the problem
of identifying the initial examples from under-
represented minority classes in an imbalanced data
set. This problem becomes more challenging in
many real applications where the data comes from
multiple views, and some views may be irrelevant
for distinguishing between majority and minority
classes, such as synthetic ID detection and insider
threat detection. Existing techniques for rare cat-
egory detection are not best suited for such appli-
cations, as they mainly focus on data with a single
view.
To address the problem of multi-view rare category
detection, in this paper, we propose a novel frame-
work named MUVIR. It builds upon existing tech-
niques for rare category detection with each single
view, and exploits the relationship among multiple
views to estimate the overall probability of each ex-
ample belonging to the minority class. In particu-
lar, we study multiple special cases of the frame-
work with respect to their working conditions, and
analyze the performance of MUVIR in the presence
of irrelevant views. For problems where the exact
priors of the minority classes are unknown, we gen-
eralize the MUVIR algorithm to work with only an
upper bound on the priors. Experimental results on
both synthetic and real data sets demonstrate the ef-
fectiveness of the proposed framework, especially
in the presence of irrelevant views.

1 Introduction
In contrast to the large amount of data being generated and
used everyday in a variety of areas, it is usually the case that
only a small percentage of the data might be of interest to
us, which form the minority class. However, without initial
labeled examples, the minority class might be very difficult
to detect with random sampling due to the imbalance nature
of the data, and the limited budget for requesting labels from
a labeling oracle. Rare category detection has been proposed
to address this problem, so that we are able to identify the
very first examples from the minority class, by issuing a small
number of label requests to the labeling oracle.

In many real-world applications, the data consists of mul-
tiple views, or features from multiple information sources.
For example, in synthetic ID detection, we aim to distinguish
between the true identities and the fake ones generated for
the purpose of committing fraud. Each identity is associated
with information from various aspects, such as demographic
information, online social behaviors, banking behaviors. An-
other example is insider threat detection, where the goal is to
detect malicious insiders in a large organization, by collect-
ing various types of information regarding each employee’s
daily behaviors. To detect the rare categories in these appli-
cations, simply concatenating all the features from multiple
views may lead to sub-optimal performance in terms of in-
creased number of label requests, as it ignores the relationship
among the multiple views. Furthermore, among the multiple
information sources, some may generate features irrelevant
to the identification of the rare examples, thus deteriorates
the performance of rare category detection.

To address this problem, in this paper, we propose a novel
framework named MUVIR for detecting the initial exam-
ples from the minority classes in the presence of multi-view
data. The key idea is to integrate view-specific posterior
probabilities of the example coming from the minority class
given features from each view, in order to obtain the esti-
mate of the overall posterior probability given features from
all the views. In particular, the view-specific posterior prob-
abilities can be inferred from the scores computed using
a variety of existing techniques [He and Carbonell, 2007;
He et al., 2008]. Furthermore, MUVIR can be generalized
to handle problems where the exact priors of the minority
classes are unknown. To the best of our knowledge, this pa-
per is the first principled effort on rare category detection in
the presence of multiple views. Compared with existing tech-
niques, the main advantages of MUVIR can be summarized
as follows.

1. Effectively leveraging the relationship among multiple
views to improve the performance of rare category de-
tection;

2. Robustness to irrelevant views;
3. Flexibility in terms of the base algorithm used for gen-

erating view-specific posterior probabilities.
The rest of this paper is organized as follows. After a brief

review of the related work in Section 2, we introduce the pro-



posed framework for multi-view rare category detection in
Section 3. In Section 4, we test our model on both synthetic
data sets and real data sets. Finally, we conclude this paper in
Section 5.

