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ABSTRACT2

Characterizing and modeling the distribution of a particular family of graphs are essential for3
studying real-world networks in a broad spectrum of disciplines, ranging from market-basket4
analysis to biology, from social science to neuroscience. However, it is unclear how to model5
the complex graph organizations and learn generative models from an observed graph. The6
key challenges come from the non-unique, high-dimensional nature of graphs, as well as the7
graph community structures at different granularity levels. In this paper, we propose a multi-scale8
graph generative model named Misc-GAN, which models the underlying distribution of the graph9
structures at different levels of granularity, and then ‘transfers’ such hierarchical distribution from10
the graphs in the domain of interest to a unique graph representation. The empirical results on11
both synthetic and real data sets demonstrate the effectiveness of the proposed framework.12

1 INTRODUCTION

Graph is a fundamental tool for depicting and modeling complex systems in various domains, ranging from13
market-basket analysis to biology, from social science to neuroscience. Characterizing and modeling the14
distribution of a particular family of graphs are essential in many real-world applications. For example, in15
financial fraud detection, generative models are adopted to produce synthetic financial networks, when the16
empirical studies need to be conducted by the third parties without divulging the private information Fich17
and Shivdasani (2007); in drug discovery and development, sampling from the generic model can facilitate18
the discovery of new medicines which equip with new configurations while preserving the property of the19
existing medicines Gómez-Bombarelli et al. (2016); in social network analysis, the distributions on graphs20
can be used to discover new graph structures and generate the evolving graphs You et al. (2018a).21

Generative models of graphs have been well studied for decades. Traditional graph generative22
models Erdös and Rényi (1959); Albert and Barabási (2002); Leskovec et al. (2010) are usually built23
upon some structural premises, e.g., heavy tails for the nodes’ degree distribution, small diameters, and24
densification in graph evolution. More recent studies on the deep generative models, e.g., Goodfellow et al.25
(2014); Kingma and Welling (2013), reveal a surge of research interest in modeling graphs. For example,26
Liu et al. (2017) proposes a deep model for learning characteristic topological features from the given27
graphs via generative adversarial networks (GAN); You et al. (2018a) uses a deep autoregressive model to28
efficiently learn the complex joint probability of all the nodes and edges from an observed set of graphs.29
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However, real-world networks typically exhibit hierarchical distribution over graph communities, while30
the existing graph generative models are either restricted to certain structural premises Erdös and Rényi31
(1959); Albert and Barabási (2002); Leskovec et al. (2010) or unable to capture the hierarchical community32
structures over the graphs Grover et al. (2018); Li et al. (2018); Simonovsky and Komodakis (2018).33
Developing graph generative models that can capture not only the low connectivity patterns at the level of34
individual nodes and edges, but also the higher-order connectivity patterns, i.e., the hierarchical community35
structures in the given graphs, will significantly improve the fidelity of graph generative models and help36
reveal more intriguing patterns in various domains. For instance, given an author-collaborative network,37
research groups of well-established and closely collaborated researchers could be identified by the existing38
graph clustering methods in the lower-level granularity. While, from a coarser level, we may find these39
research groups constitute large-scale communities which correspond to various research topics or subjects.40
Moreover, different from image data or text data, a graph with n nodes can be represented by n! equivalent41
adjacency matrices with node permutation, which increases the difficulty of training the generative model42
in the first place.43

In this paper, we aim to address the following two open questions: (Q1) How to capture the community44
structures at different levels of granularity and generate a unique graph representation that preserves such45
hierarchical graph structures? (Q2) How to alleviate the high complexity of modeling the numerous46
representations of graphs and ensure the fidelity of the proposed graph generative model? To address47
the preceding challenges, we propose a generic generative model of graphs (Misc-GAN) to learn the48
underlying distribution of graph structures at different levels of granularity. In particular, our proposed49
framework consists of three key steps. First, it coarsens the input graph into the structured representations50
of different levels (i.e., granularity). Then, inspired by the success of deep generative models in image51
translation Goodfellow et al. (2014); Kingma and Welling (2013), a cycle-consistent adversarial network52
(CycleGAN) Zhu et al. (2017) is adopted to learn the graph structure distribution and generate a synthetic53
coarse graph at each granularity level. At last, the Misc-GAN framework defines a reconstruction process,54
which reconstructs the graphs at each granularity level and aggregates them into a unique representation.55

