
Motif-Preserving Dynamic Local Graph Cut
Dawei Zhou, Jingrui He, Hasan Davulcu, Ross Maciejewski

Arizona State University
Email: {dzhou23, jingrui.he, hdavulcu, rmacieje}@asu.edu

Abstract—Modeling and characterizing high-order connec-
tivity patterns are essential for understanding many complex
systems, ranging from social networks to collaboration networks,
from finance to neuroscience. However, existing works on high-
order graph clustering assume that the input networks are static.
Consequently, they fail to explore the rich high-order connectivity
patterns embedded in the network evolutions, which may play
fundamental roles in real applications. For example, in financial
fraud detection, detecting loops formed by sequenced transactions
helps identify money laundering activities; in emerging trend
detection, star-shaped structures showing in a short burst may in-
dicate novel research topics in citation networks. In this paper, we
bridge this gap by proposing a local graph clustering framework
that captures structure-rich subgraphs, taking into consideration
the information of high-order structures in temporal networks.
In particular, our motif-preserving dynamic local graph cut
framework (MOTLOC) is able to model various user-defined
temporal network structures and find clusters with minimum
conductance in a polylogarithmic time complexity. Extensive
empirical evaluations on synthetic and real networks demonstrate
the effectiveness and efficiency of our MOTLOC framework.

I. INTRODUCTION

Nowadays, large-scale network data is being generated
at an unprecedented speed from various domains, ranging
from social networks to collaboration networks, from finance
to neuroscience. Arguably, the graph clustering algorithms
provide us an important tool to study the topology of networks
and to identify low conductance communities with closely
related entities. Despite their algorithmic simplicity and theo-
retical elegance, most existing works are inherently limited to
preserving the lower-order connectivity patterns, that can be
captured at the level of individual nodes and edges, with the
first-order Markov chain interpretation. However, in practice,
many real networks are more naturally described by the higher-
order connectivity patterns (e.g., triangles, loops, and stars). It
has been shown that incorporating the higher-order connectiv-
ity information into the graph clustering process can signifi-
cantly improve our understanding of the underlying complex
system [30]. For instance, in social networks, triangles have
been proven to play the fundamental role in understanding
community structures [11]; in transaction networks, directed
cycles might be red flags for potential money laundering
activities [7]; in collaboration networks, star-shaped structures
appearing in a short burst may indicate an emerging trend in
research communities [27].

Moreover, in many real-world applications, the networks
are evolving over time [21], i.e., the vertices and edges may
appear, vanish, or even re-appear. Existing techniques gener-
ally model the dynamic networks as either (1) strictly growing

graphs where once the nodes and edges appear, they stay
forever [2]; or (2) time-evolving graphs where the temporal
information of networks is aggregated into a sequence of snap-
shots [27]. However, none of these techniques can precisely
capture the rich temporal network structures in the data, since
they neglect the fact that the interactions between vertices are
all individually time-stamped in many dynamic systems. In
this paper, we address such challenges from multiple aspects.
In particular, this paper tries to answer the following questions:
Q1: How to define a good temporal network model which
can represent the underlying high-order structures in dynamic
systems? Q2: How to conduct the graph partitioning that
preserves rich user-defined temporal structures in the returned
clusters? Q3: How to ensure the proposed algorithm is scalable
for massive real-world networks?

To address these problems, we start with the general notion
of the kth-Order τ -Duration δ-Temporal Network Structure for
modeling the high-order connectivity patterns in the temporal
networks. Then, inspired by the family of local graph clus-
tering algorithms for efficiently conducting sparse cut without
exploring the entire network, we generalize the idea and pro-
pose a motif-preserving dynamic local graph cut (MOTLOC)
framework that allows user to specify a temporal network
structure and finds a sparse cut which has small conductance
and largely preserves such structures in the returned cluster
with a polylogarithmic time complexity. Finally, we evaluate
the performance of MOTLOC from multiple aspects using
various real-world temporal networks.

To summarize, our work makes the following contributions:

1) Definitions of temporal networks and temporal network
structures for dynamic systems.

2) A general algorithm to encode user-defined high-order
temporal network structure patterns into a tensor repre-
sentation of the given network.

