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ABSTRACT
In the era of big data, it is often the rare categories that are of great

interest in many high-impact applications, ranging from financial

fraud detection in online transaction networks to emerging trend

detection in social networks, from network intrusion detection

in computer networks to fault detection in manufacturing. As a

result, rare category characterization becomes a fundamental learn-

ing task, which aims to accurately characterize the rare categories

given limited label information. The unique challenge of rare cate-

gory characterization, i.e., the non-separability nature of the rare

categories from the majority classes, together with the availability

of the multi-modal representation of the examples, poses a new re-

search question: how can we learn a salient rare category oriented

embedding representation such that the rare examples are well

separated from the majority class examples in the embedding space,

which facilitates the follow-up rare category characterization?

To address this question, inspired by the family of curriculum

learning that simulates the cognitive mechanism of human beings,

we propose a self-paced framework named SPARC that gradually

learns the rare category oriented network representation and the

characterization model in a mutually beneficial way by shifting

from the ‘easy’ concept to the target ‘difficult’ one, in order to

facilitate more reliable label propagation to the large number of

unlabeled examples. The experimental results on various real data

demonstrate that our proposed SPARC algorithm: (1) shows a signif-

icant improvement over state-of-the-art graph embedding methods

on representing the rare categories that are non-separable from

the majority classes; (2) outperforms the existing methods on rare

category characterization tasks.
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(a) Original Feature Space (b) Embedding Space

Figure 1: Rare category oriented network representation:
the majority and minority classes are not separable in the
original feature space, but become well separated in the em-
bedding space induced by SPARC.

1 INTRODUCTION
In many real-world applications, it is usually the case that the rare

categories play an essential role despite their extreme scarcity. For

example, in transaction networks, the vast majority of online trans-

actions are legitimate, and only a small number may be fraudulent;

in social networks, the majority users could be loss of sight to the

underlying emerging trends, which could potentially turn into a

burst in the near future; in computer networks, the percentage of

network intrusion among the huge volumes of routine network

traffic is small, but the loss might be significant.

One key challenge for analyzing the rare categories is the non-

separable nature, i.e., the support regions of majority and minority

in networks are usually non-separable. For example, in the financial

fraud detection, the fraudulent people often try to camouflage their

synthetic identities within the normal ones in order to bypass the

fraud detection systems [9]; in the spam detection, the junk mails

are deliberately made like the normal ones [18]. In addition, due to

the highly skewness and non-separable nature of rare categories,

labeling rare category examples is extremely expensive. In the ex-

treme case, we may need to train the rare category analysis model

from very few or only one labeled example. That said, it is therefore

a very important and challenging task to identify such minority

classes given that they are (1) highly skewed, (2) non-separable and

(3) sparsely labeled. To be more specific, in this paper, we want to

answer the following two open questions: First (T1. Embedding),
how to learn a salient rare category oriented embedding repre-

sentation in order to better characterize them when the minority

classes are non-separable from the majority classes? Second (T2.
Characterization) how to accurately characterize the rare examples

in the scarcity of label information?

https://doi.org/10.1145/3219819.3219952
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Recently developed network embedding techniques [10, 31, 37],

that encode graph structural information into a low dimensional

representation, have received much success in boosting the per-

formance of various network interface capabilities such as entity

classification [44], author identification [7] and community detec-

tion [39]. However, these network embedding models are usually

trained by uniformly drawing graph context without considering

the scenario that the networks may exhibit imbalanced class distri-

bution. Thus, the context information of rare categories may not be

well preserved in the extracted training context pairs by existing

context sampling methods [10, 31, 37, 44], which could be a key

issue in the follow-up rare category characterization.

To counter the negative effects from learning in an imbalanced

data set, extensive deep models [32, 34] have been proposed based

on the re-sampling strategy [6], the cost sensitive learning [45]

or adapting learning [12]. However, in the rare category charac-

terization setting, training the aforementioned deep models in the

scarcity of labeled rare category examples often suffers from the

inevitable errors during label propagation. Thus, how to maintain

a ‘safe and secure’ label propagation is of the key importance in

learning the underlying distribution of rare categories.

To address the above challenges, in this paper, we propose a

generic rare category analysis framework named SPARC, that jointly
predict the rare category examples and the neighborhood context in

the graph. Our proposed SPARC is designed to jointly address two

tasks, namely T1. Embedding and T2. Characterization, in a mutu-

ally beneficial way. In order to alleviate the influence of ambiguous

data during model training, we integrate the self-paced learning

paradigm into our framework to jointly select the rare category

oriented graph contexts and maintain a reliable label propagation

for training our proposed SPARC model.

The main contributions of this paper are summarized below.

(1) Problem.We formalize the problems of rare category oriented

network representation and characterization learning in attrib-

uted networks, and identify their unique challenges from the

nature of rare categories.

(2) Algorithms.Wepropose a generic rare category analysis frame-

work named SPARC, which is able to jointly predict the rare

category examples and the neighborhood context in the attrib-

uted network.

(3) Evaluations. Extensive experimental results on real networks

demonstrate the performance of the proposed SPARC algorithm.

