Addition of Two Angular Momenta in the Matrix Representation

David Chen

October 7, 2012

1 Addition of two angular momenta

Given two angular momentum operators \mathbf{L}_1 and \mathbf{L}_2 , and the basis sets $\{|j_1m_1\rangle\}$ and $\{|j_2m_2\rangle\}$ that diagonalize \mathbf{L}_1^2 and \mathbf{L}_2^2 respectively, we want to find a new basis that diagonalizes \mathbf{L}^2 , where $\mathbf{L} = \mathbf{L}_1 + \mathbf{L}_2$. \mathbf{L} is simply the addition of two angular momenta. However, the notation could be misleading because in general \mathbf{L}_1 and \mathbf{L}_2 act on different vector spaces¹. To do the sum, we need to use the vector space spanned by all the possible combinations of $|j_1m_1\rangle$ and $|j_2m_2\rangle$, i.e. $\{|j_1m_1\rangle \otimes |j_2m_2\rangle| \quad \forall |j_1m_1\rangle, \forall |j_2m_2\rangle\}$, where the symbol \otimes is called the *tensor product* or *external product* [1]. Generally speaking, if T and S are tensors, then[2]

$$(S \otimes T)^{i_1 \dots i_l \, i_{l+1} \dots i_{l+m}}_{j_1 \dots j_k \, j_{k+1} \dots j_{k+n}} = S^{i_1 \dots i_l}_{j_1 \dots j_k} T^{i_{l+1} \dots i_m}_{j_{k+1} \dots j_n} \tag{1}$$

 \mathbf{L}_1 and \mathbf{L}_2 can be extended to this tensor product space as $\mathbf{L}_1 \otimes \mathbb{1}_2$ and $\mathbb{1}_1 \otimes \mathbf{L}_2$, respectively. It follows that the total angular momentum is ²

$$\mathbf{L} = \mathbf{L}_1 \otimes \mathbb{1}_2 + \mathbb{1}_1 \otimes \mathbf{L}_2 \tag{2}$$

1.1 Tensor product of matrices

A particular useful representation of matrix tensor product is the so-called *Kronecker* product[3]. Given a matrix A of $m \times n$ and a matrix B of $p \times q$, the Kronecker product

¹In other words, \mathbf{L}_1 and \mathbf{L}_2 belong to different dual spaces ²Sometimes this is denoted as $\mathbf{L} = \mathbf{L}_1 \oplus \mathbf{L}_2$

is a matrix of $mp \times nq$ given by

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$
(3)

2 Example: addition of two 1/2 spins

Let's calculate $\mathbf{L}^2 = (\mathbf{L}_1 \oplus \mathbf{L}_2)^2$ for two j = 1/2 particles. For each particle, \mathbf{L}_i^2 and L_{iz} where i = 1, 2 in the $|j \ m \rangle = |1/2 \ \pm 1/2 \rangle$ basis are

$$\mathbf{L}_{i}^{2} = \frac{3}{4}\hbar^{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \quad \text{and} \quad L_{iz} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
(4)

Because both operators commute, they share a common basis

$$\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\} \tag{5}$$

First, we find a basis for the tensor product space

$$\begin{pmatrix} 1\\0 \end{pmatrix}_1 \otimes \begin{pmatrix} 1\\0 \end{pmatrix}_2 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$
 (6)

$$\begin{pmatrix} 1\\0 \end{pmatrix}_1 \otimes \begin{pmatrix} 0\\1 \end{pmatrix}_2 = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$
(7) (7)

$$\begin{pmatrix} 0\\1 \end{pmatrix}_1 \otimes \begin{pmatrix} 1\\0 \end{pmatrix}_2 = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
 (8)

$$\begin{pmatrix} 0\\1 \end{pmatrix}_1 \otimes \begin{pmatrix} 1\\0 \end{pmatrix}_2 = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$
(9)

In this basis, the operator \mathbf{L}_1 is

$$\mathbf{L}_1 \otimes \mathbb{1} = \frac{\hbar}{2} (\sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}) \otimes \mathbb{1}$$
(10)

$$=\frac{\hbar}{2}(\sigma_x \otimes \mathbb{1}\hat{x} + \sigma_y \otimes \mathbb{1}\hat{y} + \sigma_z \otimes \mathbb{1}\hat{z})$$
(11)

where σ_i are the Pauli matrices. In the same way, the operator \mathbf{L}_2 is

$$\mathbb{1} \otimes \mathbf{L}_2 = \frac{\hbar}{2} \,\mathbb{1} \otimes \left(\sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}\right) \tag{12}$$

$$=\frac{\hbar}{2}\left(\mathbb{1}\otimes\sigma_x\hat{x}+\mathbb{1}\otimes\sigma_y\hat{y}+\mathbb{1}\otimes\sigma_z\hat{z}\right)\tag{13}$$

Therefore, the total angular momentum is^3

$$\mathbf{L} = \frac{\hbar^2}{4} \left(\sigma_x \otimes \sigma_x \hat{x} + \sigma_y \otimes \sigma_y \hat{y} + \sigma_z \otimes \sigma_z \hat{z} \right)$$
(14)

where

$$\sigma_x \otimes \sigma_x = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \sigma_y \otimes \sigma_y = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \tag{15}$$

$$\sigma_z \otimes \sigma_z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(16)

Finally

$$\mathbf{L}^{2} = \hbar^{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
(17)

³The following property of tensor product is used: $(A \otimes B)(C \otimes D) = AC \otimes BC$

2.1 Some properties of L^2

Now let's find the eigenvalue of \mathbf{L}^2 and see that we get the *triplets* and *singlet* states. The diagonalization is straightforward, and the eigenvalues are $\{2, 2, 2, 0\}$, with the respective eigenvectors

$$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} \right\}$$
(18)

The operators L^2, L_z, L_1^2, L_2^2 commute among themselves, but L^2 does not commute with L_{1z} or L_{2z}

References

- [1] mathworld.wolfram.com, tensor product
- [2] www.wikipedia.com, tensor product
- [3] mathworld.wolfram.com, Kronecker product