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Abstract—
Nowadays, temporal data is generated at an unprecedented

speed from a variety of applications, such as wearable devices,
sensor networks, wireless networks and etc. In contrast to such
large amount of temporal data, it is usually the case that only
a small portion of them contains information of interest. For
example, for the ECG signals collected by wearable devices,
most of them collected from healthy people are normal, and
only a small number of them collected from people with
certain heart diseases are abnormal. Furthermore, even for
the abnormal temporal sequences, the abnormal patterns may
only be present in a few time segments and are similar among
themselves, forming a rare category of temporal patterns. For
example, the ECG signal collected from an individual with a
certain heart disease may be normal in most time segments,
and abnormal in only a few time segments, exhibiting similar
patterns. What is even more challenging is that such rare
temporal patterns are often non-separable from the normal
ones. Existing works on outlier detection for temporal data
focus on detecting either the abnormal sequences as a whole, or
the abnormal time segments directly, ignoring the relationship
between abnormal sequences and abnormal time segments.
Moreover, the abnormal patterns are typically treated as
isolated outliers instead of a rare category with self-similarity.

In this paper, for the first time, we propose a bi-level
(sequence-level/ segment-level) model for rare temporal pat-
tern detection. It is based on an optimization framework
that fully exploits the bi-level structure in the data, i.e., the
relationship between abnormal sequences and abnormal time
segments. Furthermore, it uses sequence-specific simple hidden
Markov models to obtain segment-level labels, and leverages
the similarity among abnormal time segments to estimate
the model parameters. To solve the optimization framework,
we propose the unsupervised algorithm BIRAD, and also the
semi-supervised version BIRAD-K which learns from a single
labeled example. Experimental results on both synthetic and
real data sets demonstrate the performance of the proposed
algorithms from multiple aspects, outperforming state-of-the-
art techniques on both temporal outlier detection and rare
category analysis.
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I. INTRODUCTION

In the era of big data, we are exposed to large amount
of temporal data, such as biomedical signals [19], financial
transaction records [13], and network traffic [20]. Besides
the large volume of data, we are also facing the follow-
ing challenges: (1) the class membership is often highly

skewed in the sense that the minority classes (rare tem-
poral patterns) are overwhelmed by the majority classes
(normal temporal patterns); (2) it is usually the case that
identifying the minority classes is more important than
identifying the majority classes in the temporal data; (3) the
minority classes are often non-separable from the majority
classes. For example, most of the ECG signals collected by
wearable devices are normal, generated by healthy people,
and only a small number of them are abnormal, generated
by people with certain heart diseases such as arrhythmia.
Without domain specific knowledge, it can be very difficult
to distinguish between abnormal ECG signals and normal
ones. In malicious insider identification, the daily activities
of most employees are normal, and only a small number of
employees are malicious insiders with abnormal activities.
Since these guileful insiders usually try to camouflage as
normal employees, these abnormal activities may be very
similar to the normal ones. Furthermore, within the abnormal
temporal sequences, there may only be a few time segments
exhibiting similar abnormal patterns, forming a rare category
of temporal patterns. For instance, the ECG signal of an
individual with arrhythmia may only show irregular heart-
beats in a few time segments; the malicious insiders may
behave abnormally every now and then. Fig. 1 illustrates
such bi-level structure of the temporal data, where abnormal
sequences contain at least one abnormal time segment, and
normal sequences only contain normal time segments. In this
paper, we aim to detect abnormal sequences and abnormal
segments simultaneously, which correspond to the bi-level
rare temporal pattern detection.

To the best of our knowledge, such bi-level structure
(sequence level vs. segment level) is not exploited in existing
works on outlier detection for temporal data, which focus on
either the sequence level, or the segment level. Furthermore,
they fail to explore the similarity among the abnormal time
segments, treating them as isolated outliers. On the other
hand, existing works on rare category analysis are mainly
focused on static data, which are not readily applicable to
temporal data with rare categories of abnormal patterns.

To bridge this gap, in this paper, we study the problem
of rare temporal pattern detection by exploiting the bi-
level structure in the data. Our proposed model is based on
an optimization framework that maximizes the likelihood
of observing the data on both the sequence level and the



Figure 1: Illustration of the Bi-Level Structure in the Temporal Data.

segment level. Furthermore, it uses sequence-specific simple
hidden Markov models to generate segment-level labels, and
leverages the similarity among the abnormal time segments
to estimate the model parameters. To solve the optimiza-
tion problem, we propose an unsupervised algorithm for
detecting rare temporal patterns named BIRAD and its semi-
supervised version named BIRAD-K. Both algorithms are
based on Block Coordinate Update, which repeatedly up-
date the sequence-level labels, segment-level labels, and the
model parameters. We analyze these algorithms in terms of
convergence and time complexity, and empirically evaluate
their performance on both synthetic and real data sets.

The rest of this paper is organized as follows. After a
brief review of the related work in Section 2, we introduce
the bi-level model, the optimization framework, and the
proposed algorithms with performance analysis in Section
3. In Section 4, we present the experimental results on
both synthetic and real data sets, which demonstrate the
effectiveness and efficiency of the proposed framework.
Finally, we conclude this paper in Section 5.