The rest of our paper is organized as follows. Related works are

reviewed in Section 2, followed by the notation and problem defini-

tion in Section 3. In Section 4, we present our proposed framework

SPARC. Experimental results are reported in Section 5 before we

conclude the paper in Section 6.

2 RELATEDWORK
In this section, we briefly review the related works regarding rare

category analysis, network representation and curriculum learning.

2.1 Rare Category Analysis
Different from outlier detection [15, 25, 26] that targets to find

abnormal patterns that do not conform to the expectation, and

imbalanced classification [6] that aims to increase the overall ac-

curacy, rare category analysis explores the compactness of the

minorities and characterizes them from the highly skewed data

sets. Rare category analysis (RCA) is first introduced by Pelleg

and Moore [30], where the rare categories are defined as the mi-

nority clusters that exhibit a compact property in an imbalanced

data distribution. The unique challenges of RCA come from the

highly skewed data distribution, together with the non-separability

nature of the rare categories from the majority classes. Up un-

til now, researchers have proposed various methods for the RCA

problem, such as sampling-based methods [6, 13, 47], ensemble-

based methods [36], algorithm-adaptation-based methods [40], and

maximum-margin-based methods [14]. Recently, [16] presented a

deep representation model for the imbalanced data by enforcing

the deep model to explore and maintain the inter-cluster and inter-

class margins. [51] proposed a local graph clustering algorithm that

identifies the structure-rich clusters by exploring the high-order

structures in the neighborhood of the initial vertex in the given

graph. However, very little work (if any) is devoted to learning a

rare category oriented graph representation in the class-imbalanced

networks. In this paper, we propose a rare category oriented net-

work embedding approach, which jointly leverages the neighbored

context information and the label information of rare examples, in

order to better characterize the rare categories in the embedding

space.

2.2 Network Representation
The pioneer works of graph representation can be traced back to

the early 2000s, when many methods [1, 20, 33, 38] were developed

for learning a low-dimensional graph representation with a mini-

mized reconstruction error. While the network interface abilities

of these methods may suffer from overfitting or poor scalability in

real applications [7, 39]. Recently, a surge of research interests on

network embedding by employing Skipgram model [29] has been

observed in the network science. Among them, DeepWalk [31]

firstly generalizes the Skipgram model to embed the graph context

in a low-dimensional representation, where the graph context is

extracted based on a truncated random walk; LINE [37] further

extends the model by introducing an optimized objective function

that incorporates the first-order and the second-order proximi-

ties to learn network representation; node2vec [10] preserves both

homophily and structural equivalence relationships by generat-

ing the graph context with a biased random walk. In spite of the

general-purposed network embedding approaches, a diversity of re-

searches have been conducted to learn network representations for

solving specific tasks with training examples or prior knowledge,

such as multi-network inferences [23], author identification [7],

entity classification [24, 44] and community detection [39]. Despite

the success of these methods, embedding representation of class-

imbalanced networks has heretofore received little attention. In this

paper, we aim to learn a salient rare category oriented embedding

representation, such that the minority classes are well separated

from the majority classes, which facilitates the follow-up rare cate-

gory analysis tasks such as detection [8, 13, 49, 50], prediction [11],

clustering [46, 51] and classification [14, 41, 48].



2.3 Curriculum Learning
Inspired by the cognitive process of humans, Bengio’s group pro-

poses the curriculum learning (CL) paradigm, in which the under-

lying model is gradually trained from easy aspects of a task to

the complex ones based on the predetermined ‘curriculum’ [2, 3].

This theory has been successfully applied to various applications,

such as geometrical shape classification [3], teaching a robot of the

concept of ‘graspability’ [19], grammar induction [35], etc. How-

ever, the heuristical curriculum design in CL turns out onerous or

conceptually difficult in many real problems [21]. To eliminate this

issue, Kumar et al. [21] propose a new learning paradigm named

self-paced learning (SPL), which automatically learns a ‘curriculum’

by minimizing the loss function with a self-paced regularizer. In

particular, SPL jointly updates the model parameters w and the

‘curriculum’ indicator variable v by optimizing the following ob-

jective:

min

w ,v

∑
i
viL(yi , f (xi ,w)) − λ

∑
i
vi , s .t .v ∈ [0, 1]n , (1)

where L(yi , f (xi ,w)) denotes the loss function, and λ is the self-

paced parameter for controlling the learning pace. BCU [43] (Block-

Coordinate Update) is usually adopted to solve the above bi-convex

optimization problem by dividing the variables into disjoint blocks

and alternatively optimizing one block while keeping the rest fixed.

More recently, in [17], the authors develop a unified framework that

improves CL and SPL by considering both the prior knowledge and

the learning progress during training; in [27], the authors propose a

self-paced co-training algorithm, which is proved to guarantee the

theoretical effectiveness under the ϵ-expansion assumption. In this

paper, we advance the SPL scheme to the scenario of rare category

analysis in the scarcity of labeled example, in order to gradually

learn the rare category oriented network representation and the

characterization model in a mutually beneficial way.