3) A local algorithm (MOTLOC) for structure-preserving
graph cut on the temporal network.

4) Extensive experiments and case-studies on both real and
synthetic data sets, showing the effectiveness and effi-
ciency of the proposed algorithms.

The rest of our paper is organized as follows. Related
works are given in Section 2. In Section 3, we introduce the
notions of temporal networks and temporal network structures.
Section 4 presents our proposed structure-preserving graph cut
framework MOTLOC. Experimental results are presented in
Section 5, and finally we conclude the paper in Section 6.

II. RELATED WORK

In this section, we briefly review the existing works on
dynamic network mining and graph clustering algorithms.

A. Dynamic Networks Mining

Recently, there is an increasing interest in mining dynamic
networks, such as community evolution [6, 26, 34], proximity
tracking [17, 27], dynamic tensor analysis [24], and dynamic
graph summarization [21]. Most of the existing works model
the dynamic networks in the following three ways. (1) Static
graph: the graph totally ignores the temporal information and
aggregates everything from the beginning to the end [4, 29];
(2) Strictly growing graph: the graph assumes each node and
edge once exist, stay forever [2, 10]; (3) Time-evolving graph:
the graph aggregates temporal information into a sequence of
snapshots [26, 27]. Although these methods permit computa-
tional convenience in the sense of various fast algorithms [27]
for dynamic networks, they also impose severe limitations in
capturing the dynamic structures [19] in real applications. In
[19], the authors introduce the novel notion of “δ-temporal
motif”, which helps explore the ordering of temporal edges
and characterize different types of three-node structures in
temporal networks. In this paper, we further generalize this
idea and propose the definition of the kth-Order τ -Duration δ-
Temporal Network Structure, which characterizes the temporal
network structures in every occasion that the edges from a
particular network structure within the prescribed τ -duration
time window and last for δ time. The details of modeling
temporal networks will be discussed in Section 4.

B. Graph Clustering Algorithms

Graph Clustering algorithms represent an important class
of tools for studying the underlying structure of networks
in various applications such as fraud detection [7, 32, 33],
insider detection [31], synthetic identitiy detection [35] and
community detection [16]. Nonetheless, all of the above works
are known to perform clustering at the level of individual
nodes and edges. More recently, how to cluster networks
on the basis of higher-order connectivity patterns arouses
research interests in the data mining community. In [3], the
authors propose a spectral clustering framework that allows
for modeling high-order networks structures and conducts
partition while preserving such structures on the given graph.
[35] proposed a high-order graph clustering framework, which
aims to find a structure-rich dense subgraph from a user
specified local region. However, to the best of our knowledge,
there is no previous work about high-order network structure
clustering on temporal networks. To fill this gap, MOTLOC
is proposed to identify clusters that largely preserve the user-
specified structures in temporal networks.

III. FINE-GRAINED TEMPORAL NETWORK

In this section, we introduce the formal definitions of
temporal network structure and temporal networks.

A. Temporal Network

Traditional techniques model dynamic networks by collect-
ing the changes over time and aggregating temporal infor-
mation into a sequence of snapshots. However, an important
observation from many real applications is that the nodes and
edges are time-stamped, and they may not all exist forever.
For example, in social networks, a node can be added and then
disappear, when one creates a user account and deletes it later;
an edge can be created and then be removed, when one follows
another user and then stops the “followship”. Obviously, either
strictly growing graphs or time-evolving graphs fail to preserve
these fine-grained dynamics of temporal networks. To tackle
this issue, we propose the novel notions regarding temporal
network as follows.

Definition 1 (δ-Temporal Node): In the temporal network,
a δ-temporal node v(t,δ) represents the vertex v that appears
at time-stamp t and exists for δ duration.

Definition 2 (δ-Temporal Edge): In the temporal network, a
δ-temporal edge (u, v)(t,δ) represents the connection between
node u and node v that appears at time-stamp t and exists for
δ duration.

