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ABSTRACT
Many complex systems with relational data can be naturally repre-

sented as dynamic processes on graphs, with the addition/deletion

of nodes and edges over time. For such graphs, network embed-

ding provides an important class of tools for leveraging the node

proximity to learn a low-dimensional representation before using

the off-the-shelf machine learning models. However, for dynamic

graphs, most, if not all, embedding approaches rely on various

hyper-parameters to extract spatial and temporal context informa-

tion, which differ from task to task and from data to data. Besides,

many regulated industries (e.g., finance, health care) require the

learning models to be interpretable and the output results to meet

compliance. Therefore, a natural research question is how we can

jointly model the spatial and temporal context information and

learn a unique network representation, while being able to pro-

vide interpretable inference over the observed data. To address this

question, we propose a generic graph attention neural mechanism

named STANE, which guides the context sampling process to focus

on the crucial part of the data. Moreover, to interpret the network

embedding results, STANE enables the end users to investigate

the graph context distributions along three dimensions (i.e., nodes,

training window length, and time). We perform extensive experi-

ments regarding quantitative evaluation and case studies, which

demonstrate the effectiveness and interpretability of STANE.
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1 INTRODUCTION
Network embedding [5, 11] has recently attracted a surge of re-

search interest in a myriad of high impact domains, ranging from
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Figure 1: An outline of STANE. The embedded chart in-
cludes the attention distributions over nodes (purple), train-
ing window length (red) and timestamps (orange) dimen-
sions, which allows the analysts to investigate the impor-
tance of node, time, training window length.

social networks [8] to collaborative networks [17], from knowledge

graphs [9] to protein-protein networks [2]. In contrast to the con-

ventional graph analytic tools, network embedding leverages the

node proximity to learn a low-dimensional network representation,

based on which a variety of off-the-shelf machine learning models

can be easily applied for graph mining tasks such as node classi-

fication [7], link prediction [5], community detection [8, 14] and

rare category analysis [12, 13].

However, most real-world networks are intrinsically evolving

over time. Compared with the static setting, the dynamic net-

work evolution is more complex and noisy as the nodes and edges

may appear, vanish, or even reappear. Several initial attempts (e.g.,

[4, 15, 17]) have been made to solve the dynamic network embed-

ding problem, which often introduce some hyper-parameters (e.g.,

arbitrary length random walk [4]) to extract the spatial-temporal

context information. Such hyper-parameters may have a huge im-

pact on the performance of downstream applications(e.g., training

window length in [4]). On the other hand, it is unclear how to

jointly model the extracted context information from the spatial

domain (e.g., which node is more important?) and time domain

(e.g., which snapshot of the time-evolving graph contains crucial

dynamic patterns?). Furthermore, many real systems with highly

regulated processes (e.g., finance, health care) often require the

learning models to be interpretable and the output results to meet

compliance [3]. In this case, a user-friendlymodel with interpretable

inferences can help analysts investigate the malicious patterns and

largely reduce the workload of analyzing the raw data.

To address the aforementioned challenges, we propose a generic

learning framework named STANE, which aims to learn a unique

representation for dynamic networks and provide comprehensive

interpretable inferences for the end users. In particular, instead of

extracting context via random walks, we introduce the expectation

of the co-occurrence matrix of the dynamic graphs. In addition, we

develop a spatial-temporal neural attention mechanism to estimate

the above co-occurrence matrix and guide the embedding algorithm

to focus on the context information with high importance. At last,

benefiting from the attention mechanism, we are able to conduct
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fine-grained analysis on the node embedding through aggregat-

ing attention parameters along different dimensions (i.e., nodes,

training window length and time).

The major contributions of this paper are as follows:

• Problem. We formally define the problem of explainable

time-evolving graph representation and identify its unique

challenges arising from real applications.

• Algorithm.We propose a generic learning framework for

dynamic network embedding, which is able to (1) jointly

model the spatial and temporal context information with-

out extra hyper-parameters, and (2) provide interpretable

inferences over the observed dynamic graphs.

• Evaluations.We perform extensive experiments and case

studies on six real data sets, showing that the proposed al-

gorithm achieves consistent improvement in the prediction

performance with good interpretability.

The rest of the paper is organized as follows. In Section 2, we

introduce the problem definition and our proposed framework

STANE. Experimental results and literature review are presented in

Section 3 and Section 4, before we conclude the paper in Section 5.

2 PROPOSED MODEL
In this section, we start from the problem definition, then we intro-

duce the proposed method for the dynamic network embedding.