3 PROBLEM DEFINITION
Throughout the paper, we use lowercase letters to denote scalars

(e.g., α ), boldface lowercase letters to denote vectors (e.g.,v), and

boldface uppercase letters to denote matrices (e.g.,A). Following the
convention inMatlab, we represent the ith row ofmatrixA asA(i, :),
the jth column ofmatrixA asA(:, j), the entry of the ith row and the

jth column in matrix A as A(i, j), and the transpose of matrix A as

AT . Given an attributed networkG = (V ,E,X ), whereV consists of

n vertices, E consists ofm edges, and X = {x1,x2, . . . ,xn } ∈ Rn×r

denotes the set of nodes’ attributes, we use A to represent the

adjacency matrix of G. Let x1, . . . ,xL ∈ Rr denote the L labeled

examples, where we assume there is at least one from each minority

class; let xL+1, . . . ,xL+U ∈ Rr , where n = L + U , denote the U
unlabeled examples, which either come from the majority class, i.e.,

yi ∈ {0}, or the c ≥ 1 minority classes, i.e., yi ∈ {1, . . . , c}. With

the above notation, our problem can be formally defined as follows:

Problem 1. Rare Category Embedding Representation (RCE)

Input: (i) an attributed network G = (V ,E,X ), (ii) one-shot or few-
shot labeled examples x1, . . . ,xL , and (iii) the desired embed-
ding dimension d .

Output: a d-dimensional embedding representation E ∈ Rn×d that
preserves the underlying structure and context information,
especially for the rare categories.

The output of Problem 1 is a low-dimensional matrixE, where the
ith row (i.e., a d-dimensional vector ei ) encodes the discriminative

attributes and topology context information of node i that are
beneficial for characterizing rare categories. The premise of network

embedding models is to preserve different types of proximities

between vertices and their neighborhood in a semi-supervised,

e.g., [44], or unsupervised manner, e.g., [10, 31, 37]. However, the

existing methods are not best suited for characterizing the rare

categories, which are (1) under-represented in the given network,

(2) non-separable from the majority classes, and (3) provided with

scarce labeled examples in a massive attributed network. Here, we

aim to learn a rare category oriented embedding representation

that can incorporate the label and context information to better

characterize the minority classes.

Problem 2. Rare Category Characterization (RCC)
Input: (i) an attributed network G = (V ,E,X ), and (ii) one-shot or

few-shot labeled examples x1, . . . ,xL .
Output: a list of predicted rare category examples.

The main challenges of Problem 2 come from the highly skewed

class membership and the scarce training data. Due to these is-

sues, the existing imbalanced classification algorithms and semi-

supervised learning techniques may suffer from overfitting and

inevitable errors in label propagation. Notice that Problem 1 and

Problem 2 are related with one another, and may be mutually bene-

ficial if jointly solved in the sense that (1) incorporating the rare

category oriented graph context information that is preserved in

RCE is crucial for characterizing the rare examples in Problem 2,

and (2) the trained RCC model could serve as a ‘supervisor’ to

determine the rare category oriented graph context for learning

the network representation in Problem 1. Due to these reasons, we

present a generic rare category analysis framework in the following

section, which is capable to learn from a handful or even one-shot

training example and maintain a ‘safe and secure’ label propagation

process in order to jointly address Problem 1 and Problem 2.

4 PROPOSED MODEL
In this section, we present our rare category analysis framework

SPARC, which simultaneously learns the graph embedding and

predicts the rare category examples in a mutually beneficial way.

We first formulate it as a generic optimization problem, and then

present the details on how to jointly learn a rare category oriented

embedding and characterize rare category examples within a self-

paced learning paradigm.

4.1 A Generic Joint Learning Framework
To address the proposed RCE and RCC problems, our joint learn-

ing framework should take into consideration the following key

aspects. First (skewed distribution), in order to detect and character-

ize the rare categories, our joint learning framework should have

the capability to model the imbalanced class memberships in the

given networks. Second (non-separability), the minority classes

and majority classes are often non-separable in both the network



 

Figure 2: Illustration of the proposed SPARC framework. The minority class examples and the majority class examples are
represented by the red and blue icons, respectively. In the given networks, only one minority class example (i.e., User 0) is
labeled, while the remaining nodes are iteratively assigned with pseudo labels ŷ by the rare category characterization model,
in order to learn the underlying distribution of the rare category.

topology space (i.e., A) and the feature space (i.e., X ) . Therefore,

rare category oriented representation should result in the minority

examples being largely separated from the majority classes in the

embedding space. Third (label scarcity), due to the hardness and

expensive cost of labeling rare category examples, our proposed

framework should be capable to learn from few shot or even only

one labeled rare category example.

We start by illustrating our framework in the binary case with

only one majority class and one minority class in the given network.