Definition 3 (Temporal Network): A temporal network
G̃ = (Ṽ , Ẽ) is formed by a collection of ñ tempo-
ral nodes Ṽ = {v(t1,δ1)

1 , v
(t2,δ2)
2 , . . . , v

(tñ,δñ)
ñ } and a

sequence of m̃ temporal edges Ẽ = {(u1, v1)(t1,δ1),
(u2, v2)(t2,δ2), . . . , (um̃, vm̃)(tm̃,δm̃)}.

Based on the above definitions, now we introduce the
notion of kth-Order τ -Duration δ-Temporal Network Structure
Ñ(k,τ,δ) which is designed for characterizing the higher-order
connectivity patterns in temporal networks.

Definition 4 (kth-Order τ -Duration δ-Temporal Network
Structure): In temporal networks, a kth-Order τ -Duration δ-
Temporal Network Structure Ñ(k,τ,δ) represents the k-node
network structure composed of an ordered sequence of l
temporal edges, {(u1, v1)(t1,δ1), . . . , (ul, vl)

(tl,δl)}, which are
all created in a prescribed τ -duration time window, i.e.,
t1 ≤ t2 ≤ . . . ≤ tl and tl − t1 ≤ τ , and exist at least δ
duration, i.e., δ1, δ2, . . . , δl ≥ δ.

B. Temporal Conductance

A good cut C of static graph G is a subset of vertices
that are densely connected within themselves but sparsely
connected with the remainder of the graph. The quality of
a cut (cluster) can be measured by conductance, the fractional
ratio between the internal edges and external edges of the
identified cut (cluster) C. However, in many real applications,
it is usually the case that the user would like to find a local
cluster C on the graph G such that: (1) the cut should preserve
rich prescribed high-order network structure Ñ inside of C; (2)
the preserved high-order network structure Ñ should satisfy
some temporal constraints regarding the existing period δ
and creating period τ ; (3) the cut should break as less such
structure Ñ as possible. Obviously, the traditional definition
of the conductance Φ does not serve this purpose. In [3], the
authors introduce the definition of “high-order conductance”
φ3 for conducting a sweep cut with respect to triangles on

a given static network. Based on the definition of the kth-
Order τ -Duration δ-Temporal Network Structure Ñ(τ,δ), we
further generalize φ3 [3] to higher-order network structures
in dynamic networks as follows.

Definition 5 (Temporal Conductance): For any given cluster
C in the temporal network G̃ and the kth-Order τ -Duration δ-
Temporal Network Structure Ñ(k,τ,δ), the kth-order temporal
conductance Φ(C, Ñ) is defined as

Φ(C, Ñ) =
cut(C, Ñ)

min{µ(C, Ñ), µ(C̄, Ñ)}
(1)

where cut(C, Ñ) denotes the number of temporal
structures broken due to the partition of G into C
and C̄, i.e., cut(C, Ñ) =

∑
i1,...,ik∈Ṽ T (i1, . . . , ik) −∑

i1i2,...,ik∈C T (i1, . . . , ik) −
∑
i1,...,ik∈C̄ T (i1, . . . , ik)

and µ(C, Ñ) (µ(C̄, Ñ)) denotes the total number of
temporal structures Ñ(τ,δ) incident to the vertices within
C (C̄), i.e., µ(C, Ñ) =

∑
i1∈C;i2,...,ik∈Ṽ T (i1, i2, . . . , ik)

µ(C̄, Ñ) =
∑
i1∈C̄;i2,...,ik∈Ṽ T (i1, i2, . . . , ik).

C. Temporal Motif-Based Graph Cut Problem

The identification of structure-rich clusters can be consid-
ered as an optimization problem: Given a temporal graph G̃, a
user-defined structure Ñ(k,τ,δ) and a parameter φ, find a cluster
C such that Φ(C, Ñ) ≤ φ or determine that no such cluster
exists. The above problem is challenging since: (1) even only
considering the simplest case, i.e., the user-defined structure is
an edge, the above problem is NP-complete [12, 22]; (2) the
network is always highly skewed, i.e., it is usually the case
that the clusters of interest are rare [9]. To tackle these issues,
we transform the global clustering problem into a local graph
clustering problem as follows.