The main contributions of this paper can be summarized from three aspects:56

1.A novel problem setting which aims to model the complex distribution of community structures at57
different granularity levels in the real networks.58

2.A graph generative model which is capable of modeling hierarchical topology features from single or a59
set of observed graphs and produce high-quality domain specific synthetic graphs.60

3.Extensive experiments and case-studies on both real and synthetic data sets, showing the effectiveness of61
the proposed framework Misc-GAN.62

The rest of this paper is organized as follows. We briefly review some related work in Section 2,63
formally define the multi-scale domain adaptive graph generation problem in Section 3 and present the64
formulation and implementation of our proposed Misc-GAN framework in Section 4. The empirical studies65
are conducted in Section 5. Finally, we conclude this paper in Section 6.66

2 RELATED WORK

In this section, we briefly review the related studies on the generative adversarial network, multi-scale67
analysis of graph and cycle consistency.68
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2.1 Generative Adversarial Network69

In Goodfellow et al. (2014), the authors propose the generative adversarial networks (GANs) to create a70
generative model and a discriminative model and compete them with each other in the adversarial setting.71
The authors denote Pz(z) to be the prior of the input noise variables z and G(z; θg) to represent a mapping72
to data space, where G is a differentiable function represented by a multi-layer perceptron with parameters73
θg. G(z) maps the noise variables to data space and it aims to generate samples as genuine as possible. The74
authors also define D(x; θd) to be another multi-layer perceptron or discriminator distinguishing whether75
the given samples are drawn from the real-world data set or from the fake data set. D(x) is the probability76
of x coming from the real-world data set rather than the generated data set. In this min-max game, the77
discriminator D aims to maximize the probability of assigning the correct label to both the real samples and78
the faked samples generated by the generator G, while the generator G aims to minimize the probability79
that the discriminator D successfully distinguishes the faked samples from the real samples. The objective80
of this min-max game is written as:81

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (1)

In this paper, generative adversarial network is the basis to transfer graphs from one domain to another82
domain, and meanwhile, the local valuable structures of graphs are preserved.83

2.2 Multi-Scale Analysis of Graphs84

Multi-scale analysis of graphs has been studied for years in machine learning with wide applications in85
numerous areas, such as simplification and compression of graphs Safro and Temkin (2011); Cour et al.86
(2005), dynamics of graphs at different resolutions Lee and Maggioni (2011); Gao et al. (2016), graph87
visualization Stolte et al. (2003), recommendation systems Gou et al. (2011) and so on. The common88
assumption of multi-scale analysis is that the given data in a high dimensional space has a much lower89
dimensional intrinsic geometry. Take the document text as an example, the dependencies among words90
constrain the distribution of word frequency in a lower dimensional space. Diffusion wavelets Coifman91
and Maggioni (2006) is one common method used in multi-scale analysis which allows us to construct92
functions on the graph for statistical learning tasks by producing coarser and coarser graphs at different93
resolution levels. In this paper, we adopt the concept of multi-scale analysis to capture the local structure of94
graphs at different resolution levels and then reconstruct the graph while preserving these important local95
structures.96