The extension to multi-class RCC problem will be discussed later in

Subsection 4.2. With these design objectives in mind, we propose

a generic rare category analysis framework as an optimization

problem with the following objective function:

Lb =Ls + Lrc + Ltc + Lsp + Lco

=

L∑
i=1

cyi ,ŷi log Pr (ŷi = 1 − yi |xi ,ei )︸                                        ︷︷                                        ︸
Ls : cost sensitive learning

−

L+U∑
i=1

v
(1)

i log Pr (ŷi = 1|xi ,ei )︸                                   ︷︷                                   ︸
Lrc : predict rare category examples

−

L+U∑
i=1

v
(0)

i E(i,c,γ ) logσ (γθ
T
c ei )︸                                   ︷︷                                   ︸

Ltc : predict graph context

−

L+U∑
i=1

λ(1)v
(1)

i + λ
(0)v

(0)

i︸                         ︷︷                         ︸
Lsp : self-paced regularizer

−α
L+U∑
i=1

v
(1)

i v
(0)

i︸             ︷︷             ︸
Lco : consensus regularizer

(2)

where the objective function consists of five terms. The first term

Ls is the cost sensitive loss over the labeled data, in which cyi ,ŷi de-
notes the misclassification cost of labeling node i belonging to class
yi into a different class ŷi , yi . In particular, we let c1,0 > c0,1 ≥ 1

in order to further penalize the errors of classifying the minority

class examples into the majority class. The second term Lrc corre-

sponds to the characterization step, which learns the underlying

distribution of the target rare category from both labeled and unla-

beled data. The third term Ltc corresponds to the embedding step,

which minimizes the prediction loss regarding the sampled graph

context pairs. The fourth term is the self-paced regularizer Lsp ,

which globally maintains the learning pace of the embedding step

(Ltc ) and the characterization step (Lrc ) by utilizing self-paced

vectors, i.e., v(0),v(1) ∈ [0, 1]n , respectively. The last term is the

consensus regularizerLco , where α is a positive constant to balance

the impact of this term on the overall objective function.

Based on Eq. 2, we propose the overall SPARC framework as

shown in Fig. 2, where the RCE and RCC models are gradually

trained in a mutually beneficial way via multiple self-paced cycles

to maintain a ‘safe and secure’ label propagation. In particular,

within each training cycle, our proposed framework SPARC can

be decomposed into three stages. In the first stage, SPARC assigns

the pseudo labels to the potential rare category examples based on

the current prediction model. The second stage is the key step of

our proposed SPARC model, which jointly selects the rare category

oriented graph contexts and reliable predictions for training RCE

and RCC models. The third stage involves the construction of two

deep neural networks (DNN), including the RCE DNN (upper level)

and the RCCDNN (lower level). By using the sampled graph context



in Stage 2, the RCE DNN is trained to learn a salient embedding

space for the RCC problem. Given the input feature vector xi and
the learned embedding vector ei , the RCC DNN is updated by

learning from both the labeled and unlabeled data. In particular,

the posterior probability Pr (yi |xi ,ei ) in Eq. 2 is written as:

Pr (yi |xi ,ei ) =
exp[hk (xi )T ,hl (ei )T ]θy∑
y′ exp[hk (xi )T ,hl (e)T ]θy′

where hk denotes the kth hidden layer, and [·, ·] denotes the con-

catenation operator of two vectors. In the next cycle, the learned

RCC DNN will be used for label propagation in Stage 1, and the

learned RCE will be fed into the RCC DNN in Stage 3. To further

show how SPARC works, we focus on the following three aspects.

Impact of the Self-Paced Learning: In the case of non-separable
rare categories with scarce training data, deep discriminative mod-

els often suffer from the errors during label propagation. To address

this issue, our framework exploits the SPL scheme to gradually

learn from the labeled and unlabeled data, which has demonstrated

its robustness in the semi-supervised setting [19, 42]. For jointly

modeling the RCE and RCC problems, we design our SPARC frame-

work via dual-level SPL, by leveraging the idea of co-training [4, 27].

In particular, the overall objective of SPARC in Eq. 2 can be inter-

preted as the sum of a self-paced RCE model LRCE , a self-paced

RCC model LRCC and a consensus regularizer Lco as follows:

Lb = LRCC + LRCE + Lco

where

LRCC = Ls −

L+U∑
i=1

v
(1)

i log Pr (ŷi = 1|xi ,ei ) −
L+U∑
i=1

λ(1)v
(1)

i (3)

LRCE = −

L+U∑
i=1

v
(0)

i E(i,c,γ ) logσ (γθ
T
c ei ) −

L+U∑
i=1

λ(0)v
(0)

i (4)

In other words, LRCC is mainly used in RCC DNN to address

Problem 2, whereas LRCE is mainly used in RCE DNN to address

Problem 1. In addition, the consensus regularizerLco is imposed on

both LRCC and LRCE to ensure the ‘learning curriculum’ gener-

ated by SPARC emphasizes on learning the underlying distribution

of rare categories.

We adopt BCU [43] to update the dual-level SPL in an alterna-

tive way. When we update the self-paced vector v(1)
, the partial

derivative of Eq. 2 with respect to v
(1)

i (the ithe element of v(1)
),

i = 1, . . . ,n, can be derived as:

∂Lb

∂v
(1)

i

= − log Pr (ŷi = 1|xi ,ei ) − λ(1) − αv
(0)

i (5)

Thus, the closed-form solution to update v
(1)

i is

v
(1)

i =

{
1 − log Pr (ŷi = 1|xi ,ei ) < λ(1) + αv

(0)

i
0 Otherwise

(6)

By updating self-paced vectorv(1)
, we can identify the reliable

predictions in order to learn the underlying distribution of rare cat-

egory in RCC DNN. To be specific, given the self-paced parameter

λ(1), examples with a higher confidence to belong to the minority

class, i.e., log Pr (ŷi = 1|xi ,ei ) > −λ(1) − αv
(0)

i , are assigned with

v
(1)

i = 1; otherwise, v
(0)

i = 0.