2 Related Work

Multi-view Learning
Multi-view learning targets problems where the features nat-
urally come from multiple information sources, or multiple
views. It has been studied extensively in the literature. Co-
training [Blum and Mitchell, 1998] is one of the earliest ef-
forts in this area, where the authors proved that maximizing
the mutual consistency of two independent views could be
used to learn the pattern based on a few labeled and many un-
labeled examples. Since then, multi-view learning has been
studied in multiple aspects during these years. A portion of
the researchers focus on the study of independent assump-
tion for co-training, which is essential in the real world ap-
plication. [Abney, 2002] refined the analysis of co-training
and gave a theoretical justification that their algorithm could
work on a more relax independence scenario rather than co-
training. [Balcan et al., 2004] proposed an independence
expansion and proved that it could guarantee the success of
co-training. Another line of work has been devoted to the
construction of multiple views and how to combine multi-
ple views. In [Ho, 1998], they apply random sampling
algorithm called RSM, which perform bootstrapping in the
feature space to separate the views. [Chen et al., 2011]
transform the feature decomposition task into an optimiza-
tion problem, which could automatically divide the feature
space into two exclusive subsets. While, in the aspect of how
to combine multiple views and learn models, we can separate
it into the problems of supervised learning, semi-supervised
learning and unsupervised learning. In the category of super-
vised and semi-supervised learning, [Muslea et al., 2003;
2006] designed a robust semi-supervised algorithm which
combined co-learning with active learning. CoMR [Sind-
hwani and Rosenberg, 2008] proposed a multi-view learning
algorithm based on a reproducing kernel Hilbert space with a
data-dependent co-regularization norm. In [Yu et al., 2011],
author proposed a co-training Bayesian graph model, which is
more reliable in handling the case of missing views. SMVC
[Günnemann et al., 2014] proposed a Bayesian framework
for modeling multiple clusterings of data by multiple mix-
ture distributions. In the category of unsupervised learning,
[Long et al., 2008] introduced a general model for unsuper-
vised multiple view learning and demonstrate it in various
types of unsupervised learning on various types of multiple
view data. The authors of [Song et al., 2013] developed
a kernel machine for learning in multi-view latent variable
models, which also allows mixture components to be non-
parametric and to learn data in an unsupervised fashion.

Different from existing work on multi-view learning, in
this paper, we start de-novo, i.e., we do not have any labeled
examples to start with, but we are able to query the oracle for
the labels of selected examples until at least one example has
been detected from each minority class.

Rare Category Detection
Rare category analysis has also been studied for years. Up
to now, many methods have been approached to address this
problem. In this paper, we mainly review the following two
existing works on rare category detection. The first one is
[He and Carbonell, 2007], in which algorithm NNDM is pro-
posed standing on two assumptions: (i) data sets have little
knowledge about labels (ii) there is no separability or near-
separability between majority and minority classes. Both as-
sumptions exactly meet the setting of the problem we want
to figure out. The probability distribution function (pdf) of
the majority class tends to be locally smooth, while the pdf of
minority class tends to be a more compact cluster. In general,
the algorithm measures the changes of local density around
a certain point. NNDM gives a score to each example, and
the score is the maximum difference of local density between
one item and all of its neighboring points. By querying the
examples with the largest score, it is able to hit the region of
minority class with the largest probability.

Another work about rare category detection is [He et al.,
2008], the authors provided an upgraded algorithm GRADE
based on NNDM. In this algorithm, they took the considera-
tion of the manifold structure in minority class. For example,
two examples from the same minority class on the manifold
may be far away in Euclidean distance. In this case, they gen-
erate a global similarity matrix embedded all of the examples
from the original feature space. The items of minority class
are made to form a more compact cluster for each minority
class. Based on global similarity matrix, they measure the
changes of local density for each example. The changes of lo-
cal density, to some extent, has been enlarged, and made the
minority classes easier to be discovered. Furthermore, they
provided an approximating algorithm to manage rare cate-
gory detection with less information about priors of minor-
ity classes. In this paper, our proposed framework MUVIR
is generic in the sense that it can leverage multiple existing
RCD methods, such as GRADE, NNDM and etc., to analyze
the problem in the multi-view version. To the best of our
knowledge, this is the first effort on rare category detection
with multiple views.

3 The Proposed Framework
In this section, we introduce the proposed framework MU-
VIR for multi-view rare category detection. Notice that sim-
ilar as existing techniques designed to address this problem
for single-view data, we target the more challenging set-
ting where the support regions of the majority and minority
classes overlap with each other, which makes MUVIR widely
applicable to a variety of real problems.

3.1 Notation
Suppose that we are given a set of unlabeled examples S =
{x1, · · · ,xn}, which come from m distinct classes, i.e. yi ∈
{1, · · · ,m}. Without loss of generality, assume that yi = 1
corresponds to the majority class with prior p1, and the re-
maining classes are minority classes with prior pc. Further-
more, each example xi is described by features from V views,
i.e., xi = [(x1

i )
T , . . . , (xVi )

T ]T , where xvi ∈ Rdv , and dv is



the dimensionality of the vth view. In our proposed model, we
repeatedly select examples to be labeled by an oracle, and the
goal is to discover at leaset one example from each minority
class by requesting as few labels as possible.