Problem 1: Motif-preserving dynamic local graph cut
Input: (i) a temporal network G̃ = (Ṽ , Ẽ), (ii) a user-defined

Temporal Network Structure Ñ(k,τ,δ), (iii) a conductance
upper bound φ; and (iv) an initial vertex v.

Output: a cluster C ∈ Ṽ such that Φ(C, Ñ) ≤ φ.

IV. THE PROPOSED MOTLOC FRAMEWORK

In the previous two sections, we introduce the basics
of vector-based graph cut and high-order temporal network
structure. Now, we are ready to present our motif-preserving
dynamic local graph cut framework, which generalizes the
vector-based graph cut methods to produce local clusters
that largely preserve user-defined high-order temporal network
structures from the graph cut.

A. High-order Representation of Temporal Network

Our first goal is to extract and represent the structures of
interest in the temporal network G̃. [3] first introduced the idea
of representing triangles in a static graph by using an “order-3
tensor”. Here, we generalize this idea to represent any user-
defined Structures Ñ(k,τ,δ) in a tensor representation of G̃. In
general, given Ñ(k,τ,δ), the corresponding adjacency tensor T
can be constructed by Definition 6. For instance, to represent
the temporal triangle in Fig. ?? (a), we can use a three-mode

adjacency tensor T ∈ Rñ×ñ×ñ+ , where the entry T (i, j, k) = 1
if and only if vertices i, j, k ∈ V form the prescribed temporal
triangle. In particular, the number of non-zero entries of T
indicates how many user-defined temporal triangles exist in the
given data set; the number of non-zero entries in slice T (i, :
, :) represents how many the user-defined temporal triangles
consist the ith node in the network; the number of non-zero
entries in fiber T (i, j, :) shows how many the user-defined
temporal triangles are formed by the ith node and the jth node
in the network.

Definition 6 (Adjacency Tensor): Given a temporal graph
G̃ = (Ṽ , Ẽ), the kth-Order τ -Duration δ-Temporal Network
Structure Ñ(k,τ,δ) on G̃ can be represented in a k-mode
adjacency tensor T as follows

T (i1, i2, . . . , ik) =

{
1 {i1, i2, . . . , ik} form Ñ(k,τ,δ).
0 Otherwise.

(2)

In Definition 7, we induce the notion of transition tensor
with respect to Ñ(k,τ,δ) in G̃. Considering each vertex in G̃ as
a state, we can interpret the k-mode transition tensor P as the
transition probabilities of the (k−1)th-order Markov chain, i.e.,
P (i1, . . . , ik) = Pr(St+1 = i1|St = i2, . . . , St−k+2 = ik). In
other words, given the nodes (previous states) i2, . . . , ik, the
probability of forming Ñ(k,τ,δ) by using node (current state)
i1 is P (i1, i2, . . . , ik).

Definition 7 (Transition Tensor): Given a temporal graph
G̃ = (Ṽ , Ẽ) and the adjacency tensor T for the kth-Order
τ -Duration δ-Temporal Network Structure Ñ(k,τ,δ), the corre-
sponding transition tensor P can be computed as

P (i1, i2, . . . , ik) =
T (i1, i2, . . . , ik)∑ñ
i1=1 T (i1, i2, . . . , ik)

(3)

In Algorithm 1, we present a general framework for com-
puting the temporal motif-based transition tensor P . The input
of Algorithm 1 consists of the temporal network G̃ and user-
defined temporal structure Ñ(k,τ,δ). Here, we assume that G̃
has edges sorted by the order of creating time, which ensures
that we can access all the temporal edges in O(1) in Step 5.