When we update thev(0)
, the similar closed-form solution can

be derived as follows.

v
(0)

i =

{
1 − logσ (γwT

c ei ) < λ(0) + αv
(1)

i
0 Otherwise

(7)

The goal of this step is to formally define which graph context

pairs (i, c,γ ) will be fed into the training pool for learning the

network embedding E. In each iteration, the graph context pairs

(i, c,γ )whose prediction losses are smaller than a certain threshold,

i.e., − logσ (γwT
c ei ) < λ(0) + αv

(1)

i , are selected (v
(0)

i = 1) to be fed

into the following RCE DNN.

Furthermore, the consensus regularizer Lco is imposed on the

self-paced vectorsv(0)
andv(1)

to ensure the selected graph context

pairs (i, c,γ ) are rare category oriented and within the user-defined

level of learning difficulty. The constant α is used to balance the two

learning principals, i.e., learning from rare category related graph

context (v
(1)

i = 1) or learning graph context with less difficulty

(v
(0)

i = 1). To be more specific, when α is larger,v(0)
will be closer

tov(1)
such that more rare category related graph context will be

selected to train RCE DNN; when α is smaller,v(0)
will select more

vertices with ‘easy’ graph context.

RCE in the Scarcity of Labeled Minority Classes Exam-
ples: To learn the graph embedding that preserves the similarities

among rare category examples while maximally separating these

examples from the majority class examples, we follow the negative-

sampling-based graph embedding models [10, 37], which minimize

the cross entropy loss of predicting graph context pairs (i, c) to
positive labels (γ = 1) or negative labels (γ = −1) as follows:

min−E(i,c,γ ) logσ (γθ
T
c ei )

where σ (x) is the sigmoid function, i.e., σ (x) = 1/(1 + e−x ). Re-
cently, [44] further developed a label informed graph embedding

method that injects the label information into the sampled posi-

tive graph context pairs and demonstrated its effectiveness in the

semi-supervised learning setting. However, in our problem setting,

the above methods may fail due to the following reasons: (1) the

learned embeddings (e.g., [10, 37, 44]) are not sensitive to the mi-

nority class examples since the sampled graph context pairs using

the above methods may mostly come from the majority classes; (2)

the scarcity of the labeled minority class examples imposes severe

limitation on sampling rare category oriented graph context pairs.

In the extreme case, when there is only one labeled minority exam-

ple, the existing method [44] cannot generate the label informed

positive context pairs (i, c,+1) as there is no way to find a pair of

nodes (i, c) from the same minority class within the labeled set.

To address the above deficiencies, we develop a rare category

oriented context sampling strategy in Algorithm 1. The given input

of Algorithm 1 is the graph G, an indicator vector I , and some

constant parameters including the length of the performed random

walks µ, the probability r and the number of negative samples sneд .
In particular, the indicator vector I can be generated by any offline

RCC models, while our proposed SPARC model utilizes the self-

paced vectorv(1)
to serve as the indicator vector I that determines



Algorithm 1 Rare Category Oriented Context Sampling

Input:
Graph G, indicator vector I and parameters µ, r and sneд .

Output:
Rare category oriented graph context pairs;

1: Draw a number random ∼ Uni f (0, 1).
2: if random < r then
3: Uniformly sample a randomwalkW of length µ and generate

one positive graph context pair (i, c,+1) and sneд negative

graph context pairs (i, c,−1) by existing methods [31, 37].

4: else
5: Shuffle an initial vertex vi from the nonzero elements in I

and conduct a random walkW of length µ.
6: Uniformly sample a positive graph context pair (i, c,+1)with

I (i) = I (c) and sneд negative graph context pairs (i, c,−1)
with I (i) , I (c).

7: end if

the potential rare category examples based on the current RCC

DNN. Algorithm 1 samples two types of graph contexts, i.e., the

general graph context and the rare category related graph context,

where the first one preserves the general graph structure, while the

second one focuses on learning the local context of the rare category

examples. An example of sampling graph context is shown in Fig. 3.

With probability r , the general graph contexts are extracted by the

existing methods [31, 37]. With probability (1 − r ), we sample rare

category related context pairs (i, c,γ ). In particular, when γ = +1,
node i and node c are believed to belong to the same minority class,

i.e., I (i) = I (c); when γ = −1, node i and node c are believed to

belong to the different classes, i.e., I (i) , I (c).
Remarks: We would like to emphasize that Algorithm 1 is designed

for the class-imbalanced networks. More specifically, (1) to counter

the skewed distribution when sampling graph pairs, Algorithm 1

uses a probability r to balance the proportion of general graph con-

text pairs and the rare category graph context pairs; (2) in scarcity

of labeled rare category examples, our method generates rare cat-

egory oriented graph context pairs (i, c,γ ) based on the pseudo

labels (i.e., indicator vector I ) instead of using real labels to alleviate
the limitation of insufficient labeled examples.