2.1 Problem Definition
Suppose we are given a evolving graph G̃ = {G(1), . . . ,G(T )}, i.e.,

G(t ) = (V (t ),E(t )), t = 1, . . . ,T , that can be presented as a series of

time-evolving adjacency matrices, i.e.,A(1), . . . ,A(T )
. For the sake of

exposition, we assume the numbers of nodes of different snapshots

G(t )
are fixed, which leads to a fixed node set Ṽ with |Ṽ | = n; if

not, we can reserve rows/columns with zero padding if necessary.

In addition, since the information for a single time slice may be

too sparse, analysts typically want to study a larger portion of the

observed data to capture interesting patterns and structures. In

this paper, we preprocess the data in the form of increasing time-

evolving graphs, where each time-evolving adjacency matrix A(t )

aggregates the information from timestamp 1 to t . With the above

notations, we formally define our problem as follows:

Problem 1. Explainable Time-Evolving Graph Representation
Input: (i) a time-evolving graph G̃ , (ii) a user-specific graph embed-

ding dimension d .
Output: (i) a graph representationZ ∈ Rn×d that captures both spa-

tial and temporal graph context in G̃ , (ii) importance inferences
regarding nodes, training window length and timestamps.

2.2 A Generic Learning Framework
The central goal of this work is to learn a generic network em-

bedding for time-evolving graphs, which is able to jointly encode

the spatial and temporal context distribution into a unique repre-

sentation and provide interpretable inferences over the dynamic

graph elements (e.g., nodes, timestamps). To achieve this goal, we

need to take consideration of the following aspects. First (C.1), our
framework needs to be capable of learning hyper-parameters with

respect to context sampling (e.g., co-occurrence matrix D, the train-

ing window length k , the sampling timestamp t ) in order to be

automatically trained on different graphs. Second (C.2), to obtain
the comprehensive representation of the observed time-evolving

graphs, we aim to jointly model the spatial and temporal context

 
Figure 2: An illustration of the proposed framework. On
the left-hand side, the time-evolving graph G̃ that changes
overT timestamps. On the right-hand side, the spatial atten-
tionmodule (i.e., colored in blue) and the temporal attention
module (i.e., colored in green) are jointly trained to simulate
the context sampling process by computing the expectation
of co-occurrence matrix E[˜D; ˜Q].

within a unique optimization scheme. Third (C.3), in addition to

the performance, we also require our model to be explainable.

Fig. 2 presents an overview of the proposed STANE framework,

where the spatial context and temporal context are jointly ex-

tracted via a neural attention mechanism. In particular, given a

time-evolving graph G̃ = {G(1), . . . ,G(T )}, the whole process can be
separated into three steps: (1) instead of generating random walks

by simulation[5], we estimate the expectation of co-occurrence

matrix
˜D of the time-evolving graph with a neural attention mech-

anism. then, (2) the spatial-temporal attention module and node

embeddings are jointly trained within a unified optimization pro-

cess, aiming to maximize the likelihood of the observed G̃; at last,
(3) the end users can investigate the graph context distributions by

aggregating the learned attention weights. Next, we dive into the

details of STANE in the following three aspects.

Learning the spatial-temporal context distribution. As poi-
nted out by [1], randomwalk based network embedding approaches

(e.g., [5]) actually construct a co-occurrence matrix D, of which
expectation is written as:

E[D;C] =
C∑
k=1

wk · P × (M)k (1)

where C is the largest walk length; the definition ofwk varies with

different methods (e.g., wk is defined as the probability of node

with distance k from anchor node to be selected in [5]); P is the

diagonal matrix of the prior distribution p, i.e., P = diaд(p), with
setting P(v,v) as the number of walks starting at anchor point v;
M is the transition probability matrixM = diaд(A × 1n )−1 ×A.

Here, we generalize the expectation of co-occurrence matrix

E[D] to the dynamic setting. Instead of introducing new hyper-

parameters of prior distribution regarding nodes (i.e., v), training
window length (k) and timestamp (t ), we estimate the expectation

of
˜D of time-evolving graph G̃ via a neural attention mechanism



with trainable attention parameters
˜Q = {Q(1),Q(2), . . . ,Q(T )},

that is

E[˜D; ˜Q] =

T∑
t=1

|Ṽ |∑
v=1

C∑
k=1

B(t )(v,k)(M(t ))k (2)

whereQ(t ) ∈ Rn×C , t = 1, . . . ,T , is the context distribution matrix

to capture the dynamic network context information with respect

to nodes and training window length at timestamp t ; B(t ) ∈ Rn×C ,
t = 1, . . . ,T , is the normalized context distribution matrix at times-

tamp t , i.e., B(t )(v,k) =
Q (t )(v,k)∑T

t=1
∑|Ṽ |

v=1
∑C
k=1 Q

(t )(v,k )
;M(t )

is the transi-

tion probability matrix at timestamp t . To be specific, we replace
the hyper-parameter wk and P in Eq. 1 with the trainable atten-

tion weight matrix Q(t )
at each timestamp t , where each entry

Q(t )(v,k) = wk · P(v,v) indicates the importance factor of network

context within k distance to v at the timestamp t .
Maximizing the graph likelihood of time-evolving graphs.