B. High-order Random Walk with Restart

Next, we introduce the basics of HRWR, which will be
used for exploring the high-order organizations in given net-
works. In particular, HRWR extends the random walk with
restart (RWR) to the higher-order Markov chain [8, 35].
Entries of the transition tensor P w.r.t. the kth-Order τ -
δ-Temporal Network Structure Ñ(τ,δ) can be interpreted as
the transition probability of a (k − 1)th-order Markov chain.
More generally, for the oth-order RWR, the corresponding
Markov chain S describes a stochastic process that satisfies
Pr(St+1 = i1|St = i2, . . . , St−o+1 = io+1, . . . , S1 =
it+1) = Pr(St+1 = i1|St = i2, . . . , St−o+1 = io+1)
,where i1, . . . , it+1 denote the set of states associated with
different time stamps. In particular, the future state (node) vi1
only depends on the past o states (nodes) vi2 , . . . , vio+1

. [8]
shows that, when the stationary distribution X of the oth-order
Markov chain (RWR) exists, it satisfies X(i1, i2, . . . , ik−1) =

Algorithm 1 Pre-processing: Constructing Transition Tensor

Input: G̃ = (Ṽ , Ẽ), Ñ(τ,δ).
Output: P .

1: Construct the static graph G induced by G̃.
2: Identify all the instances of the static network structure N

induced by Ñ(k,τ,δ) on static graph G.
3: for each identified static network structure N do
4: Gather the corresponding k distinct vertices

{vi1 , vi2 , . . . , vik}.
5: Gather the corresponding m′ temporal edges and

form an ordered sequence S̃, i.e., {(u1, v1)(t1,δ1),
(u2, v2)(t2,δ2), . . . , (um′ , vm′)

(tm′ ,δm′)}.
6: if tm′ − t1 ≤ τ and δ1, δ2, . . . , δm′ ≥ δ. then
7: Let T (i1, i2, . . . , ik) = 1.
8: end if
9: end for

10: Compute the transition tensor P by Eq. 3.

α
∑
ik
P (i1, i2, . . . , ik)X(i2, . . . , ik) + (1 − α)χv(i). where

X(i1, . . . , ik−1) denotes the probability of being at states
i1, . . . , ik−1 in consecutive time steps upon convergence of
the HRWR, and

∑
i1,...,ik−1

X(i1, . . . , ik−1) = 1.
While in real applications the tensor product structure in

the state-space and the tensor representation stationary distri-
bution X make the HRWR hard to be scalable in large-scale
problems. Specifically, storing the stationary distribution X
requires O(no) space complexity. To overcome this scalability
limitation, a commonly held assumption is the “rank-one
approximation” [8, 15], i.e., X(i2, . . . , ik) = q(i2) . . . q(ik),
where q ∈ Rn×1

+ with
∑
i q(i) = 1. Then, we have

q(i1) = α
∑

i2,...,ik

P (i1, . . . , ik)q(i2) . . . q(ik) + (1− α)χv(i1).

(4)
By this way, storing the stationary distributionX only requires
O(n). For the paper presentation purpose, we rewrite Eq. 4 in
the form of Kronecker product as follows

q = αP̄ (q ⊗ . . .⊗ q) + (1− α)χv. (5)

where ⊗ denotes the Kronecker product.

C. High-order Vector-based Graph Cut

Here, we present our high-order vector-based graph cut
algorithm (Algorithm 2) for conducting a structure-preserving
local graph cut in the given temporal networks. The key
challenge of motif-based graph cut is the prohibitive com-
putational cost. To tackle this, we generalize the key idea
of vector-based graph cut methods [1, 23] to locally explore
the high-order connectivity patterns in the neighborhood of
initial vertex v and return the desired graph cut, by using
HRWR [8] with “rank-1” assumption [15]. For further reduce
the computational cost of HRWR, we adopt an approximation
of HRWR in our framework by restricting the probability mass
of HRWR to a local subset of vertices, thus we can limit the
computation to the neighborhood of the seed. To achieve this,

Algorithm 2 High-order Vector-based Graph Cut
Input: P , M , v, k, φ, tmax, b, c1.
Output: C.

1: Compute the unfolding matrix P̄ of the transition tensor
P and initial ε using φ.

2: Compute the initial HRWR distributions r(t) =
[M t−1χv]ε, t = 1, . . . , k − 1.

3: Let C = ∅.
4: for t = k : tmax do
5: Compute the t-step HRWR vector q(t) = αP̄ (r(t−1)⊗

. . .⊗ r(t−k+1)) + (1− α)χv.
6: Truncate the HRWR vectors q(t) by r(t) = [q(t)]ε.
7: Compute the permutation π regarding the HRWR vector

q(t) such that q(t)(π(1))
d(π(1)) ≤

q(t)(π(2))
d(π(2)) ≤ . . . ≤

q(t)(π(n))
d(π(n)) .