RCCwithRespect to LabeledMajority andMinority Class
Examples: Here, we show the underlying training process of

the RCC DNN regarding the labeled majority class examples and

the labeled minority class examples. For each labeled minority

class example i , the hidden layers of RCC DNN are updated by

minimizing the following objective.

Lmin = c1,0 log Pr (ŷi = 0|xi ,ei ) −v
(1)

i log Pr (ŷi = 1|xi ,ei )

= c1,0 log(1 − Pr (ŷi = 1|xi ,ei )) −v
(1)

i log Pr (ŷi = 1|xi ,ei )
(8)

To further simplify the above objective, we let a = 1 − Pr (ŷi =
1|xi ,ei ) and b = Pr (ŷi = 1|xi ,ei ). Since (a + b)

2 ≥ 4ab, we have
2 log(a +b) ≥ log 4+ loga + logb, which could be written in terms

of Pr (ŷi = 1|xi ,ei ) as follows:

log(1 − Pr (ŷi = 1|xi ,ei )) ≤ − log Pr (ŷi = 1|xi ,ei ) − log 4 (9)

 

Figure 3: An example of sampling dual graph context by Al-
gorithm 1, when the window size d = 2, µ = 3 and sneд = 2. In
particular, if random > r , we sample the rare category related
context pairs based on the randomwalk (e.g., red path) start-
ing from the labeled rare category example (e.g., User0); oth-
erwise, we extract the graph context by uniformly sampling
a random walk (e.g., blue path) from the given network.

By substituting Eq. 9 back into Eq. 8, we have:

Lmin ≤ −(c1,0 +v
(1)

i ) log Pr (ŷi = 1|xi ,ei ) − c1,0 log 4

Similar as above, for each labeled majority class example j, the
RCC DNN aims to minimize the following objective:

Lmaj = (c0,1 −v
(1)

j ) log Pr (ŷj = 1|xj ,ej) (10)

Remarks: Based on the above derived objectives regarding la-

beled majority class examples and labeled minority class examples,

we have the following observations: (1) Lmin is monotonically de-

creasing over Pr (ŷi = 1|xi ,ei )) as c1,0 > 1 and v
(1)

i ∈ {0, 1}. That

is, the probability of the labeled minority class examples (y = 1)

belonging to the minority class Pr (ŷi = 1|xi ,ei ) is maximized

along with minimizing Lmin . (2) Lmaj is monotonically nonde-

creasing over Pr (ŷj = 1|x j ,ej )) as c0,1 − v
(1)

i ≥ 0. That is, the

probability of the labeled majority class examples (y = 0) belong-

ing to the minority class Pr (ŷi = 1|x j ,ej ) is minimized along with

optimizing Lmin . (3) The overall objective of SPARC emphasizes

on learning the underlying distribution of the minority class as

c1,0 +v
(1)

i > c0,1 −v
(1)

j . For a special case, when c0,1 −v
(1)

j = 0, i.e.,

c0,1 = v
(1)

j = 1, the labeled majority class examples with v
(1)

j = 1

are not taken into consideration. The intuition is that our proposed

framework SPARC is designed to be tolerant of the majority class ex-

ample j that may not be separable from the minority class examples,

i.e., log Pr (ŷj = 1|x j ,ej ) > −λ(1) − αv
(0)

i .

4.2 Optimization Algorithm
To optimize the overall objective function in Eq. 2, we adopt

stochastic gradient descent (SGD) [5] to train our model in an

alternative way. The optimization algorithm is summarized in Al-

gorithm 2. The given input is the attributed network G, labels of
training data Y = {y1, . . . ,yL} and some parameters including

batch iterations T1 and T2, batch size N1 and N2, self-paced param-

eters λ(0) and λ(1) and α . Within each iteration, we first sample



Algorithm 2 SPARC: Joint Learning Framework for RCC and RCE

Input:
GraphG = (V ,E,X ), labels Y = {y1, . . . ,yL}, and parameters

T1, T2, N1, N2, λ
(0)
, λ(1), α .

Output:
(1) Rare category oriented embedding E ∈ R |V |×d

;

(2) A list of predicted rare category examples.

1: while Stopping criterion is not satisfied do
2: for t = 1 : T1 do
3: Sample N1 labeled instances and update hidden layers’

parameters θ by taking a gradient step for Ls + Lrc .

4: end for
5: for t = 1 : T2 do
6: Sample N2 graph context pairs by Algorithm 1 with indi-

cator vectorv(0)
.

7: Update the rare category oriented embedding E by taking

a gradient step for Ltc
8: end for
9: Update v(0)

and v(1)
separately based on Eq. 7 and Eq. 6,

and make sure all the labeled rare examples are selected.

10: Augment λ(0), λ(1).
11: end while

N1 labeled examples and update RCC DNN by taking a gradient

step of Ls + Lrc . Note that, in the first iteration, Lrc = 0 asv(0)

and v(1)
are initialized to all-zero vectors. We then optimize the

RCE DNN over N2 sampled graph context pairs (i, c,γ ). The above
procedures are repeated with T1 and T2 times respectively. Step 9

updates the self-paced vectorsv(0)
andv(1)

, and Step 10 augments

the self-paced parameters λ(0), λ(1) in order to learn the more ‘diffi-

cult’ concept in the next iterations. The algorithm stops when the

user-defined stopping criterions are satisfied.