II. RELATED WORK

In this section, we briefly review the related work on rare
category analysis, outlier detection for temporal data, and
multi-instance learning.

A. Rare Category Analysis

Rare category detection is the problem of identifying
minority classes from the under-represented feature spaces,
while minimizing the number of labeling requests. Up
until now, several techniques have been developed for rare
category detection in different scenarios. [22] introduced the
problem setting of rare category detection and experimented
with different hint selection strategies to detect useful
anomalies. In [10, 11], the authors presented two active
learning schemes to detect rare categories via unsupervised
local-density-differential sampling strategy. More recently,
in [31], the authors studied the problem of rare category
detection on multi-view data and proposed a Bayesian

framework named MUVIR, which exploited the relationship
between multiple views and estimated the overall probability
of each example belonging to the minority class. In [32], the
authors proposed a fast method for rare category detection
on time-evolving graphs, which incrementally updated the
detection models based on local updates. In this paper, we
further study the problem of rare category detection on
temporal data and aim to exploit the bi-level structure of
abnormal temporal sequences / time segments.

B. Outlier Detection for Temporal Data

Outlier detection, also called anomaly detection or novelty
detection, refers to the problem of finding instances that
do not conform to the expected behavior in the data. This
problem has been studied in various domains, such as
heterogenous networks [5, 20, 15], crowdsourcing [30, 33]
and spatiotemporal channels [25, 27]. Prior works mainly
focused on two categories of temporal outliers: outliers in
time series databases and outliers within the given time
series [9]. For the first category of outliers, the previous
methods aim to identify a few time series as outliers,
such as clustering methods [21], parametric methods [4],
window-based methods [8]. For the second category of
outliers, the methods aim to find particular elements or
subsequences on the given time series. For example, in [12],
the authors presented an autoregressive data-driven model
to identify outliers in environmental data streams; in [3],
the authors studied a more challenging problem that outlier
detection faced with a never-ending data stream. Different
from existing works on outlier detection for temporal data,
our work focuses on the more challenging case where
the abnormal temporal patterns are non-separable from the
normal ones, and we propose to leverage the relationship
between abnormal temporal sequences and abnormal time
segments for the sake of improving the detection accuracy.

C. Multi-Instance Learning

Multi-instance learning is a variation of supervised learn-
ing, where examples are considered as bags consisting of



multiple individual instances. [7] is the earliest litera-
ture that introduced and showed the importance of multi-
instance learning. In the past decades, various techniques
were proposed targeting multi-instance learning. In [17, 29],
diverse density based frameworks are proposed for solv-
ing the multi-instance learning problem, by measuring the
intersection of the positive bags minus the union of the
negative bags. [1] presented an extended version of support
vector machine on multi-instance learning, and developed
a heuristic method to solve the mixed integer quadratic
programs. [34] is the first study on the problem of multi-
instance learning under the condition that examples are not
independent and identically distributed (i.i.d) by constructing
an undirected graph of each bag and designing a graph
kernel to classify the positive and negative examples. Similar
to multi-instance learning, in our model, the segment-level
labels collectively determine the corresponding sequence-
level label. However, here we assume that the relationship
among adjacent time segments is governed by segment-
specific simple hidden Markov models, and many existing
works on multi-instance learning can be seen as special cases
of our proposed model.

III. BI-LEVEL MODEL FOR RARE
TEMPORAL PATTERN DETECTION

In this section, we propose a bi-level model for detecting
the rare temporal patterns. We start with notation and
problem definition. Then we present the model formulation,
followed by the optimization techniques. Finally, we intro-
duce both the unsupervised algorithm BIRAD for detecting
the rare temporal patterns and its semi-supervised version
BIRAD-K.

A. Notation and Problem Definition

Suppose that we are given a set of M temporal se-
quences S = {x(1), . . . ,x(M)}, and, in temporal sequence
x(m) where m = 1, . . . ,M , there are n(m) temporal
segments, i.e., x(m) = {x(m)

1 , . . . , x
(m)

n(m)}. Let y(m) =

{y(m)
1 , . . . , y

(m)

n(m)} ∈ {0, 1}1×n
(m)

denote the segment-level
labels, or hidden states of temporal segments in x(m), and
Y (m) ∈ {0, 1} denote the sequence-level label, or hidden
state of x(m). Without loss of generality, we assume that: (1)
y
(m)
i = 1 corresponds to abnormal segments, and y(m)

i = 0
corresponds to normal segments; (2) Y (m) = 1 corresponds
to abnormal temporal sequences, and Y (m) = 0 corresponds
to normal sequences. As the bi-level structure illustrated
in Fig. 1, only a small portion of temporal sequences
in S correspond to abnormal sequences, in which only a
small portion of temporal segments are abnormal segments.
Therefore, the abnormal segments would be extremely rare
when considering the whole data set S. Our goal is to
identify anomalies in the sequence level as well as the
segment level. For the sake of clarity, we also introduce
the following indicator function I(y(m)) = maxn

(m)

i=1 y
(m)
i .