3.2 Multi-View Fusion
In this section, for the sake of exposition, we focus on the bi-
nary case, i.e., m = 2, and the minority class corresponds to
yi = 2, although the analysis can be generalized to multiple
minority classes. As reviewed in Section 2, existing tech-
niques for rare category detection with single-view data es-
sentially compute the score for each example according to the
change in the local density, and select the examples with the
largest scores to be labeled by the oracle. Under mild condi-
tions [He et al., 2008; He and Carbonell, 2007], these scores
reflect P (x, y = 2), thus are in proportion to the conditional
probability P (y = 2|x).

For data with multi-view features, running these algo-
rithms [He et al., 2008; He and Carbonell, 2007] on each
view will generate scores in proportion to P (y = 2|xv),
v = 1, . . . , V . Next, we establish the relationship between
these probabilities and the overall probability P (y = 2|x).
Theorem 1. If the features from multiple views have weak
dependence given the class label yi = 2 [Abney, 2002], i.e.,
P (x|y = 2) ≥ α

∏V
v=1 P (x

v|y = 2), α > 0, then

P (y = 2|x) ≥ C(
V∏
v=1

P (y = 2|xv))×

(∏V
v=1 P (x

v)

P (x)

)
(1)

where C = α
(p2)V −1 is a constant.

Proof.

P (y = 2|x) = P (y = 2)P (x|y = 2)

P (x)

≥
P (y = 2)α

∏V
v=1 P (x

v|y = 2)

P (x)
(2)

= α
P (y = 2)

∏V
v=1

P (y=2|xv)P (xv)
P (y=2)

P (x)

= α

∏V
v=1 P (y = 2|xv)P (xv)
P (x)(P (y = 2))V−1

=
α

(p2)V−1

V∏
v=1

P (y = 2|xv)
∏V
v=1 P (x

v)

P (x)

As a special case of Theorem 1, when the features from
multiple view are conditionally independent given the class
label, i.e., α = 1, we have the following corollary.

Corollary 1. If the features from multiple views are condi-
tionally independent given the class label, then Inequality 1
becomes equality, and C = 1

(p2)V −1 .

Proof. Notice that when the features from multiple views are
conditionally independent given the class label, we have

P (x|y = 2) =

V∏
v=1

P (xv|y = 2)

The rest of the proof follows by changing the inequality in
Equation 2 to equality.

Based on the above analysis, in MUVIR, we propose to as-
sign the score for each example as follows.

s(x) =

V∏
v=1

sv(xv)

(∏V
v=1 P (x

v)

P (x)

)d
(3)

where sv(xv) denotes the score obtained based on the vth

view using existing techniques such as NNDM [He and Car-
bonell, 2007] or GRADE [He et al., 2008]; and d ≥ 0 is a
parameter that controls the impact of the term related to the
marginal probability of the features. In particular, we would
like to discuss two special cases of Equation 3.
Case 1. If the features from multiple views are conditionally
independent given the class label, and they are marginally in-
dependent, i.e., P (x) =

∏V
v=1 P (x

v), then Corollary 1 indi-
cates that d = 0;
Case 2. If the features from multiple views are conditionally
independent given the class label, then Corollary 1 indicates
that d = 1.

In Section 4, we study the impact of the parameter d on
the performance of MUVIR, and show that in general, d ∈
(0, 1.5] will lead to reasonable performance.

Notice that the proposed score in Equation 3 is robust to
irrelevant views in the data, i.e., the views where the exam-
ples from the majority and minority classes cannot be ef-
fectively distinguished. This is mainly due to the first part∏V
v=1 s

v(xv) on the right hand side of Equation 3. For ex-
ample, assume that view 1 is irrelevant such that the distri-
bution of the majority class (P (x|y = 1)) is the same as
the minority class (P (x|y = 2)). In this case, the view-
specific score s1(x1), which reflects the conditional proba-
bility P (y = 2|x), would be the same for all the examples.
Therefore, when integrated with the scores from the other rel-
evant views, view 1 will not impact the relative score of all
the examples, thus it will not degrade the performance of the
proposed framework.

3.3 MUVIR Algorithm
The proposed MUVIR algorithm is described in Algorithm 1.
It takes as input the multi-view data set, the priors of all the
classes (p1, p2, . . . , pm), as well as some parameters, and out-
puts the set of selected examples together with their labels.

