Second-quantization Hamiltonian

David Chen

January 10, 2014

The second quantization is a powerful tool for studying many-body systems. The Hamiltonian in the second-quantization form is

\[H = \sum_{i,j} \hat{a}_i^\dagger \langle i | H_0 | j \rangle \hat{a}_j + \frac{1}{2} \sum_{i,j,k,l} \hat{a}_i^\dagger \hat{a}_j^\dagger \langle ij | V_{\text{int}} | kl \rangle \hat{a}_k \hat{a}_l. \]

(1)

where the indices \(i, j, k, l \) represent a state of the system (position, momentum, lattice site, etc). \(\hat{a}_i^\dagger, \hat{a}_i \) are the creation and annihilation operator of a particle in the state \(i \), \(H_0 \) is the single-particle Hamiltonian \(H_0 = \frac{\hbar^2}{2m} + V_{\text{ext}} \) with an external potential \(V_{\text{ext}} \), and \(V_{\text{int}} \) is a two-body interaction potential. The derivation of eq. (1) is in [1,2].

As a particular case, let us consider eq. (1) in the position space. We identify \(i \) with \(r \), \(j \) with \(r' \), \(k \) with \(r'' \), and \(l \) with \(r''' \), and we transform the sums into integrals. In this way, the Hamiltonian reads

\[H = \int \int d^3r d^3r' \hat{a}_r^\dagger \langle r | H_0 | r' \rangle \hat{a}_{r'} + \frac{1}{2} \int \int \int d^3r d^3r' d^3r'' d^3r''' \hat{a}_r^\dagger \hat{a}_{r'}^\dagger \langle rr' | V_{\text{int}} | r'' r''' \rangle \hat{a}_{r''} \hat{a}_{r'''} \]

(2)

The one-particle operator \(H_0 \) and the two-particle potential \(U \) satisfy

\[\langle r | H_0 | r' \rangle = H_0(r) \delta(r - r') \]

(3a)

\[\langle rr' | V_{\text{int}} | r'' r''' \rangle = V_{\text{int}}(r, r') \delta(r - r') \delta(r' - r''). \]

(3b)

Plugging eqs. (3a) and (3b) into (2), and denoting the field operator \(\hat{a}_r \) as \(\hat{\Psi}(r) \), the Hamiltonian becomes

\[H = \int d^3r \hat{\Psi}^\dagger(r) \left[-\frac{\hbar^2}{2M} \nabla^2 + V_{\text{ext}}(r) \right] \hat{\Psi}(r) + \frac{1}{2} \int \int d^3r d^3r' \hat{\Psi}^\dagger(r) \hat{\Psi}^\dagger(r') V_{\text{int}}(r, r') \hat{\Psi}(r) \hat{\Psi}(r'). \]

(4)
The field operator $\hat{\Psi}(\mathbf{r})$ can be expressed in terms of another basis set $\{|l\rangle\}$

$$\hat{\Psi}(\mathbf{r}) \equiv \langle \mathbf{r}|\hat{a} \rangle = \sum_{l} \langle \mathbf{r}|l\rangle \langle l|\hat{a} \rangle = \sum_{l} \psi_{l}(\mathbf{r}) \hat{a}_{l}.$$ \hspace{1cm} (5)

In the particular case of a dilute gas, the effective two-body potential is

$$V_{\text{int}}(\mathbf{r}, \mathbf{r}') = g \delta(\mathbf{r} - \mathbf{r}).$$ \hspace{1cm} (6)

where $g \equiv 4\pi\hbar^2 a_s / M$. This result arises from scattering calculations.

$$H = \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \left[-\frac{\hbar^2}{2M} \nabla^2 + V_{\text{ext}}(\mathbf{r}) \right] \hat{\Psi}(\mathbf{r}) + \frac{g}{2} \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r}).$$ \hspace{1cm} (7)

References