B. Model Formulation

Our model lies in inference about the bi-level hidden state
process given the observations S, which involves calculating
the following posterior distribution.

Pr(y(m)|x(m)) ∝ Pr(y(m),x(m))

= Pr(x(m))Pr(y(m)|x(m))
(1)

Thus, we propose the objective of our model as follows.

argmax
y(1:M)

M∑
m=1

lnPr(y(m),x(m)) (2)

As the data could be categorized into normal and abnor-
mal temporal sequences, we can rewrite Eq. 2 as follows.

argmax
y(1:M)

∑
Y (m)=1

lnPr(y(m),x(m))

+
∑

Y (m)=0

lnPr(y(m),x(m))
(3)

By introducing sequence-level label Y (m) to the preceding
equation, we have

argmax
y(1:M)

M∑
m=1

ln[Pr(y(m),x(m)|Y (m) = 1)

× Pr(Y (m) = 1)]Y
(m)

+ ln[Pr(y(m),x(m)|Y (m) = 0)

× Pr(Y (m) = 0)](1−Y
(m))

s.t. Y (m) = max
i
y
(m)
i

m = 1, . . . ,M, i = 1, . . . , n(t)

(4)
Let L0 denote lnPr(y(m),x(m)|Y (m) = 0), and L1

denote lnPr(y(m),x(m)|Y (m) = 1). We can rewrite Eq. 4
as follows.

argmax
y(1:M)

M∑
m=1

(1− Y (m))[L0(x
(m)) + lnPr(Y (m) = 0)]

+ Y (m)[L1(x
(m)) + lnPr(Y (m) = 1)]

s.t. Y (m) = max
i
y
(m)
i

m = 1, . . . ,M, i = 1, . . . , n(t)

(5)
In order to model the joint probability of the segment-level

labels y(m) and the temporal data x(m), we propose to use
simple Hidden Markov Models (HMM) [2]. In particular,
we have the following three assumptions: (1) the Markov
assumption, i.e., the next state is dependent only upon the
current state, where the state corresponds to the segment-
level label y(m)

i ; (2) the stationarity assumption, i.e., state
transition probabilities are independent of the actual time at
which the transitions take place; (3) the output independence
assumption, i.e., current output (observation) is statistically
independent of the previous outputs (observations). Next
we elaborate on modeling normal and abnormal temporal



sequences.
Modeling Normal Temporal Sequences: For the sake

of exposition, we first model the normal temporal sequence,
i.e., Y (m) = 0. The log likelihood of any normal temporal
sequence x(m) is defined by

L0 = lnPr(y(m),x(m)|Y (m) = 0)

= ln[Pr(x(m)|y(m), Y (m) = 0)× Pr(y(m)|Y (m) = 0)]
(6)

Based on the Markov assumption and output indepen-
dence assumption, we have

Pr(y(m)|Y (m) = 0)] = Pr(y
(m)
1 |Y (m) = 0)

×
n(m)∏
j=2

Pr(y
(m)
j |y(m)

j−1, Y
(m) = 0)

(7)
By applying the stationarity assumption, we have

Pr(x(m)|y(m), Y (m) = 0) =

n(m)∏
i=1

Pr(x
(m)
i |y(m)

i , Y (m) = 0)

(8)
Plugging Eq. 7 and Eq. 8 into Eq. 6, we have

L0 = ln[

n(m)∏
i=1

Pr(x
(m)
i |y(m)

i , Y (m) = 0)

× Pr(y(m)
1 |Y (m) = 0)×

n(m)∏
j=2

Pr(y
(m)
j |y(m)

j−1, Y
(m) = 0)]

(9)
On the other hand, we assume that any normal temporal

segment x(m)
i is drawn from an unknown Gaussian distri-

bution, although the proposed model can be generalized to
other parametric distributions:

Pr(x
(m)
i |y(m)

i , Y (m) = 0) ∼ N (x
(m)
i , µ0, σ0)

where mean µ0 and variance σ0 are not given. Hence,
N (x

(m)
i , µ0, σ0) could be interpreted as the emission prob-

ability of x(m)
i given hidden state 0.

Then, Eq. 9 can be rewritten as follows.

L0 =

n(m)∑
i=1

lnN (x
(m)
i , µ0, σ0) + lnPr(y

(m)
1 |Y (m) = 0)

+

n(m)∑
j=2

lnPr(y
(m)
j |y(m)

j−1, Y
(m) = 0)

(10)
For any normal temporal sequences x(m), there is no

segment-level state transition, i.e., all temporal segments are
normal. Therefore, L0 could be simplified as follows.

L0 =

n(m)∑
i=1

lnN (x
(m)
i , µ0, σ0) (11)

Modeling Abnormal Temporal Sequences: As we
mentioned before, if temporal sequence x(m) contains at
least one abnormal segment x(m)

i with y
(m)
i = 1, then

we claim that temporal sequence x(m) is abnormal, i.e.,
Y (m) = 1. Similar as before, we have the following log
likelihood.