MUVIR works as follows. In Step 2, we compute the view-
specific score for each example, which can be done using
any existing techniques for rare category detection. In Step
3, we estimate the view-specific density using kernel den-
sity estimation; whereas in Step 5, we estimate the over-
all density by pooling the features from all the views to-
gether. Finally, Steps 6 to 16 aim to select candidates ac-
cording to P (y = c|x). To be specific, in Step 7, we skip



class c if examples from this class have already been identi-
fied in the previous iterations. Step 10 implements the feed-
back loop by excluding any examples close to the labeled
ones from being selected in future iterations. Notice that
the threshold ε depends on the algorithm used to obtain the
view-specific scores. For example, it is set to the smallest
k-nearest neighbor distance in NNDM [He and Carbonell,
2007], and the largest k-nearest neighbor global similarity in
GRADE [He et al., 2008]. Step 11 updates the view-specific
score for each example with enlarged neighborhood for com-
puting the change in local density [He and Carbonell, 2007;
He et al., 2008]. In Step 13, we compute the overall score
based on Equation 3, and select the example with the maxi-
mum overall score to be labeled by the oracle in Step 14. In
Step 15, if the labeled example is from the target class in this
iteration, we proceed to the next class; otherwise, we mark
the class of this examples as labeled.

Algorithm 1 MUVIR Algorithm

Input: Unlabeled data set S with features from V views,
p1, . . . , pm, d, ε.

Output: The set I of selected examples and the set L of their
labels.

1: for v=1 : V do
2: Compute the view-specific score sv(xvi ) for all the ex-

amples using existing techniques for rare category de-
tection, such as GRADE [He et al., 2008];

3: Estimate P (xvi ) using kernel density estimation;
4: end for
5: Estimate P (xi) using kernel density estimation on all the

features combined;
6: for c=2 : m do
7: If class c has been discovered, continue;
8: for t = 2 : n do
9: for v = 1 : V do

10: For each xi that has been labeled by the oracle,
∀i, j = 1, . . . , n, i 6= j,, if ‖xvi ,xvj‖2 ≤ ε, then
sv(xvj ) = −∞;

11: Update the view-specific score sv(xvi ) using ex-
isting techniques such as GRADE [He et al.,
2008];

12: end for
13: Compute the overall score for each example s(xi)

based on Equation 3;
14: Query the label of the example with the maximum

s(xi)
15: If the label of xi is from class c, break; otherwise,

mark the class of xi as labeled.
16: end for
17: end for

3.4 MUVIR with Less Information (MUVIR-LI)
In many real applications, it may be difficult to obtain the pri-
ors of all the minority classes. Therefore, In this subsection,
we introduce MUVIR-LI, a modified version of Algorithm 1,
which replaces the requirement for the exact priors with an
upper bound p for all minority classes. Compared with MU-

VIR, MUVIR-LI is more suitable in real world applications.
MUVIR-LI is described in Algorithm 2. It works as fol-

lows. Step 2 calculates the specific score sv for each example.
The only difference from MUVIR is that here we use upper
bound p to calculate sv , which is a less accurate measure-
ment of changing local density than in MUVIR. The same as
MUVIR, we estimate the view specific density and the overall
density by applying kernel density estimation in Step 3 and
Step 5. The while loop from Step 6 to Step 16 is the query
processing. We calculate the overall score for each example
and select the examples with the largest overall score to be
labeled by oracle. We end the loop until all the classes has
been discovered.

Algorithm 2 MUVIR-LI Algorithm

Input:
Unlabeled data set S with features from V views, p, d, ε.

Output:
The set I of selected examples and the set L of their la-
bels.

1: for v = 1 : V do
2: Compute the view-specific score sv(xvi ) for all the ex-

amples using existing techniques for rare category de-
tection, such as GRADE-LI [He et al., 2008];

3: Estimate P (xvi ) using kernel density estimation;
4: end for;
5: Estimate P (xi) using kernel density estimation;
6: while not all the classes have been discovered do
7: for t = 2 : n do
8: for v = 1 : V do
9: For each xi that has been labeled by the oracle,

∀i, j = 1, . . . , n, i 6= j,, if ‖xvi ,xvj‖2 ≤ ε, then
sv(xvj ) = −∞;

10: Update the view-specific score sv(xvi ) using ex-
isting techniques such as GRADE-LI [He et al.,
2008];

11: end for;
12: Compute the overall score for each example s(xi)

based on Equation 3;
13: Query the label of the example with the maximum

s(xi)
14: Mark the class that x belongs to as discovered.
15: end for;
16: end while

4 Experimental Results
In this section, we will present the results of our algorithm on
both synthetic data sets and real data sets in multiple special
scenarios, such as data sets with different number of irrelevant
features, data sets with multiple classes and data sets with
very rare categories, such as class proportion of 0.02%.