8: for j = b2 b
2 c : n do

9: Let Cj = {π(1), . . . , π(j)} be the set of the first j
vertices in permutation π.

10: Quit and return C = Cj such that:
11: (a)Conductance: Φ(Cj , Ñ) <= φ,
12: (b)Volume: 2b <= µ(Cj),
13: (c)Prob Mass: Ix(q(t), 2b) >= 1

c1(l+2)2b .
14: end for
15: end for

we apply the following truncation operator [23] in order to
round all small probability values to zero and do not differ
too much from the one without truncation.

[q]ε(u) =

{
q(u) if q(u) ≥ d(u)ε

0 Otherwise
(6)

where ε is the truncation threshold that can be computed
as ε = 1/(1800 · (l + 2)tlast2

b), l can be computed as
l = dlog2(µ(V)/2)e, and tlast can be computed as tlast =

(l + 1)
⌈

2
φ2 ln

(
140(l + 2)

√
µ(V)/2

)⌉
.

Intuitively, the complexity of Algorithm 2 largely depends
on the density of the constructed transition tensor P , i.e.,
the number of Ñ(k,τ,δ) in the given data. However, it is
hard to directly estimate the number of high-order structures
in real applications. Here, we present the time complexity
analysis in Lemma 1, which shows that Algorithm 2 runs in
polylogarithmic time with respect to the size of G̃.

Lemma 1: The time complexity of Algorithm 2 is upper
bounded by O

(
tmax

2bk

φ2k log
3km̃

)
, where k is the order of

prescribed temporal network structure Ñ(k,τ,δ), m̃ is the num-
ber of temporal edges in the given temporal network G̃, and
tmax, b, φ are the input parameters of Algorithm 2.

Proof 1: Omitted for brevity.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
empirical studies in terms of effectiveness and efficiency.

(a) τ = 10 days (b) τ = 20 days (c) τ = 50 days
Fig. 1. High-order Temporal Conductance over Different Temporal Graphs. (lower is better)

A. Experiment Setup

Data Sets: we test our algorithm on a diverse set of real-
world temporal networks. The statistics of all data sets used
are summarized in Table I.

Network Temporal Nodes Temporal Edges Time Span
MathAQ 21,688 107,581 2,350 days
MathCQ 16,836 203,639 2,349 days
MathCA 13,840 195,330 2,350 days

Email 986 332,334 803 days
MSG 1,899 20,296 193 days

ETrust 46,948 245,749 3,744 days
TABLE I

STATISTICS OF THE DATA SETS.

• Collaborative Network: The MathAQ, MathCQ and
MathCA data sets [13] are collected from MathOverflow
with respect to three different types of users’ interactions,
i.e., answer questions, make comments on questions, and
make comments on answers.

• Communication Network: The Email data set [19] is a
collection of emails within an European research institution.
The MSG data set [18] is extracted based on a social network
at the University of California, Irvine.

• Review Network: The ETrust data set [14] is a who-trust-
whom network derived from a review network named Epin-
ion. Each node represents a user, and one edge exits if and
only if when one user trusts another user at a certain time
stamp.
Comparison Methods: In our experiments, we select five

state-of-the-art graph clustering methods, including two static
methods, i.e., Nibble [23] and TSC [3], and three dynamic
methods, i.e., DYHM [20], iLCD [5] and LRT [28]. Note that
all the static methods are performed on the induced static graph
G, that aggregates all the temporal nodes and the temporal
edges into one time stamp.