Many existing temporal network embedding approaches [4, 15, 17]

treat temporal context (i.e., which timestamp is important?) and

spatial context (i.e., which region of the graph is important and

how large it is?) as two independent information sources, thus

these methods fail to fully investigate the fine-grained context

information of dynamic graphs (e.g., given two node-context pairs

(v1, c1) and (v2, c2), which one is more important in the kth-order
ego-network of a given anchor point u at a specific timestamp

t ). In order to thoroughly investigate such fine-grained context

information in the dynamic setting, we propose to jointly extract the

spatial context and temporal context by maximizing the likelihood

of time-evolving graphs. In particular, the overall objective function

of our STANE framework is formulated as follows

min

Z , ˜Q
−

∏
v,c ∈Ṽ

loд[σ (zTvzc )
E[˜D ;

˜Q ] · (1 − σ (zTvzc )
1[A(T )=0]]

+ α
T∑
t=1

|Ṽ |∑
v=1

C∑
k=1

|Q(t )(v,k)|

(3)

where E[˜D; ˜Q] is defined in Eq.2, zv and zc are the embedding

vectors of anchor node v and context node c respectively, and α
is a hyper-parameter to balance the impact of the regularization

term on the overall objective function. In particular, the first term

corresponds to the graph likelihood estimator of the observed time-

evolving graphs. Note that, since the last snapshot G(T )
aggregates

all the information from the initial timestamp to the very last times-

tamp, we are considering all the nodes and edges that have been

added to the graph over time. The second term corresponds to the

sparse regularizer (i.e., L1 norm) that is designed to select the key

context information from G̃.
Interpretation via Spatial-Temporal Attention. For various

network analytic tasks, the interpretability of the model is essential

for understanding the logic behind the graph data. To be specific,

given a time-evolving graph G̃, the end users may want to inves-

tigate the attention distribution of various dimensions (e.g., node

dimension and time dimension). It is natural to exploit the learned

attention parameters
˜B to fulfill the interpretation requirements.

While the burden of using the raw attention
˜B to decipher the

importance of the nodes and timestamps comes from the high-

dimensionality of
˜B ∈ RT×n×C . To accommodate this issue, we

adopt the aggregation function faдд : Ra×b×c → Rq (q ∈ {a,b, c})

to aggregate along two of three dimensions of
˜B, e.g., faдд(˜B) =[ ∑

j
∑
k B̃(1, j,k )∑

i
∑
j
∑
k B̃(i, j,k )

, . . . ,
∑
j
∑
k B̃(a, j,k)∑

i
∑
j
∑
k B̃(i, j,k )

]
. In this way, we can esti-

mate the attention distributions of node, training window length

and time by compressing
˜B into vector representations.

3 EXPERIMENTAL RESULTS
In this section, we evaluate our proposed STANE framework regard-

ing effectiveness and interpretability on six real dynamic networks.

3.1 Experiment Setup
Datasets: The statistics and brief information of all datasets used

in our experiments are summarized in Table 1.

Table 1: Statistics of datasets

Name #Nodes|#Edges|#Classes|#T Description

DBLP 1909 | 8237 | 4 | 3 DBLP citation network [11]

FB 1899 | 61734 | - | 5 Facebook social network [6]

SO 3262 | 19926 | 2 | 5 Stack Overflow comment network [11]

IAR 6809 | 52050 | - | 5 communication network [6]

WIKI 7118 | 107071 | 2 | 6 who-votes-on-whom network [6]

IAE 10106 | 50632 | - | 6 bipartite graph of people [6]

Comparison Methods: Our proposed method is compared to

five baselines: DeepWalk[5], WYS[1], TNE[16], Traid[15] and
HTNE[17]. In particular, DeepWalk and WYS are static network

embedding methods, while TNE, Traid and HTNE are recent net-

work embedding approaches that designed for dynamic graphs.

3.2 Effectiveness Analysis
We evaluate the effectiveness of the STANE on the task of link

prediction and node classification, by comparing with five baseline

methods across six datasets.