L1 = lnPr(y(m),x(m)|Y (m) = 1) (12)

In our model, we assume that the features from abnormal
time segments are generated from the same compact distri-
bution across all abnormal temporal sequences. Similar to
Eq. 9, by taking advantage of the HMM assumptions and
Bayes’ Rule, we can rewrite Eq. 12 as follows.

L1 = ln[

n(m)∏
(i=1)

Pr(x
(m)
i |y(m)

i , Y (m) = 1)

× Pr(y(m)
1 |Y (m) = 1)×

n(m)∏
j=2

Pr(y
(m)
j |y(m)

j−1, Y
(m) = 1)]

(13)

For any abnormal temporal sequence x(m), we de-
fine the corresponding Hidden Markov Model [2] λ =
(N,O,A,B,π) as follows.

1) N , the number of hidden states in the model. In this
paper, N = 2, i.e., normal and abnormal states.

2) O, the number of distinct observations. In our model,
for any temporal sequence x(m), the number of ob-
servations is the length of x(m).

3) A, N×N , the state transition probability distribution.
A is an N ×N matrix. In this paper, we have:

A =

[
a00 a01
a10 a11

]

where aij denotes the transition probability from state
i to state j. And we have aij ∈ [0, 1] and ai0+ai1 = 1,
i ∈ {0, 1}.

4) B, the observation emission probability distribution,
which is an N×O matrix. We assume that normal time
segments meet distributionN (µ0, σ0), while abnormal
time segments meet distribution N (µ1, σ1).

5) π, the initial state probability distribution, of which
the length is N . In our model, for any temporal
sequence x(m), we define a(m)

0 as the probability that
the initial temporal segment x(m)

1 is abnormal. Then,
we can write the initial state probability distribution
of sequence x(m) as [1− a(m)

0 , a
(m)
0 ].

Based on the HMM model λ = (N,O,A,B,π), Eq. 13



can be rewritten as follows.

L1 =

n(m)∑
i=1

[y
(m)
i lnN (x

(m)
i , µ1, σ1)

+ (1− y(m)
i ) lnN (x

(m)
i , µ0, σ0)] + [y

(m)
1 ln a0

+ (1− y(m)
1 ) ln(1− a0)] +

n(m)∑
j=2

[y
(m)
j−1y

(m)
j ln a11

+ y
(m)
j−1(1− y

(m)
j ) ln(1− a11) + (1− y(m)

j−1)y
(m)
j ln a01

+ (1− y(m)
j−1)(1− y

(m)
j ) ln(1− a01)]

(14)
Overall Objective Function: Plugging Eq. 11 and Eq. 14

into the objective function in Eq. 5, we have

argmax
y(1:M), a0, a11,
µ1, σ1, µ0, σ0

M∑
m=1

Y (m){
n(m)∑
i=1

[y
(m)
i lnN (x

(m)
i , µ1, σ1)

+ (1− y(m)
i ) lnN (x

(m)
i , µ0, σ0)] + [y

(m)
1 ln a0

+ (1− y(m)
1 ) ln(1− a0)] +

n(m)∑
j=2

[y
(m)
j−1y

(m)
j ln a11

+ y
(m)
j−1(1− y

(m)
j ) ln(1− a11) + (1− y(m)

j−1)y
(m)
j ln a01

+ (1− y(m)
j−1)(1− y

(m)
j ) ln(1− a01)] + lnPr(Y (m) = 1)}

+ (1− Y (m)){
n(m)∑
i=1

lnN (x
(m)
i , µ0, σ0) + lnPr(Y (m) = 0)}

s.t. a0, a11, a01 ∈ [0, 1]

Y (m) = max
i
y
(m)
i

m = 1, . . . ,M, i = 1, . . . , n(t)

(15)
C. Optimization

Given any finite observation sequence, it is challenging to
maximize the posterior probability by adjusting the HMM
model parameters (A,B,π). In fact, there is not a practical
method to exactly solve this problem. However, a number
of iterative procedures, such as EM based methods [14]
and gradient based methods [14], have been proposed to
obtain a local maximum of this problem. In the following
two subsections, we will introduce two simple and fast
algorithms, i.e., BIRAD and BIRAD-K, targeting the novel
setting of bi-level rare temporal pattern detection. Both
of these two algorithms are built upon Block Coordinate
Update (BCU) method [16, 26, 28], which divides all the
variables into multiple blocks and iteratively updates them.
To be specific,

Updating Initial State Probability Distribution: By
taking the partial derivative of Eq. 15 with respect to a0,
and letting it equal to zero, we have the following closed
form update rule.

a
(m)
0 = y

(m)
1 (16)

Updating State Transition Probability Distribution:
By taking the partial derivative of Eq. 15 with respect to
a11 and a01, and letting them equal to zero, we have the
following closed form update rules.

a11 =

∑M
m=1

∑n(m)

j=2 Y (m)y
(m)
j−1y

(m)
j∑M

m=1

∑n(m)

j=2 Y (m)y
(m)
j−1

(17)

a01 =

∑M
m=1

∑n(m)

j=2 Y (m)(1− y(m)
j−1)y

(m)
j∑M

m=1

∑n(m)

j=2 Y (m)(1− y(m)
j−1)

(18)

Updating Observation Emission Probability Distribu-
tion: By taking the partial derivation of Eq 15 with respect
to µ1, σ1, µ0, σ0, and letting them equal to zero, we have
the following closed form update rules.

