Matrix Representation of Angular Momentum

David Chen

October 7, 2012

1 Angular Momentum

In Quantum Mechanics, the angular momentum operator $\mathbf{L}=\mathbf{r} \times \mathbf{p}=L_{x} \hat{x}+L_{y} \hat{y}+L_{z} \hat{z}$ satisfies

$$
\begin{array}{r}
\mathbf{L}^{2}|j m\rangle=\hbar j(j+1)|j m\rangle \\
L_{z}|j m\rangle=\hbar m|j m\rangle \tag{2}
\end{array}
$$

The demonstration can be found in any Quantum Mechanics book, and it follows from the commutation relation $[\mathbf{r}, \mathbf{p}]=i \hbar \mathbb{1}$

It is useful to define the rising and lowering operators $L_{ \pm} \equiv L_{x} \pm i L_{y}$, which have the following property

$$
\begin{equation*}
L_{ \pm}|j m\rangle=\hbar \sqrt{j(j+1)-m(m \pm 1)}|j m \pm 1\rangle \tag{3}
\end{equation*}
$$

And L_{x} and L_{y} are obtained from

$$
\begin{align*}
& L_{x}=\left(L_{+}+L_{-}\right) / 2 \\
& L_{y}=\left(L_{+}-L_{-}\right) / 2 i \tag{4}
\end{align*}
$$

1.1 Spin $1 / 2$

If $j=1 / 2$, the spin-space is spanned by two states: $\{|1 / 21 / 2\rangle,|1 / 2-1 / 2\rangle\}$. The properties Eq.(2) and Eq.(3) for this particular case are

$$
\begin{align*}
L_{z}|1 / 2 \pm 1 / 2\rangle & = \pm \hbar / 2|1 / 2 \pm 1 / 2\rangle \tag{5}\\
L_{+}|1 / 21 / 2\rangle & =0 \tag{6}\\
L_{+}|1 / 2-1 / 2\rangle & =\hbar|1 / 21 / 2\rangle \tag{7}
\end{align*}
$$

If we use the matrix representation $(10)^{T} \equiv|1 / 21 / 2\rangle$ and $(01)^{T} \equiv|1 / 2-1 / 2\rangle$, the operators are

$$
L_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \tag{9}\\
0 & -1
\end{array}\right) \quad L_{+}=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad L_{-}=L_{+}^{\dagger}
$$

and from Eqs.(4)

$$
L_{x}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \tag{10}\\
-1 & 0
\end{array}\right) \quad L_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

and $\mathbf{L}=\hbar / 2\left(\sigma_{x} \hat{x}+\sigma_{y} \hat{y}+\sigma_{z} \hat{z}\right)$, where σ_{i} are the Pauli matrices. \mathbf{L}^{2} and L_{z} are both diagonal in this basis set, as expected from Eq.(1) and Eq.(2)

$$
\mathbf{L}^{2}=\frac{3}{4} \hbar^{2}\left(\begin{array}{ll}
1 & 0 \tag{11}\\
0 & 1
\end{array}\right) \quad L_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1.2 Spin $3 / 2$

In this case, the spin-space is spanned by four states: $\{|3 / 2 \pm 3 / 2\rangle,|3 / 2 \pm 1 / 2\rangle\}$. If we choose the following matrix representation

$$
\begin{align*}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)^{T} \equiv|3 / 23 / 2\rangle \tag{12}\\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)^{T} \equiv|3 / 21 / 2\rangle \tag{13}\\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)^{T} \equiv|3 / 2-1 / 2\rangle \tag{14}\\
& \left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)^{T} \equiv|3 / 2-1 / 2\rangle \tag{15}
\end{align*}
$$

and following the same procedure as before gives

$$
\begin{align*}
L_{z} & =\frac{\hbar}{2}\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) \quad L_{+}=\hbar\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{4} & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0
\end{array}\right) \quad L_{-}=L_{+}^{\dagger} \tag{16}\\
L_{x} & =\frac{\hbar}{2}\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
\sqrt{3} & 0 & \sqrt{4} & 0 \\
0 & \sqrt{4} & 0 & \sqrt{3} \\
0 & 0 & \sqrt{3} & 0
\end{array}\right) \quad L_{y}=\frac{i \hbar}{2}\left(\begin{array}{cccc}
0 & -\sqrt{3} & 0 & 0 \\
\sqrt{3} & 0 & -\sqrt{4} & 0 \\
0 & \sqrt{4} & 0 & -\sqrt{3} \\
0 & 0 & \sqrt{3} & 0
\end{array}\right) \tag{17}
\end{align*}
$$

and the total angular momentum satisfies $\mathbf{L}^{2}=15 \hbar^{2} / 4 \cdot \mathbb{1}$

References

[1] Gasiorowics, Quantum Physics