2.3 Cycle Consistency97

The concept of cycle consistency has been applied to various computer vision problems, including image98
matching Huang and Guibas (2013); Zhou et al. (2015), co-segmentation Wang et al. (2013, 2014), style99
transfer Zhu et al. (2017); Chang et al. (2018), and structure from motion Zach et al. (2010); Wilson and100
Snavely (2013). The idea of cycle consistency constrain is utilized as a regularizer in these algorithms,101
such as cycle consistency loss used in Zhou et al. (2016); Godard et al. (2017) to push the mappings to be102
as consistent with each other as possible in the supervised convolution neural network training. Zhu et al.103
(2017) proposes the Cycle-Consistent generative adversarial network to learn two mappings or generators104
G : X → Y and F : Y → X between two domains X and Y . The authors introduce two adversarial105
discriminators DX and DY , where DX aims to distinguish the images x drawn from the real data set X106
from the fake images generated by F (Y ); similarly, DY aims to distinguish the images y drawn from data107

Frontiers 3



D. Zhou et al.

set Y from the fake images generated by G(X). In this paper, we apply this concept to find the graph108
transfer mappings between domain X and domain Y , such that the transferred graph from domain Y to109
domain X is sufficiently similar to the graph in domain X .110

3 PROBLEM DEFINITION

In this section, we introduce the notation and problem definition of this paper. The main symbols and111
notations are summarized in Table 1. We use ordinary lowercase letters to denote scalars, boldface lowercase112
letters to denote vectors, and boldface uppercase letters to denote matrices and tensors. Moreover, the113
elements (e.g., entries, fibers and slices) in a matrix or a tensor are represented in the same way as the114
Matlab, e.g., M(i, j) is the element at the ith row and jth column of the matrix M , and M(i, :) is the ith115
row of M, etc.116

Table 1. Symbols and Notations.
Symbol Definition and Description

Gs, Gt the source domain graph and the target domain graph
G̃t the generated graph of the target domain
As,At, Ãt the adjacency matrices of Gs, Gt and G̃t

Vs, Vt the sets of nodes in Gs and Gt

Es, Et the sets of edges in Gs and Gt

G
(l)
s , G

(l)
t the induced l-th granularity coarse graphs of Gs and Gt

ns, nt number of nodes in Gs and Gt

ms,mt number of edges in Gs and Gt

L number of granularity levels

F (l),B(l) the generators in the forward and backward GAN at the l-th layer

D
(l)
F , D

(l)
B the discriminators in the forward and backward GAN at the l-th layer

The goal of this paper is to generate a synthetic target domain graph G̃t, by learning mapping functions117
between the source domain graph Gs and the target domain graph Gt. Without loss of generality, in this118
paper, we assume that there exists a universal structure distribution pdata, which defines the structural role119
of each entity, i.e., node, edge, and subgraph, of the observed graphs. Many existing graph generative120
models Bojchevski et al. (2018); You et al. (2018b) are designed to learn the structure distribution of G at a121
single scale, and therefore they might overlook some intriguing patterns in the underlying networks, e.g.,122
the multi-level cluster-within-cluster structures Ravasz and Barabási (2003). Fig. 1 presents an illustrative123
example of the hierarchical structures in collaboration networks. In particular, the graph exhibits four-level124
hierarchies including (L1) all the entities in the collaboration network, (L2) early-stage researchers, (L3)125
mid-career researchers and (L4) senior researchers. It is unclear how to characterize such hierarchical126
structures and generate domain-specific synthetic graphs. Moreover, the generative model needs to be127
scalable when modeling large-scale networks that have exponentially many representations. With the above128
notations and objects, we formally define our problem as follows:129

PROBLEM 1. Multi-Level Structure-Preserving Graph Generation130
Input: (i) a target domain graph Gt = (Vt, Et), (ii) a source domain graph Gs = (Vs, Es), (iii) the number131
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Figure 1. An illustration example. (a) presents a visualization of the collaboration network Grandjean
(2016). (b) shows the hierarchical structure of the research communities, from early-stage researchers to
mid-career researchers and senior researchers.

of granularity levels L.132
Output: (i) a mapping function F that can translate any source-domain graphs to the corresponding target133
domain graphs while preserving the hierarchical structure distribution over the observed target graph Gt,134
(ii) a generated synthetic target domain graph G̃t.135