µ1 =

∑M
m=1

∑n(m)

t=1 y
(m)
t x

(m)
t∑M

m=1

∑n(m)

t=1 y
(m)
t

(19)

σ1 =

∑M
m=1

∑n(m)

t=1 y
(m)
t |x(m)

t − µ1|22∑M
m=1

∑n(m)

t=1 y
(m)
t − 1

(20)

µ0 =

∑M
m=1

∑n(m)

t=1 (1− y(m)
t )x

(m)
t∑M

m=1

∑n(m)

t=1 (1− y(m)
t )

(21)

σ0 =

∑M
m=1

∑n(m)

t=1 (1− y(m)
t )|x(m)

t − µ0|22∑M
m=1

∑n(m)

t=1 (1− y(m)
t )− 1

(22)

Updating Bi-level Labels: In this part, we give an
easy and fast update strategy for updating bi-level labels.
For updating the sequence-level labels, we first score each
temporal sequence by comparing the log likelihood of the
sequence being labeled as abnormal vs. normal in each
iteration. Then, the sequences with higher scores would be
labeled as abnormal and the rests will be labeled as normal.
The details will be illustrated in BIRAD and BIRAD-K. For
updating the segment-level labels, there are the following
two cases. When the sequence-level label Y (m) = 0,
we can directly label each segment in y(m) as 01×n(m) .
When the sequence-level label Y (m) = 1, we apply Viterbi
algorithm [23] to iteratively update the most likely hidden
states, or segment-level labels, y(m), which maximizes the
objective function in Eq. 15.

D. BIRAD Algorithm

Based on the update rules introduced in the previous sub-
section, we first introduce the unsupervised method — Bi-
level Rare Temporal Anomaly Detection (BIRAD) algorithm.
It is given an unlabeled temporal sequence data set S and
the proportion of abnormal sequences P as inputs. It outputs
the hidden states of all temporal sequences and temporal
segments in S. The algorithm iteratively updates the HMM
parameters λ = (A,B,π) and the bi-level hidden states
until convergence, or a certain stopping criterion is satisfied.
The details of BIRAD are presented in Algorithm 1.



Algorithm 1 Bi-level Rare Temporal Anomaly Detection
(BIRAD)
Input:

Temporal sequence data set x(1), . . . ,x(M)

Proportion of abnormal sequences P .
Output:

Y (1), . . . , Y (M); y(1), . . . ,y(M)

1: Initialize sequence-level and segment-level labels.
2: while stopping criterion is not satisfied do
3: Update initial state probability distribution π by

Eq. 16.
4: Update transition probability distribution A by Eq. 17

to Eq. 18.
5: Update emission probability distribution B by Eq. 19

to Eq.22.
6: for m =1: M do
7: Update hidden states y(m) of x(m) by Viterbi

Algorithm.
8: Compute L1(x

(m)) in Eq. 14 based on updated
y(m).

9: Compute L0(x
(m)) in Eq.11 based on updated

y(m).
10: Compute score(m) = L1(x

(m)) + lnP −
L0(x

(m))− ln(1− P )
11: end for
12: Label the temporal sequences with positive scores

as abnormal, i.e., Y (m) = 1, and keep the updated
prediction labels y(m). Label the remaining temporal
sequences as normal, i.e., Y (m) = 0, and label the
segments in these sequences as normal, i.e., y(m) =
01×n(m) .

13: for m = 1 :M do
14: if I(y(m)) 6= Y (m) then
15: Let Y (m) = 0 and y(m) = 01×n(m) .
16: end if
17: end for
18: end while
19: return Y (1), . . . , Y (M); y(1), . . . ,y(M).

BIRAD works as follows. First, Step 1 initializes the
sequence-level/ segment-level labels. Specifically, one poten-
tial way to initialize the bi-level hidden states is to randomly
select M × P temporal sequences and label them as 1,
while the rest are labeled as 0. Then, we can initialize any
hidden states of temporal segments to be identical as the
hidden state of the corresponding temporal sequence. Next,
Step 2 to Step 18 applies the BCU optimization process.
From Step 3 to Step 5, BIRAD updates the initial prob-
ability vector π, transition probability distribution A and
emission probability distribution B based on the updated
labels y(1), . . . ,y(M). In Step 7 to Step 10, BIRAD updates
the segment-level hidden states of x(m) and calculates the

scores for each temporal sequence x(m), which estimate
the probability of a sequence being abnormal rather than
normal. Step 12 updates the sequence-level/ segment-level
labels based on score(m). Step 13 to Step 17 checks if
there is any inconsistency between y(m) and Y (m). If any
inconsistency exists, these temporal sequences are labeled
as normal. At last, in Step 19, BIRAD returns the predicted
bi-level labels.

Next, we analyze the convergence of the proposed BIRAD
algorithm. We first derive Lemma 1 and Lemma 2, which
show that the update rules in Algorithm 1 are upper-
bounded and non-decreasing. Lemma 1 and Lemma 2 lead
to Theorem 1, which shows the convergence of BIRAD.