4.1 Synthetic Data Sets
Binary Class Data Sets
For binary classes, we perform experiment on 3600 synthetic
data sets, and each scenario has independent 100 data sets.
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Figure 1: Prior of minority class is 0.5%
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Figure 2: Prior of minority class is 1%

 
0 1 2 3

0

10

20

30

40

50

60

70

80

90

100

# of irrelevant features

# 
of

 s
el

ec
te

d 
ex

am
pl

es

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

# of irrelevant features

# 
of

 s
el

ec
te

d 
ex

am
pl

es

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

# of irrelevant features

# 
of

 s
el

ec
te

d 
ex

am
pl

es

 

 

Random Sampling

GRADE

d=0

d=0.5

d=1

d=1.5

In Majority Class Center Near Majority Class Center Partly Separated from Majority Class

Figure 3: Prior of minority class is 2%

We consider the following three special conditions: (i) differ-
ent number of irrelevant features, i.e. from 0 to 3 irrelevant
features; (ii) different priors for minority class, i.e. 0.5%,
1%, 2%; (iii) different levels of correlation between majority
class and minority class, ie. minority class stays in the cen-
ter of majority class, minority class stays around the center of
majority class, minority class stays at the boundary of major-
ity class. Besides, as the distribution of majority class tends
to be more scattered and the distribution of minority class is
more compact, we set each data set with 5000 examples and
σmajority : σminority = 40 : 1.

In the experiment, we compare MUVIR with GRADE [He
et al., 2008] and random sampling. Fig. 1 shows the re-
sults when the prior of minority class is 0.5%. Using ran-
dom sampling, we need to label 200 examples on average to
identify the minority class. In most cases, other approaches
outperform random sampling. However, the learning model
generated by GRADE algorithm performs worse with the in-
creasing of irrelevant features. In contrast, MUVIR is more
efficient and stable rather GRADE. The experiment with mi-
nority proportions of 1% and 2% are represented in Fig. 2
and Fig. 3. In these two experiment, MUVIR outperforms
GRADE and random sampling in each condition with any
setting of d. Comparing these three figures, we have the fol-
lowing observations for binary class data sets: (i) MUVIR is
more reliable especially when dealing with data sets contain-
ing irrelevant features. (ii) In the case of data sets with no
irrelevant features, the performance of MUVIR with different

values of d are roughly the same. (iii) In the case of data
sets with irrelevant features, MUVIR with d = 1 outperforms
other methods.

Multi-classes Data Sets with Imprecise Prior
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Random Sampling

GRADE

GRADE-LI

MUVIR, d=1
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Figure 4: Multi-class data sets

For multi-class data sets, we compare the performances
among different approaches. In particular, GRADE-LI [He
et al., 2008] and MUVIR-LI are only provided with an upper
bound p on the proportion of all the minority classes. The
multi-class data sets consisting of 9000 examples correspond
to majority class, and the other 1000 examples correspond to
4 minority classes. The proportions of minority classes are
4%, 3%, 2%, 1%. Similar to previous experiments, we will
discuss the scenario data sets contain different number of ir-
relevant features. Each value we represented in the figure
is the median value of results from 100 same scenario data
sets. From Fig. 4, we can have the following conclusions: (i)



MUVIR outperforms all other algorithms in multi-class data
sets; (ii) GRADE only performs good when data sets have 1
or 0 irrelevant feature; (iii) MUVIR-LI is more reliable than
GRADE-LI in all scenarios. The reason that our models have
better performance is that both MUVIR and MUVIR-LI are
capable to exploit the relationship among multiple views and
extract useful information to make predictions.

Parameter Analysis
From previous experiments, we found different parameter
settings may result in different outcomes. In this experiment,
we will focus on analyzing the impact from degree d and up-
per bound prior p. To measure the impact of these parameters,
we generate 400 data sets with minority class proportion 1%.
The number of irrelevant features varies from 0 to 3, and each
case has 100 data sets. In Fig. 5, the X axis represents differ-
ent values of degree d, and Y axis represents the number of
selected examples on average. From Fig. 5, we can see that
MUVIR performs better when d ∈ (0, 1.5]. In the following
experiments, we will focus on studying the performance of
our algorithm with d in this certain area.
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Figure 5: Learning curves with different degree d
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Figure 6: Learning curves with different prior upper bound