4 PROPOSED FRAMEWORK

In this section, we present our multi-scale graph generative model Misc-GAN, which simultaneously136
characterize and model the structural distribution of the observed graphs at multiple scales. In particular,137
we first formulate our framework into a generic optimization problem, and then discuss the details on three138
modules, i.e., multi-scale graph representation module, graph generation module, and graph reconstruction139
module, in our proposed framework 2.140

4.1 A Generic Joint Learning Framework141

To address the proposed problem of multi-level structure-preserving graph generation, our joint learning142
framework should primarily focus on the following aspects. First (problem setting), the existing methods143
are mainly restricted to a single granularity level of graph structures, which might increase the possibility144
of overlooking the hierarchical community structures in the observed graphs. Thus, the graph generation145
model should be able to capture the community structures at multiple levels of granularity and generate a146
unique graph representation. Second (graph generation performance), it is unclear how to alleviate the147
high complexity and ensure the fidelity of the graph generation. This is crucial especially if the observed148
graphs are noisy and large-scale. With these objectives in mind, we propose a generic graph generation149
framework as an optimization problem with the following objective function:150
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L =Lms + LF + LB + Lcyc

=KL(
L∑
l=1

w(l)F (l)(G
(l)
s ) + b,Gt)︸ ︷︷ ︸

Lms: multi-scale reconstruction loss

+α
L∑
l=1

E
G

(l)
t ∼Pdata(G

(l)
t )

[logD
(l)
F (G

(l)
t )] + E

G
(l)
s ∼Pdata(G

(l)
s )

[log(1−D(l)
F

(l)(F(G(l)
s )))]︸ ︷︷ ︸

LF : forward adversarial loss

+β
L∑
l=1

E
G

(l)
s ∼Pdata(G

(l)
s )

[logD
(l)
B (G

(l)
s )] + E

G
(l)
t ∼Pdata(G

(l)
t )

[log(1−D(l)
B (B(l)(G(l)

t )))]︸ ︷︷ ︸
LB: backward adversarial loss

+γ
L∑
l=1

E
G

(l)
s ∼Pdata(G

(l)
s )

[‖B(l)(F (l)(G
(l)
s ))−G(l)

s ‖1] + E
G

(l)
t ∼Pdata(G

(l)
t )

[‖F (l)(B(l)(G(l)
t ))−G(l)

t )‖1]︸ ︷︷ ︸
Lcyc: cycle consistency loss

where the objective consists of four terms. The first term Lms is the multi-scale reconstruction loss, which151
is designed to minimize the Kullback-Leibler (KL) divergence Moreno et al. (2004) between the target152

graph Gt and the generated graph G̃t, i.e., G̃t =
∑L

l=1w
(l)F(G(l)

s ) + b. We generalize the conventional153
KL divergence to our problem setting to compare two graphs as follows154

KL(G̃t, Gt) =
n∑

i=1

n∑
j=1

(At(i, j) + ε) log
At(i, j) + ε

Ãt(i, j) + ε
(2)

where At and Ãt are the adjacency metrics of G̃t and Gt, ε is a constant with a small value to avoid log(0)155
or division by 0. The second term LF learns a forward mapping function F from the source graph Gs to Gt.156

The discriminator D(l)
F aims to figure out whether the given graph is a real graph from the target domain or157

a fake graph generated by the generator F which is transferred from the source domain graph. Similar to158
the second term, the third term LB defines a backward adversarial loss, which aims to learn the mapping159
function from the target domain to the source domain. The fourth term Lcyc is the cycle consistency loss,160
which is introduced to further reduce the space of possible mapping function. We argue that learning such161
bi-directional mapping can largely prevent the learned mapping functions from contradicting each other.162
At last, we also introduce three positive constants, i.e., α, β, γ, to balance the impact of these four terms in163
the overall objective function. Follow the min-max scheme of GAN, we aim to solve:164

F∗(l), w∗(l), b∗ = arg min
F(l),B(l),w(l),b

max
D

(l)
F ,D

(l)
B

L, l = 1, . . . , L (3)
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4.2 Network Architecture165