Algorithm 2 can be extended to solve the multi-class RCE and

RCC problems by optimizing the following objective function.

Lm =

L∑
i=1

C∑
c=1

cyi ,ŷi log Pr (ŷi = c |xi ,ei )

−

L+U∑
i=1

C∑
c=1

v
(c)
i log Pr (ŷi = c |xi ,ei ) +v

(0)

i logE(i,c,γ ) logσ (γθ
T
c ei )

−

L+U∑
i=1

[

C∑
c=1

λ(c)v
(c)
i + λ

(0)v
(0)

i ] − α
L+U∑
i=1

C∑
c=1

v
(c)
i v

(0)

i (11)

where v(c ) ∈ [0, 1]n denotes the self-paced vector of class c , and

λ(c) is the self-paced parameter that controls the learning pace.

Compared with the objective function in Eq. 2 for the binary

case, the only difference is that each term in Eq. 11 is defined by

cumulating the prediction loss over multiple classes instead of only

two. Following Algorithm 2, our proposed framework SPARC is iter-

atively trained based on the extracted graph context pairs and label

propagated examples that come from different classes. In the end,

SPARC returns the rare category oriented network representation

and the predication labels of each vertex in the given network.

5 EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of our proposed

SPARC algorithm in the sense of the saliency of the RCE repre-

sentation and the accuracy of the RCC classifier for rare category

analysis. Moreover, we also present a case study to illustrate the

impacts and the underlying procedures of the self-paced learning

in our proposed SPARC framework.

5.1 Experiment Setup

Category Network Classes Smallest

Class

Nodes Edges

Collaboration DBLP 20 1.91% 2,309 7,913

SO 2 1.29% 3,262 19,926

NLP Citeseer 6 3.42% 3,327 4,732

Cora 7 1.14% 2,708 5,429

Pubmed 3 4.05% 19,717 44,318

Social Epinion 19 1.38% 75,879 508,837

Table 1: Statistics of the network data sets.

Data sets: The statistics of all real data sets used in our experiments

are summarized in Table 1.

• Collaboration Networks: DBLP∗ data set provides the bibli-

ographic information of the publications in IEEE Visualization

Conference during 1990 ∼ 2015. Each vertex represents a paper,

and an edge exists if and only if when one paper cites another

paper. The class membership is defined based on 20 research top-

ics in the data visualization area. SO
†
data set is collected from

Stack Overflow, where each node represents a Stack Overflow user

and each edge indicates one comment from one user to another.

The class memberships are defined based on the users’ reputation

score, i.e., the majority of the users have regular scores (< 3000)

while only a few users have considerably high scores (> 3000).

• NLP Networks: Citeseer, Cora and Pubmed are three text classi-

fication data sets
‡
, where each node represents a document and

each edge indicates the citation link between the documents. The

bag-of-words representation is adopted as the node attributes in

these three data sets. NELL [44] is an entity classification data set,

where the entities and the relations between entities are extracted

from the NELL knowledge database, and the attributes of each

entity are obtained by the bag-of-words representation of the

associated description text.

• Social Network: Epinion [22] data set is a who-trust-whom

social network, where each node represents a user, and an edge

exits if and only if two users both give positive reviews (rating >

2.5 out of 5) to the same item. The class membership of each user

is defined based on the most frequently reviewed item category.

ComparisonMethods:We compare SPARC with the recent net-

work embedding and rare category analysis models. DeepWalk [31]

and LINE [37] are unsupervised network embedding algorithms,

which learn embedding based on word2vec model and use logistic

∗
http://www.vispubdata.org/site/vispubdata/

†
https://archive.org/details/stackexchange

‡
http://linqs.umiacs.umd.edu/projects//projects/lbc/
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Figure 4: 2-D t-SNE visualization of network embedding.

regression as the classifier. PLANETOID [44] is a semi-supervised

framework for attributed networks, which learns an embedding

based on both topology context and label context to better infer the

class memberships of unlabeled examples. GRADE [13] is a graph

based rare category detection algorithm that takes the input of adja-

cencymatrixA, while RACH [14] is a rare category characterization

algorithm that takes the feature vectors X as input.

Repeatability: All the data sets are publicly available. We will

release the code of our algorithms through the authors’ website

after the paper is published. The experiments are performed on a

Windows machine with four 3.5GHz Intel Cores and 256GB RAM.