B. Effectiveness Results

We perform the effectiveness comparisons with five baseline
algorithms in Fig. 1, by treating temporal triangles as the user-
defined structure. Note that, to evaluate the convergence of
local algorithms, we randomly select 10 vertices from the
same cluster on each testing graph and run all the local
algorithms multiple times by treating each of these nodes
as an initial vertex. In Fig. 1, the height of bars indicates
the average value of evaluation metrics, and the error bars
(only for local algorithms) represent the standard deviation
of evaluation metrics in multiple runs. We let the duration

of temporal triangle be τ = 10 days, 20 days and 50 days,
respectively. Fig. 1(a) to Fig. 1(c) present the results regarding
high-order temporal conductance Φ(C, Ñ). In general, we have
the following observations: (1) MOTLOC outperforms other
comparison methods across all the data sets. For example,
when τ = 10, MOTLOC is 33.9% smaller than the second
best, i.e., Nibble, on Φ(C, Ñ) in Fig. 1. (2) Comparing with the
existing methods without high-order structures (e.g., Nibble,
DYHM, LRT, and iLCD), MOTLOC demonstrates significant
reduction in terms of conductance and expansion with respect
to different durations, showing the usefulness of high-order
structures. (3) Comparing with TSC, which also uses high-
order structures but did not use temporal information, MOT-
LOC shows the importance of the use of temporal information
in our model.

C. Efficiency Results

Here, we evaluate the scalability of MOTLOC with different
user-defined structures on a series of increasing scale synthetic
graphs. The results presented in this subsection are calculated
over 500 runs. Note that the overall running time of MOTLOC
may vary a lot with different initial vertices and data sets.
Considering the most time-consuming parts in Algorithm 2
are the HRWR diffusion process (Step 7 to Step 9) and the
query process (Step 10 to Step 16), we show the running time
of HRWR diffusion process and query process separately as
follows. In Fig. 2, we show the running time per HRWR and
the running time per query vs. the number of nodes. For all
the results in Fig.2, we let the edge density be fixed as 1%. In
general, we observe that (1) the running time increases way
slower than O(nk), i.e., a little bit above linear with respect to
the number of nodes. It is because we take the advantage of
sparse computation techniques in implementing our proposed
algorithms; (2) the running time of both HRWR and query
process is higher when the order of user-defined network struc-
ture is higher; (3) the running time of experiments regarding
3-node line is slightly higher comparing with the experiments
regarding triangles. One possible reason is that the transition
tensor of 3-node line is denser than the transition tensor of
triangle, which leads to more computational workload.

VI. CONCLUSION

In this paper, we study how to perform high-order structure-
preserving graph cut on temporal network, which opens the
door for high-order connectivity pattern analysis in dynamic
systems. To the best of our knowledge, we are the first to

(a) Running time per HRWR (b) Running time per query
Fig. 2. Scalability Analysis with Respect to Number of Nodes.

study graph clustering in this setting. The major contributions
of this paper include the following aspects. First, we develop
the definitions of temporal network G̃ = (Ṽ , Ẽ) and the
kth-Order τ -Duration δ-Temporal Network Structure Ñ(τ,δ)

as the tool for modeling and characterizing the underlying
high-order temporal structure of dynamical systems. Besides,
we propose a general algorithm for encoding user-defined
high-order temporal network structure patterns into the tensor
representation of the given network. Furthermore, we develop
the motif-preserving dynamic local graph cut framework MOT-
LOC, which gives the user flexibility to model any high-order
network structures in temporal networks. Finally, extensive
experiments on both real and synthetic data sets demonstrate
the effectiveness and efficiency of the proposed algorithms.

ACKNOWLEDGMENT

This work is supported by the United States National
Science Foundation under Grant No. IIS-1552654, Grant No.
IIS-1813464, Grant No. PFI:BIC-1430144, and Grant No.
CNS-1629888, the U.S. Department of Homeland Security
under Grant Award Number 17STQAC00001-02-00, and an
IBM Faculty Award. The views and conclusions are those of
the authors and should not be interpreted as representing the
official policies of the funding agencies or the government.

REFERENCES

[1] R. Andersen, F. Chung, and K. Lang. Local graph partitioning
using pagerank vectors. In IEEE FOCS, 2006.

[2] A. Barabási and R. Albert. Emergence of scaling in random
networks. science, 1999.

[3] A. R. Benson, D. F. Gleich, and J. Leskovec. Tensor spectral
clustering for partitioning higher-order network structures. In
SIAM SDM, 2015.

[4] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order
organization of complex networks. Science, 2016.