Here, we present our Misc-GAN framework (Fig. 2). Overall, our framework can be separated into166
three stages (i.e., modules). In the first stage, our framework takes the input graphs Gt and explores167
the hierarchical structures by constructing the coarse graphs in L levels of granularity (w.r.t. L layers in168
Fig. 2). In the second stage, our framework trains an independent graph generative model and produces169
the multi-scale coarse graph in each layer. In the third stage, our framework autonomously combines the170
outputs from the previous stage to construct the synthetic graph G̃t that preserves the hierarchical topology171
features of the given graphs Gt.172

 

Figure 2. The proposed Misc-GAN framework.

Multi-Scale Graph Representation Module. In this module, we explore the hierarchical cluster-within-173
cluster structures in order to better characterize the given graph Gt, by using the multi-scale approaches,174
e.g., hierarchical clustering Johnson (1967), algebraic multigrid (AMG) Ruge and Stüben (1987). In175
particular, given a symmetric matrix At, the multi-scale approaches recursively construct a multi-scale176
hierarchy of increasingly coarser graphs as follows177

P (l−1)′ . . .P (1)′AtP
(1) . . .P (l−1) = A

(l)
t (4)

where l = 1, . . . , L, P (1), . . . ,P (l−1) are the coarsening operators , and Al is the coarse graph at the l-th178
layer. Based on Eq. 4, we construct a set of coarse graphs with multiple scales from the target domain179
graph Gt. These coarse graphs will be fed into the following graph generative module in order to learn the180
hierarchical structures of Gt.181

Graph Generation Module. It is challenging to learn the underlying structure distribution pdata of the182
target domain graph Gt, as the graph with n nodes can be represented by n! equivalent adjacency matrices183
with node permutations You et al. (2018a). Some recent works have been proposed to tackle this issue.184
For example, Simonovsky and Komodakis (2018) proposes an approximate graph matching scheme that185
requires O(n4) operations in the worst case; You et al. (2018a) develops a tree-structure node ordering186
scheme, which is based on breadth-first-search (BFS) to reduce the computational complexity. However,187
these methods may either suffer form the intractable time complexity, or not well preserve the hierarchical188
structures of the given networks.189

Here, we propose a multi-scale graph generation scheme, which models the complex distribution of graph190
structures over a pyramid of coarse graphs rather than the original graphs. The intuitions are in the following191
two aspects: (1) directly training from the coarse graphs facilitates the learning process of the generative192
model, as the coarse graphs serve as the abstractions of the original graphs; (2) this scheme provides the193
flexibility for the users to decide the granularity-level of the coarse graphs to be learned, which could be194
attractive when we need to model the large-scale networks. To be more specific, the graph generation195
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module at each layer (shown in Fig. 2) can be separated into three steps: First, we partition the graph into196
multiple non-overlapping subgraphs using state-of-the-art graph clustering methods Ester et al. (1996);197
Schaeffer (2007). Then, based on the detected communities, we generate a set of block diagonal matrices by198
shuffling community blocks over the diagonals, which are used to characterize the community-level graph199
structures. At last, the generated block diagonal matrices are fed into an independent graph generative200
model to generate the synthetic coarse graphs at each layer.201

Graph Reconstruction Module. In this stage, we first adopt the multi-scale approaches to reconstruct202
the graph from coarse to fine as follows203

