Addition of Two Angular Momenta in the Matrix Representation

David Chen

October 7, 2012

1 Addition of two angular momenta

Given two angular momentum operators \mathbf{L}_{1} and \mathbf{L}_{2}, and the basis sets $\left\{\left|j_{1} m_{1}\right\rangle\right\}$ and $\left\{\left|j_{2} m_{2}\right\rangle\right\}$ that diagonalize \mathbf{L}_{1}^{2} and \mathbf{L}_{2}^{2} respectively, we want to find a new basis that diagonalizes \mathbf{L}^{2}, where $\mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{2}$. \mathbf{L} is simply the addition of two angular momenta. However, the notation could be misleading because in general \mathbf{L}_{1} and \mathbf{L}_{2} act on different vector spaces ${ }^{1}$. To do the sum, we need to use the vector space spanned by all the possible combinations of $\left|j_{1} m_{1}\right\rangle$ and $\left|j_{2} m_{2}\right\rangle$, i.e. $\left.\left\{\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle|\quad \forall| j_{1} m_{1}\right\rangle, \forall\left|j_{2} m_{2}\right\rangle\right\}$, where the symbol \otimes is called the tensor product or external product [1]. Generally speaking, if T and S are tensors, then[2]

$$
\begin{equation*}
(S \otimes T)_{j_{1} \ldots j_{k} j_{k+1} \ldots j_{k+n}}^{i_{1} \cdot i_{i} i_{1+1} \ldots i_{1+m}}=S_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{i}} T_{j_{k+1} \ldots j_{n}}^{i_{1+1}} \tag{1}
\end{equation*}
$$

\mathbf{L}_{1} and \mathbf{L}_{2} can be extended to this tensor product space as $\mathbf{L}_{1} \otimes \mathbb{1}_{2}$ and $\mathbb{1}_{1} \otimes \mathbf{L}_{2}$, respectively. It follows that the total angular momentum is 2^{2}

$$
\begin{equation*}
\mathbf{L}=\mathbf{L}_{1} \otimes \mathbb{1}_{2}+\mathbb{1}_{1} \otimes \mathbf{L}_{2} \tag{2}
\end{equation*}
$$

1.1 Tensor product of matrices

A particular useful representation of matrix tensor product is the so-called Kronecker product [3]. Given a matrix A of $m \times n$ and a matrix B of $p \times q$, the Kronecker product

[^0]is a matrix of $m p \times n q$ given by
\[

A \otimes B=\left($$
\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \tag{3}\\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}
$$\right)
\]

2 Example: addition of two $1 / 2$ spins

Let's calculate $\mathbf{L}^{2}=\left(\mathbf{L}_{1} \oplus \mathbf{L}_{2}\right)^{2}$ for two $j=1 / 2$ particles. For each particle, \mathbf{L}_{i}^{2} and $L_{i z}$ where $i=1,2$ in the $|j m\rangle=|1 / 2 \pm 1 / 2\rangle$ basis are

$$
\mathbf{L}_{i}^{2}=\frac{3}{4} \hbar^{2}\left(\begin{array}{ll}
1 & 0 \tag{4}\\
0 & 1
\end{array}\right) \quad \text { and } \quad L_{i z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Because both operators commute, they share a common basis

$$
\begin{equation*}
\left\{\binom{1}{0},\binom{0}{1}\right\} \tag{5}
\end{equation*}
$$

First, we find a basis for the tensor product space

$$
\begin{align*}
& \binom{1}{0}_{1} \otimes\binom{1}{0}_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \tag{6}\\
& \binom{1}{0}_{1} \otimes\binom{0}{1}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \tag{7}\\
& \binom{0}{1}_{1} \otimes\binom{1}{0}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \tag{8}\\
& \binom{0}{1}_{1} \otimes\binom{1}{0}_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \tag{9}
\end{align*}
$$

In this basis, the operator \mathbf{L}_{1} is

$$
\begin{align*}
\mathbf{L}_{1} \otimes \mathbb{1} & =\frac{\hbar}{2}\left(\sigma_{x} \hat{x}+\sigma_{y} \hat{y}+\sigma_{z} \hat{z}\right) \otimes \mathbb{1} \tag{10}\\
& =\frac{\hbar}{2}\left(\sigma_{x} \otimes \mathbb{1} \hat{x}+\sigma_{y} \otimes \mathbb{1} \hat{y}+\sigma_{z} \otimes \mathbb{1} \hat{z}\right) \tag{11}
\end{align*}
$$

where σ_{i} are the Pauli matrices. In the same way, the operator \mathbf{L}_{2} is

$$
\begin{align*}
\mathbb{1} \otimes \mathbf{L}_{2} & =\frac{\hbar}{2} \mathbb{1} \otimes\left(\sigma_{x} \hat{x}+\sigma_{y} \hat{y}+\sigma_{z} \hat{z}\right) \tag{12}\\
& =\frac{\hbar}{2}\left(\mathbb{1} \otimes \sigma_{x} \hat{x}+\mathbb{1} \otimes \sigma_{y} \hat{y}+\mathbb{1} \otimes \sigma_{z} \hat{z}\right) \tag{13}
\end{align*}
$$

Therefore, the total angular momentum is \square^{3}

$$
\begin{equation*}
\mathbf{L}=\frac{\hbar^{2}}{4}\left(\sigma_{x} \otimes \sigma_{x} \hat{x}+\sigma_{y} \otimes \sigma_{y} \hat{y}+\sigma_{z} \otimes \sigma_{z} \hat{z}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
\sigma_{x} \otimes \sigma_{x}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \sigma_{y} \otimes \sigma_{y}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \tag{15}\\
\sigma_{z} \otimes \sigma_{z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{16}
\end{gather*}
$$

Finally

$$
\mathbf{L}^{2}=\hbar^{2}\left(\begin{array}{llll}
2 & 0 & 0 & 0 \tag{17}\\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

[^1]
2.1 Some properties of \mathbf{L}^{2}

Now let's find the eigenvalue of \mathbf{L}^{2} and see that we get the triplets and singlet states. The diagonalization is straightforward, and the eigenvalues are $\{2,2,2,0\}$, with the respective eigenvectors

$$
\left\{\left(\begin{array}{l}
1 \tag{18}\\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)\right\}
$$

The operators $\mathbf{L}^{2}, L_{z}, L_{1}^{2}, L_{2}^{2}$ commute among themselves, but \mathbf{L}^{2} does not commute with $L_{1 z}$ or $L_{2 z}$

References

[1] mathworld.wolfram.com, tensor product
[2] www.wikipedia.com, tensor product
[3] mathworld.wolfram.com, Kronecker product

[^0]: ${ }^{1}$ In other words, \mathbf{L}_{1} and \mathbf{L}_{2} belong to different dual spaces
 ${ }^{2}$ Sometimes this is denoted as $\mathbf{L}=\mathbf{L}_{1} \oplus \mathbf{L}_{2}$

[^1]: ${ }^{3}$ The following property of tensor product is used: $(A \otimes B)(C \otimes D)=A C \otimes B C$