Lemma 1 (Upper-bounded). The overall objective function
in Eq. 15 is upper-bounded.

Proof Sketch: Due to properties of the parametric
distributions of normal and abnormal time segments, as well
as the transition probabilities, it is easy to see that Eq. 15 is
upper-bounded.

Lemma 2 (Non-decreasing). The objective function in
Eq. 15 is non-decreasing in general under the update rules
in Algorithm 1.

Proof: By separately taking second-order derivatives of
Eq. 15 with respect to the variables of initial probability π,
transition probability distribution A and emission probabil-
ity distribution B, it is easy to see that the three Hessian
matrices we obtain are negative semi-definite. Thus, when
all but one block are fixed, Eq. 15 is a concave function
with respect to the free block. In other words, the overall
objective function Eq. 15 is non-decreasing when we only
update the blocks of the initial probability, the transition
probability and the emission probability.

The same conclusion could also be reached when we
update the segment-level labels with other blocks fixed,
as the Viterbi algorithm always returns the optimal labels
y(m) for any input sequence x(m). On the sequence-level,
the BIRAD algorithm firstly scores each temporal sequence
by comparing the log likelihood of the sequence being
labeled as abnormal vs. normal. Then all the temporal
sequences with positive scores are labeled Y (m) = 1, and
the ones with negative scores are labeled Y (m) = 0. At
last, BIRAD algorithm corrects the inconsistency between
sequence-level and segment-level labels for the following
two cases: (1)Y (m) = 1 and y(m) = 01×n

(m)

; (2)
Y (m) = 0 and y(m) contains at least one segment-level
label as 1. For case 1, it is easy to see Eq. 15 increases
by lnPr(Y (m) = 0)− lnPr(Y (m) = 1) after correction of
Y (m), where Pr(Y (m) = 0)� Pr(Y (m) = 1). For case 2,
the overall objective function in Eq. 15 keeps the same value
after correction of y(m). In this way, the objective function
value with the resulting sequence-level and the associated
segment-level labels is no smaller than any alternative label



assignments. Therefore, the objective function in Eq. 15 is
non-decreasing under the update rules of Algorithm 1.

Theorem 1 (Local Optimum). The proposed BIRAD algo-
rithm converges to the local optimal.

Proof: According to Lemma 1 and Lemma 2, the ob-
jective function is non-decreasing and upper-bounded based
on the update rules in Algorithm 1. Therefore, the proposed
BIRAD algorithm converges to a local optimal.

We also analyze the computational complexity of the
BIRAD algorithm in the following theorem.

Theorem 2 (Time Complexity). The time complexity of
Algorithm 1 (with Viterbi algorithm) is O(LMO).

Proof: Let L be the required number of iterations for
Algorithm 1 to converge. The time complexity of Viterbi
Algorithm is O(N2O), where N is the number of hidden
states, and O is the length of a given temporal sequence. In
each iteration of Algorithm 1, we call Viterbi Algorithm M
times. Thus, we have the time complexity of Algorithm 1
as O(LMO).

E. BIRAD-K Algorithm

In some cases, we may be able to start with a few labeled
examples, i.e., labeled segments. To accommodate these
cases, we introduce a modified semi-supervised version of
Algorithm 1 named BIRAD-K in Algorithm 2.

To be specific, BIRAD-K is given a temporal sequence
data set S with only one labeled abnormal segment X(AQ)

AG ,
where AQ is the sequence-level index and AG is the
segment-level index of X(AQ)

AG , and prior P as input. Com-
pared with BIRAD, BIRAD-K works better with noisy data,
e.g., data with outliers or changing points. The details of
BIRAD-K are described in Algorithm 2. Step 1 initializes
the bi-level hidden states. Step 2 calculates K, which is the
number of abnormal temporal sequences in the data set. Step
3 to Step 9 is the BCU process. Identical to BIRAD, we first
update the initial probability vector π, transition probabil-
ity distribution A and emission probability distribution B
based on the updated labels from the last iteration. Next,
we calculate the scores for identifying abnormal temporal
sequences in Step 5. Different from BIRAD in Step 6,
we label the temporal sequences with the top K scores as
abnormal and the rest as normal. Step 7 ensures Y (AQ) and
y
(AQ)
AG are always labeled as 1. Step 8 checks if there is any

inconsistency between sequence-level labels and segment-
level labels. Finally, in Step 10, BIRAD-K returns all the
consistent prediction labels upon convergence.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed algorithms, i.e., BIRAD and BIRAD-K, on both syn-
thetic and real data sets in comparison with four state-of-the-
art unsupervised methods, i.e., NNDB [10], GRADE [11],

Algorithm 2 Bi-level Rare Temporal Anomaly Detection
with K Segments Selected (BIRAD-K)

Input:
Temporal sequence data set x(1), . . . ,x(M) with only
one labeled abnormal segment x(AQ)

AG

Proportion of abnormal sequences P .
Output:

Y (1), . . . , Y (M); y(1), . . . ,y(M)

1: Initialize sequence-level and segment-level labels.
2: Compute K = m× P
3: while stopping criterion is not satisfied do
4: Update HMM model λ = (π, A,B) as Step 3 to Step

5 in Algorithm 1.
5: Update the segment-level hidden states and anomaly

score score(m) for each temporal sequence x(m) as
Step 6 to Step 11 in Algorithm 1.