R(1)′ . . .R(l−1)′A
(l)
t R(l−1) . . .R1 = Ã

(l)
t (5)

where l = 1, . . . , L, R(1), . . . ,R(l−1) are the reconstruction operations, and Ã
(l)
t is the reconstructed204

adjacency matrix from the l-th layer. After that, all the reconstructed graphs are in the same scale as the205

target graphGt, which could be aggregated into a unique one by a linear function, Ãt =
∑L

l=1w
(l)Ã

(l)
t +b,206

where w(1), . . . , w(L) are the non-negative weights, and b is a bias.207

4.3 Training Details208

We apply the technique of cycleGAN to transfer graph from one domain to another domain. Different209
from the density property of images, the adjacency matrix for a graph is much sparser. In our algorithm,210
two convolution layers are used to capture the hierarchical structure information of the graph. Because211
the adjacency matrix of a graph is sparser than the dense matrix of an image, we set the size of stride to212
be 4, the size of kernels to be 4 × 4 matrices, and the number of kernels to be 32 for each convolution213
layer. Then, k iterations of ResNet He et al. (2016) are applied to accelerate the convergence. Finally, two214
deconvolution layers are used to reconstruct the adjacency matrix with similar settings used in convolution215
layers.216

Second, following the strategy mentioned in Shrivastava et al. (2017); Zhu et al. (2017), we update two217

discriminators with the history of the generated graph Ã
(l)
t in the l-th layer to reduce the vibration of the218

model. For all the experiments, we set the training iterations to be 250. Adam solver Kingma and Ba (2014)219
with a batch size of 1 is used to minimize the loss function, and all networks are trained with a learning220
rate of 0.0002 in the tensorflow deep learning framework.221

5 EXPERIMENT

In this section, we demonstrate the performance of our proposed Misc-GAN framework on real networks.222
Moreover, we present a case study to illustrate the effectiveness of Misc-GAN in learning the topological223
features at different levels of granularity.224

5.1 Experiment Setup225

Data sets: We evaluate our proposed algorithm on seven real-world networks from the Stanford Network226
Analysis Project (SNAP) Leskovec and Krevl (2015). The statistics of data sets are summarized in Table 2.227
In particular, Email is a communication network, where an edge exists if one person sends at least one email228
to another person; Facebook is a social network, where each edge represents a social connection between229
the users in Facebook; Wiki is a voting network, which is used by Wikipedia to elect administrators among230
the huge contributors; P2P is a file-sharing network, where each node represents a host and each edge231
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Network Type Nodes Edges
Email Directed 1,005 25,571

Facebook Undirected 4,039 88,234
Wiki Directed 8,292 14,547,910
P2P Directed 10,876 39,994
Gnu Directed 6,301 20,777

Bitcoin Directed 5,881 35,592
CA Undirected 5,242 14,496

Table 2. Statistics of the network data sets.

represents a connection between hosts; GNU is another Gnutella peer-to-peer file sharing network, which is232
similar to P2P network; Bitcoin is a who-trusts-whom network that covers the bitcoin trading information233
on the Bitcoin OTC platform, where each node represents a user and each edge represents the trustfulness234
between two users; CA is a collaboration network from arXiv, where each node represents an author and235
each edge represents the collaborations between authors. For different weights in a graph, i.e., Bitcoin236
graph, we convert the values of edges to binary values in order to feed them to our model.237

Comparison Methods: We compare Misc-GAN with two random graph models, i.e., Erdös-Rényi (E-R)238
model Erdös and Rényi (1959) and Barabási-Albert (B-A) model Albert and Barabási (2002), and one239
recent deep graph generative model, i.e., GAE Kipf and Welling (2016). All the graph statistics are outlined240
in Table 2. In our setting, the graphs in Table 2 are target domain graphs, and the source domain graphs241
are generated under a random normal distribution with the same numbers of nodes and edges as the target242
domain graphs.243

Repeatability: All the data sets are publicly available. We will release the code of our algorithms through244
the authors’ website after the paper is published. The experiments are performed on a Windows machine245
with four 3.5GHz Intel Cores and 256GB RAM.246