[5] R. Cazabet, F. Amblard, and C. Hanachi. Detection of overlap-
ping communities in dynamical social networks. In SocialCom.
IEEE, 2010.

[6] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolution-
ary spectral clustering by incorporating temporal smoothness. In
ACM SIGKDD, 2007.

[7] K.-R. Choo. Money laundering risks of prepaid stored value
cards. Australian Institute of Criminology, 2008.

[8] D. F. Gleich, L.-H. Lim, and Y. Yu. Multilinear pagerank.
SIMAX, 2015.

[9] J. He. Rare category analysis. Carnegie Mellon University,
2010.

[11] C. Klymko, D. Gleich, and T.-G. Kolda. Using triangles to
improve community detection in directed networks. arXiv
preprint arXiv:1404.5874, 2014.

[10] A. Z. Jacobs, S. F. Way, J. Ugander, and A. Clauset. Assembling
thefacebook: Using heterogeneity to understand online social
network assembly. In ACM Websci, 2015.

[12] T. Leighton and S. Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms.
JACM, 1999.

[13] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data, June
2014.

[14] J. Li, X. Hu, L. Jian, and H. Liu. Toward time-evolving feature
selection on dynamic networks. In IEEE ICDM, 2016.

[15] W. Li and M. K. Ng. On the limiting probability distribution of
a transition probability tensor. Linear and Multilinear Algebra,
2014.

[16] F.-D. Malliaros and M. Vazirgiannis. Clustering and community
detection in directed networks: A survey. Physics Reports, 2013.

[17] N. Ohsaka, T. Maehara, and K. Kawarabayashi. Efficient
pagerank tracking in evolving networks. In ACM SIGKDD,
2015.

[18] P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and
dynamics of users’ behavior and interaction: Network analysis
of an online community. Journal of the American Society for
Information Science and Technology, 2009.

[19] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal
networks. 2017.

[20] Y. Park, C. Moore, and J. S. Bader. Dynamic networks from
hierarchical bayesian graph clustering. PloS one, 2010.

[21] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos.
Timecrunch: Interpretable dynamic graph summarization. In
ACM SIGKDD, 2015.

[22] J. Šı́ma and S.-E. Schaeffer. On the np-completeness of some
graph cluster measures. In SOFSEM. Springer, 2006.

[23] D.-A. Spielman and S.-H. Teng. A local clustering algorithm for
massive graphs and its application to nearly linear time graph
partitioning. SICOMP, 2013.

[24] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. In ACM SIGKDD, 2006.

[25] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis
in large-scale networks. In ACM SIGKDD, pages 807–816,
2009.

[26] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A frame-
work for community identification in dynamic social networks.
In ACM SIGKDD, 2007.

[27] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Proximity
tracking on time-evolving bipartite graphs. In SIAM SDM, 2008.

[28] J. Xie, M. Chen, and B. K. Szymanski. Labelrankt: Incremental
community detection in dynamic networks via label propaga-
tion. In DNMM, 2013.

[29] Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic,
V. Janjic, R. Karapandza, A. Stojmirovic, and N. Pržulj. Re-
vealing the hidden language of complex networks. Scientific
reports, 2014.

[30] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local
higher-order graph clustering. In ACM SIGKDD, 2017.

[31] D. Zhou, J. He, K.-S. Candan, and H. Davulcu. Muvir: Multi-
view rare category detection. In IJCAI, 2015.

[32] D. Zhou, J. He, Y. Cao, and J. Seo. Bi-level rare temporal
pattern detection. In IEEE ICDM, 2016.

[33] D. Zhou, J. He, H. Yang, and W. Fan. Sparc: Self-paced network
representation for few-shot rare category characterization. In
ACM SIGKDD. ACM, 2018.

[34] D. Zhou, K. Wang, N. Cao, and J. He. Rare category detection
on time-evolving graphs. In IEEE ICDM, 2015.

[35] D. Zhou, S. Zhang, M. Y. Yildirim, S. Alcorn, H. Tong, H. D.,
and J. He. A local algorithm for structure-preserving graph cut.
In ACM SIGKDD, 2017.