6: Label the temporal sequences with the top K scores
as abnormal, i.e., Y (m) = 1, and keep the updated
prediction labels y(m). Label the remaining temporal
sequences as normal, i.e., Y (m) = 0, and label the
segments in these temporal sequences as normal, i.e.,
y(m) = 01×n(m) .

7: Correct Y (AQ) or y(AQ)
AG , if either of them are updated

as 0.
8: Check and fix the inconsistency between sequence-

level labels and segment-level labels as Step 13 to
Step 17 in Algorithm 1.

9: end while
10: return Y (1), . . . , Y (M); y(1), . . . ,y(M).

DPCA-T 2 [24], DPCA-Q [24], and one semi-supervised
method, i.e., Semi-DTW-D [6]. The RCD methods, i.e.,
NNDB and GRADE, require the exact proportion of abnor-
mal time segments in the entire data set. This is the reason
why the RCD algorithms produce the same precision and
recall rate in the results shown in Fig. 2. For the two PCA
methods, the principal components are associated with 95%
of the total variance explanation. Semi-DTW-D is a semi-
supervised learning method for time series classification. In
the comparison experiments, BIRAD-K and Semi-DTW-D
are given a single labeled abnormal segment as training data.

A. Data Set Description

The synthetic data set is generated from auto-regression
model with 3 different coefficients C1, C2 and C3. It
contains 95 normal temporal sequences and 5 abnormal
sequences, and each temporal sequence consists of 1,000
observations. In normal sequences, all data points fit the
model with coefficients C1. In abnormal sequences, there are
980 normal data points that fit the model with coefficients
C2, and 20 abnormal data points that fit the model with
coefficients C3.
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Figure 2: Performance Evaluation on Real Data

In our experiments, we include 4 temporal data sets
from Yahoo! Webscope program 1. Each data set contains
around 80 temporal sequences, and each sequence contains
around 1,500 observations. The first data set contains regular
anomaly points. The second and third data sets contain
periodic outliers. The third and fourth data sets include
anomaly points as well as changing points. To match the
scenario of our studying problem, each data set is modified
as containing 95% synthetic normal sequences and 5%
abnormal sequences.

ECG data set is a collection of 100 ECG signal records,
which is extracted from a public ECG database 2. Each
record consists of ∼ 300 segments, where each segment
corresponds to one certain heart beat pulse. In this data
set, 10% signal records are abnormal temporal sequences.
Meanwhile, there are around 2% abnormal segments in these
abnormal sequences. Our goal is to detect noisy and unstable
heart beat pulses, which may be produced due to movements
or changes of the environment conditions.

At last, ADL data set [18] comprises information re-
garding the sensor logs of users’ daily activities dur-
ing a 35-day interval. The data set is labeled with 10
different daily behaviors, i.e., “Leaving′′, “Toileting′′,
“Showering′′, “Sleeping′′, “Breakfast′′, “Lunch′′,
“Dinner′′, “Snack′′, “Spare − Time′′, “Grooming′′. In
this experiment, we consider “Snack′′ as the abnormal
behavior, which only comprises around 5% of data, and the
rest as the normal behaviors. In the end, we aim to identify
all the time intervals of “Snack” for each user.

B. Effectiveness Analysis

In this subsection, we evaluate the effectiveness of BIRAD
and BIRAD-K over 1 synthetic data set and 6 real data sets

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
2https://www.physionet.org/physiobank/database/ptbdb/

based on precision, recall and F-score (defined as F-score =
2 · Recall · Precision / (Recall + Precision)). Notice that, in
these experiments, we are able to identify all the abnormal
temporal sequences, and the following results are respect to
y(m), m = 1, . . . ,M .

First, the proposed algorithms are evaluated on the syn-
thetic data set and 4 Yahoo-web data sets, all of which
are temporal data sets with anomalies. From Fig. 2(a) to
Fig. 2(e), we can discover the significant advantages of
our proposed methods. The PCA methods always produce
very low recall rate, which indicates that the PCA methods
may not be suitable for capturing anomalies in the subspace
with maximized variance. For NNDB and GRADE, they are
very stable for both precision and recall rates, but perform
unsatisfied when facing more complex conditions, such as
changing points. In Fig. 2(d), both NNDB and GRADE
achieve very low precision and recall rates. This is because
they are built upon static methods, thus not effective in
handling the temporal variations. Compared with BIRAD
and BIRAD-K, we find that Semi-DTW-D always achieves
good precision scores, while the recall rates are lower.
This is because Semi-DTW-D is designed for time series
classification, which only meaures the distance between
temporal segments, but has not considered the hidden state
transition between the adjacent temporal segments. It can
be seen that our proposed methods always outperform the
other methods, especially in the sense of recall rate and F-
score rate. Comparing BIRAD and BIRAD-K, it is shown that
BIRAD-K performs slightly better than BIRAD, especially
in Fig. 2(d) and Fig. 2(e). This implies that BIRAD-K
algorithm may be more suited for applications with outliers
or changing points.