5.2 Network Layout
A simple but useful way to evaluate the network representation ap-

proaches is to visualize the network layout in the embedding space,

and we take the NLP network that extracted from the Pubmed data

set for an example. We separate the network into binary classes

by letting the smallest class be the minority class and the residual

be the majority class. Laying out this NLP network is very chal-

lenging as the data is noisy and the classes, i.e., categories of docu-

ments, always overlap with one another. We compare our proposed

SPARC algorithm with three state-of-the-art network embedding

algorithms including two unsupervised methods, i.e., DeepWalk

and LINE, and one semi-supervised method, i.e., PLANETOID. Note

that, the unsupervised embedding methods only take as input the

graphG , while the semi-supervised methods, i.e., PLANETOID and

our proposed SPARC, are further provided with the training data

consisting of labeled examples from both the majority and the mi-

nority classes. In particular, we first map the given network into

a 129-dimensional space with different embedding methods, and

then we employ the nonlinear dimensionality reduction method,

i.e., t-SNE [28], to a 2-D space for the better visualization, which is

shown in Fig. 4. We can clearly observe that (1) the semi-supervised

embedding methods perform better than the unsupervised methods

as the classes are better separated; (2) with the same amount of

training data, the rare examples are better clustered by using SPARC
than PLANETOID. One explanation is that PLANETOID samples

the graph context without considering that the class membership

is imbalanced, which results in the neighborhood context of rare

examples not well preserved in the embedding space.

5.3 Effectiveness Analysis
The comparison results in terms of effectiveness across a diverse

set of networks by using 1, 5% and 10% labeled rare category exam-

ples are shown from Fig. 5 to Fig. 7, where the height of the bars

indicates the average value of evaluation metrics, and the error bars

represent the standard deviation of evaluation metrics in multiple

runs by randomly shuffling the initial training examples. Note that

PLANETOID can not be trained with only one labeled rare category

example, thus the corresponding results are not reported in Fig. 5.

By considering the smallest class in each data set as the rare cate-

gory, we adopt the following three commonly used metrics for the

rare category analysis [14]: (1) accuracy, which measures the rate

of the correctly classified majority and minority class examples;

(2) recall, which measures the percentage of the discovered rare

category examples; (3) recall@K , which shows the ratio of true rare

examples being retrieved in the returned top K examples, where K
equals the number of rare category examples in the given network.

In general, we observe that: (1) Our proposed SPARC algorithm

outperforms the comparison methods across all the data sets and

evaluation metrics in most cases. For example, on DBLP network

with only one labeled minority class example, compared with the

best competitor RACH, SPARC is 39% higher on Accuracy, 32%

higher on Recall and 17% higher on Recall@K. (2) Our proposed

SPARC algorithm is more robust (i.e., smaller error bar) than the

comparison methods with different initial training examples. One

intuitive explanation might be that the training ‘curriculum’ gener-

ated by SPARC guides the learning process towards a better local

optimum in the parameter space.

5.4 Case Study: Impact of Self-Paced Learning
Dual Graph Context Selection: To illustrate the impact of SPL

on RCE, we conduct a case study on Pubmed to show how the

rare category oriented graph contexts are extracted over paces.

In particular, we show the vertices that were selected by the self-

paced vectorsv(0)
andv(1)

on the final embedding space of SPARC.
Remember the self-paced vectors are updated over iterations (i.e.,

paces) by shifting from the ‘easy’ concept to the target ‘difficult’

one. In Fig. 8, we observe that: (1) In the initial iteration (i.e., Pace 0),

no vertices are selected byv(0)
andv(1)

. (2) After that,v(1)
mainly

selects the examples in the region of the minority class, whilev(1)

selects examples across the whole network. (3) From Pace 1 to Pace

9, the overlap between the selected examples in v(0)
and v(1)

is

increasing, which indicates that the RCE emphasizes on learning

the context information of the minority class.

Parameter Sensitivity: We study the sensitivity of self-paced pa-

rameters λ(0) and λ(1) on Pubmed. Recall that λ(0) and λ(1) control
the paces of learning from graph context and the underlying distri-

bution of rare examples. In Fig. 9, we report the recall rates of SPARC
by iteratively augmenting the values of λ(0) and λ(1). We have the

following observations: (1) Recall is generally increasing with the
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Figure 5: Effectiveness analysis with one labeled minority class example.
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Figure 6: Effectiveness analysis with 5% labeled minority class examples.
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Figure 7: Effectiveness analysis with 10% labeled minority class examples.

values of λ(0) and λ(1) over paces. An intuitive explanation is that

when λ(0) and λ(1) are augmented, the richer context information

of rare examples is extracted for training SPARC according to Eq. 6

and Eq. 7, which leads to a better prediction model. (2) In the early

stage (i.e., λ(0) = λ(1) = 0.16), recall increases faster (slower) with

respect to λ(1) (λ(0)). In other words, learning from rare examples

with propagated labels is more important than learning from the

graph context for the RCC task in the initial iterations.

6 CONCLUSION
In this paper, we focus on analyzing the rare categories in class-

imbalanced networks. We start by formally defining the RCE and

RCC problems related to the rare categories, and then identify their

unique challenges due to the nature of rare categories in the at-

tributed networks, i.e., highly skewness, non-separability and label

scarcity. To address these challenges, we propose a generic rare cat-

egory analysis framework named SPARC, which jointly learns the

network representation and rare category characterization model in

a mutually beneficial way by shifting from the ‘easy’ concept to the

target ‘difficult’ one, in order to facilitate more reliable label propa-

gation to the large number of unlabeled examples. The empirical

evaluations on real-world data sets demonstrate the effectiveness

of our proposed framework SPARC from multiple perspectives.
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Figure 8: Self-paced dual graph context selection.

 

Figure 9: Parameter sensitivity analysis.
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