With the same data sets, we studied the learning curves of
labeling requests by applying MUVIR-LI with different upper
bound p. In Fig. 6, the X axis represents different values of
upper bound proportion and Y axis represents the number of
labeling requests. The red line represents the average num-
ber of labeling requests by using random sampling. When
data sets without irrelevant features, MUVIR-LI works well
even with upper bound p changing from 1% to 12%. When
data sets with irrelevant features, MUVIR-LI can still outper-
forms random sampling with upper bound p changing from
1% to 8.5%. However, when the upper bound exceeds a cer-
tain level, the algorithm tends to be random sampling. This
might be due to the reason that when the bound is very loose,
e.g. the exact proportion of the minority class is 1% and the
given upper bound is 10%, the performance of our proposed
algorithm may be greatly affected by the introduced noise.

Views Features
relevant view 1 education, education years, work class
relevant view 2 age, hours per week, occupation
relevant view 3 martial status, relationship, sex
relevant view 4 race, native country
irrelevant view 1 final weight
irrelevant view 2 capital loss, capital gain

Table 1: Relevant and irrelevant views in Adult Data set.

4.2 Real Data Sets
In this subsection, we will demonstrate our algorithm on two
real data sets Statlog and Adult. Noted that, before we run our
algorithms, we have preprocessed both data sets in order to
keep each feature component has mean 0 and standard devi-
ation 1. In the following experiments, we will compare MU-
VIR and MUVIR-LI with the following algorithms: GRADE,
GRADE-LI and random sampling.
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Figure 7: Adult

Adult data set contains 48842 instances and 14 features of
each example. It is a binary classes data sets. Considering the
original prior of minority class in data sets is around 24.93%.
To better test the performance of our model, we keep major-
ity class the same and down sample the minority class to 500
examples. In this way, we generate 24 data sets with minority
prior of 1.3%. And we select relevant and irrelevant views
based on correlation analysis. Noticed that all the views are
fed to all the algorithms without information regarding their
relevance. The details about relevant and irrelevant views are
represented in Tab.1. Fig. 7 shows the comparison results on
real data by applying 5 different approaches. In this experi-
ment, we have not included MUVIR-LI, it is because MUVIR-
LI is mainly developed for multi-class cases and Adult is a
binary class data sets. By using random sampling, the aver-
age number of selected examples is 76. With irrelevant views,
GRADE needs 69 requests, MUVIR with d = 0 needs 60 re-
quests, MUVIR with d 6= 0 needs around 30 to 40 requests.
The results totally meet our intuition that when dealing data
sets with irrelevant views, MUVIR with d 6= 0 outperforms
MUVIR with d = 0, and MUVIR with d = 0 outperforms
GRADE. However, when dealing with data sets without irrel-
evant views, GRADE needs less labeling requests than MU-
VIR with d = 0, but more labeling requests than MUVIR with
d around 1.

Different from Adult, Statlog contains 58000 examples and
7 classes. Among 7 classes, there are 6 minority classes, with
priors varying from 0.02% to 15%. In this experiment, we
compare the following 4 methods: GRADE, GRADE-LI with



upper bound p = maxmc=2 p
c, MUVIR with d = 1, MUVIR-LI

with d = 1 and p = maxmc=2 p
c. From Fig. 8, we can see that

MUVIR outperforms all other algorithms for finding all the
minority class. With the same upper bound prior, GRADE-
LI needs 272 labeling requests while MUVIR-LI only needs
168 labeling requests to discover all the classes. If we ap-
ply random sampling, it may needs around 5000 labeling re-
quest to only identify the smallest minority class. Compared
with Adult, we have better results on Statlog. It is because
the distribution of majority class and minority classes are not
meshed together as in Adult. Thus, to identify the minority
classes in Statlog is a much easier case.
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Figure 8: Statlog

5 Conclusion
In this paper, we have proposed a multi-view based method
for rare category detection named MUVIR. Based on MUVIR,
we also provided a modified version MUVIR-LI for dealing
with real applications with less prior information. Different
from existing methods, our methods exploit the relationship
among multiple views and measure the probability belonging
to target class for all examples. Our algorithm works well
with multiple special cases: data sets with irrelevant features,
data sets with multiple minority class and various correlation
levels between minority class and majority class. The effec-
tiveness of our proposed methods is guaranteed by theoretical
justification and extensive experiments results on both syn-
thetic and real data sets, especially in the presence of irrele-
vant views.
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