Next, two challenging real world problems are considered
for anomaly detection. In Fig. 2(f), we study the problem
of anomaly pattern detection on ECG signals. It reveals that
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Figure 3: Convergence Analysis

all the methods perform very well on this data set, however
our BIRAD and BIRAD-K algorithms still outperform the
others. In addition, in Fig. 2(g), we apply our algorithms
on wireless sensor networks data so as to detect all the
abnormal behaviors. Due to the unremovable randomness in
human’s daily behaviors, this problem is more challenging
than the previous 5 data sets. In this experiment, lack
of the ability to extract temporal information is the main
reason why GRADE and NNDB get much lower precision
than the others. Compared with BIRAD and BIRAD-K, the
PCA methods and Semi-DTW-D get a lower recall rates
because it may not be able to precisely catch the rules of
state transition, especially in the occurrence of randomness.
In general, we have the following observations about our
proposed algorithms from these 6 experiments: (1) Both
BIRAD and BIRAD-K outperform our 3 baseline algorithms
in most cases; (2) BIRAD produces comparable results as
BIRAD-K in most cases; (3) BIRAD-K performs modestly
better than BIRAD especially in the presence of outliers and
changing points.

C. Convergence and Efficiency Analysis

In this subsection, we first examine the convergence of BI-
RAD algorithm on the synthetic data set. Fig. 3(a) illustrates
the non-decreasing and upper-bounded characteristics of the
objective function when applying BIRAD. In Fig. 3(b), we
present the changes of F-score among different iterations.
It is shown that the F-score monotonically increases with
objective values and then saturates, implying that the per-
formance improves with increasing objective values.

Then, we examine the running time and parameter sensi-
tivity of BIRAD and BIRAD-K algorithms. First, we perform
our algorithms on a series of synthetic data sets with increas-
ing number of temporal sequences. Let the prior be 5% and
the length of each temporal sequence be 1,000, we generate
a series of synthetic data sets with increasing number of
temporal sequences, from 100 to 1,000. The results are
shown in Fig. 4. After that, we test our algorithms on a series
of data sets with increasing sequence length. Different from
the experiments in Fig. 4, we let each data set contain 100
temporal sequences and the prior be 5%, and we generate

the series of synthetic data sets with increasing sequence
length, from 500 to 5,000. The results are shown in Fig. 5.
From the preceding two experiments, we have the following
observations: (1) BIRAD is slightly faster than BIRAD-K;
(2) the running time of both algorithms increases linearly in
general for both cases, i.e., increasing the sequence length
and increasing the number of temporal sequences. we run
the experiments with Matlab 2014a on a workstation with
four 3.5 GHz CPUs, 256 GB memory and 2 TB disk space.

D. Parameter Analysis

In this subsection, we empirically study the parameter
sensitivity of BIRAD and BIRAD-K algorithms on the syn-
thetic data set. Fig. 6 shows our analysis results. Notice
that the exact proportion of abnormal temporal sequences
is 5% in the data set. For BIRAD-K algorithm, we can see
the F-score increases sharply as the prior changes from 1%
to 5%. This is because BIRAD-K discovers more abnormal
sequences with the increase of input prior (P < 5%). As
the prior goes beyond 5%, the F-score of BIRAD-K slightly
diminishes but stabilizes near 0.89. The reason is that several
normal temporal sequences are included in the group of
abnormal sequences, as the input prior exceeds the exact
prior. Thus, the input prior would introduce a bias especially
when we update the transition probability distribution A
and emission probability distribution B. Different from the
previous case, the experiments show that the precision rate
reduces slightly and the recall rate is kept stable when the
input prior (P > 5%) increases. Compared with BIRAD-K,
we can see the F-score rates of BIRAD are more stable. This
implies that BIRAD is more reliable than BIRAD-K in the
cases with unprecise priors.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel data mining problem -
bi-level rare temporal pattern detection, which aims to fill the
gap in the literature by conducting rare category analysis on
temporal data. Specifically, we address the challenging case
where the labels of the temporal data are highly skewed on
both the sequence-level and the segment-level. We formulate
the problem as an optimization problem, which maximizes
the likelihood of observing the data on both the sequence-
level and the segment-level. To solve the optimization prob-
lem, we propose an unsupervised algorithm BIRAD and its
semi-supervised version BIRAD-K, which iteratively update
the model parameters based on the block coordinate update
method and return the bi-level labels that are consistent on
the sequence-level and the segment-level. The comparison
experiments with state-of-the-art techniques demonstrate the
effectiveness of our proposed algorithms. In our future work,
we will extend the proposed framework to the cases when
multiple types of rare temporal patterns exist such that the
number of hidden states N > 2.



 

Figure 4: Efficiency Analysis on Increas-
ing Number of Temporal Sequences

 

Figure 5: Efficiency Analysis on Increas-
ing Length of Temporal Sequences
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