5.2 Quantitative Evaluation247

The comparison results in terms of effectiveness across a diverse set of real networks are shown in Fig. 3.248
In particular, we present the results regarding the following metrics: (1) AD: the average degree of all nodes249
in a graph; (2) LCC: the size of the largest connected component of the graph; (3) EPL: the exponent of the250
power law distribution of the graph; (4) GC: the Gini coefficient of the degree distribution of the graph; (5)251
KL: the symmetric Kullback-Leibler (KL) divergence Moreno et al. (2004) between the local clustering252
coefficient distributions of the original graphs and the generated graphs; (6) Graph Kernel: the similarity253
between the original graph and the generated one by using the random-walk based graph kernel Kang et al.254
(2012). From these figures, the x-axis of each figure represents a data set, and the y-axis is the value of255
metrics. From Fig. 3 (a) to Fig. 3 (d), we mainly compare various graph statistics between the original256
graph and the generated ones using baseline methods. If the value of the metric of the generated graph is257
close to that of the original graph, it means the generated graph is much more similar to the original graph.258
We observe that the AD of our proposed algorithm is almost identical to the AD of the original graph for259
all data sets; for the other three metrics, our proposed algorithm also outperforms the others in most cases.260
In Fig. 3 (e) and Fig. 3 (f), we present the divergence and similarity score between the original graphs and261
the generated graphs. Note that, for presentation purposes, all the results in Fig. 3 (e) and Fig. 3 (f) are262
presented using a negative log function, i.e., f(x) = − log(x). In general, we observe that (1) our proposed263
Misc-GAN outperforms the comparison methods across most of the datasets and evaluation metrics in most264
cases. For example, in the Email data, Misc-GAN is 66% smaller on the clustering coefficient distribution265
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(a) AD (More similar to original graph is better) (b) LCC (More similar to original graph is better)

  

(c) EPL (More similar to original graph is better) (d) GC (More similar to original graph is better)

  

(a) KL (Higher is better) (b) Graph Kernel (Lower is better)

Figure 3. Effectiveness analysis.

evaluation; (2) our proposed Misc-GAN framework better preserves the local topological features (e.g., the266
largest connected component and local clustering coefficient) and the global features (e.g., mean degree,267
the power law coefficients of the degree distribution of graphs) than other deep generative models (e.g.,268
GAE). It is because our method explores the network structures at multiple resolutions and automatically269
learns the weights regarding the importance of topological features at different levels, while the existing270
deep generative models may fail to model such fine-grained topological features.271
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Original
Graph

Music-
GAN

GAE

NetGAN

L1 (n = 1005) L3 (n = 174) L4 (n = 52) L5 (n = 28)

Figure 4. Graph reconstruction at multiple scales.

5.3 A Case Study with respect to the Impact of Multi-Scale Analysis272

A simple but intuitive way to evaluate the generated graphs is to visualize the network layout in a273
two-dimensional space. In Fig. 4, we compare the multi-scale network representations of the original graph274
(i.e., Email) and the generated graphs. In particular, we select the deep generative model GAE and NetGAN275
as our baseline methods and construct coarse graphs at four different scales based on Eq. 4. In general,276
we find that (1) our framework well preserves the graph structures at multiple levels of granularity; (2)277
NetGAN only preserves the lower-level connectivity patterns (e.g., clusters within a loop pattern) in Layer278
1, but fails in capturing the higher-level connectivity patterns (e.g., the cluster of super-nodes) in Layer279
3, Layer 4 and Layer 5. The reason for the preceding phenomenon is that NetGAN is trained at a single280
level (i.e., a single granularity of nodes), which results in the coarse reconstruction of high-level network281
structures. GAE also has the similar problem due to the failure to capture the higher-level connectivity282
patterns(i.e., in Layer 5).283

6 CONCLUSION

We propose a multi-scale generative model named Misc-GAN for graph-structured data, which explores284
the network structures at multiple resolutions and automatically generates a unique graph representation285
that preserves such fine-grained topological features. The empirical studies show that Misc-GAN achieves286
significantly better performance compared to the state-of-the-art models on real networks. However, various287
challenges remain in this problem, such as how to make the deep generative model scale to massive graphs,288
and how to generate the domain-specific graph with complex connectivity patterns (e.g., modeling the289
online transaction networks with money laundering patterns)?290
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