Link Prediction. The experiment of link prediction is designed

to predict the probability of whether two nodes are connected by an

edge at the last timestamp T , as the last snapshot G(T )
aggregates

all the previous information. Besides, a fraction (50%) of edges in

G(T )
is removed, which ends with two set E

(T )
train and E

(T )
test . Then

node embeddings are learned from the remaining edges (i.e., E
(T )
train

and E(t ), t = 1, . . . ,T − 1). With the same number of non-existent

edges sampled from G(T )
, we calculate ROC AUC to report the

performance of eachmethod, which is shown in Table 2.We observe

that STANE consistently outperform all the five baseline methods

across all the six datasets.

Table 2: Link prediction results.

Datasets
Methods DBLP FB SO IAR WIKI IAE

DeepWalk 0.670 0.656 0.579 0.875 0.794 0.555

WYS 0.841 0.952 0.844 0.954 0.963 0.843

TNE 0.610 0.708 0.736 0.881 0.719 0.656

Triad 0.522 0.601 0.575 0.762 0.502 0.515

HTNE 0.844 0.913 0.607 0.911 0.844 0.792

STANE 0.882 0.966 0.888 0.997 0.982 0.898

Node Classification. This task to predict the label of the node

based on its embedding. We train a logistic classifier with a fraction

(50%) of graph nodes and predict the labels of the rest of nodes



based on the learned node embeddings. Note that the experiments

are performed on the three datasets (i.e., DBLP, SO, WIKI) with

label information. In Table 3, we report the micro-F1 to measure

the performance of the methods. In general, STANE outperforms

all the baseline methods in most cases.

Table 3: Node classification results.

Methods
Datasets DeepWalk WYS TNE Triad HTNE STANE

DBLP 0.718 0.727 0.612 0.511 0.737 0.757
SO 0.610 0.614 0.592 0.591 0.632 0.617

WIKI 0.701 0.699 0.690 0.553 0.715 0.718

3.3 Interpretability Analysis
Here, we investigate the interpretability of STANE on DBLP dataset.

The distribution of the context attention and time attention is shown

in Fig. 3, where the largest training window length is 5 and the total

timestamps are 3. In summary, we have the following observations:

(1) the last snapshot G(3)
is more important than the previous two

snapshots, which is easy to follow as the last snapshot aggregates all

the nodes and edges in the previous timestamps; (2) the high-order

proximity plays the most important role in presenting the observed

time-evolving networks. To further verify the above observations,

we test STANE based on E[˜D; ˜Q] which is estimated solely from

one of the three snapshots, respectively. The evaluation result of

each snapshot is [0.527,0.540,0.848] (ROC AUC for the link predic-

tion) and [0.501,0.612,0.720] (micro-F1 for the node classification),

respectively. This suggests that among the three snapshots, G(3)

is the most important one, which is consistent with the observed

distribution of attention weights.
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Figure 3: Attention weights over time and walk length (k).

4 RELATEDWORKS
There is a growing interest in encoding the temporal patterns of

time-evolving graphs into embedding representations. For exam-

ple, TNE [16] generates the embedding based on the non-negative

matrix factorization of a series of time-evolving adjacency matrices

with the smoothness constraint; Traid [15] focuses on modeling

how to derive a closed triad from an open triad; [4] proposes to

generate temporal random walks in increasing order of edge times

to embed the continuous-time network in a unique representa-

tion; HTNE [17] studies on the neighborhood formation sequence

through Hawkes process to capture the influence of historical neigh-

bors on the current neighbors; There is also another line of works

based on graph convolution for attributed graph sequence, most of

which are applied for traffic prediction [10]. However, it is still an

open question that how to incorporate and balance the extracted

network context information from the spatial domain (e.g., the net-

work structures) and the temporal domain (e.g., the evolution of

the network over time). In this paper, we develop a unified atten-

tion mechanism to jointly explore the spatial and temporal context

from the observed time-evolving networks with a learned impor-

tance factor in terms of each nodev , training window length k , and
timestamps t .

5 CONCLUSION
In this paper, we propose a temporal network embedding (STANE)
framework. By parameterizing the co-occurrence matrix with train-

able parameters to balance spatial and temporal context informa-

tion, STANE successfully encodes structural and temporal patterns

within the time-evolving graphs into node embeddings. In addi-

tion, we present that through detailed analysis on the attention

parameters, we could achieve a better understanding of the node

embeddings and the evolution of the temporal networks. Extensive

experiments on several real-world networks demonstrate the effec-

tiveness of the proposed method. In the future, it is of interest to

introduce structured attention and to study the scalability of the

proposed method via a batched training scheme.
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