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The second quantization is a powerful tool for studying many-body systems. The
hamiltonian in the second-quantization form is
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where the indices i, j, k, [ represent a state of the system (position, momentum, lattice
site, etc). dl, a; are the creation and annihilation operator of a particle in the state

1, Hy is the single-particle hamiltonian Hy = % + V..t with a external potential V,,;,
and Vj,,; is a two-body interaction potential. The derivation of eq. (1) is in [1,2]

As a particular case, let us consider eq. (1) in the position space. We identify i
with r, j with r/, k with r” and [ with r"”, and we transform the sums into integrals.
In this way, the hamiltonian reads
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The one-particle operator Hy and the two-particle potential U satisfy

(r[Holr') = Ho(r)o(r —r') (3a)
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Plugging eqs. (3a) and (3b) into (2), and denoting the field operator a, as ¥(r),
the hamiltonian becomes

H= /d%qﬂ {EMVMVM( )}\i’(r)Jr

% / / &r d®r U () U () Vi (0, 2T (2) T (). (4)



The field operator ¥(r) can be expressed in terms of another basis set {|I)}
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In the particular case of a dilute gas, the effective two-body potential is
Vint(r,¥') = go(r — 1').

where g = 4nh*a,/M. This result arises from scattering calculations.
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