Commutative Operators and Common Basis

David Chen

October 22, 2012

1 Non-degenerate case

Given two operators A and B that satisfy the commutation relation, i.e. $[A, B]=$ $A B-B A=0$, and given a non-degenerate eigenstate of $A,|a\rangle$, we have the following relation

$$
\begin{align*}
A(B|a\rangle) & =B A|a\rangle \tag{1}\\
& =B a|a\rangle \tag{2}\\
& =a(B|a\rangle) \tag{3}
\end{align*}
$$

In other words, $B|a\rangle$ is an eigenstate of A with eigenvalue a. Since $|a\rangle$ is nondegenerate, $B|a\rangle$ has to be proportional to $|a\rangle$, or

$$
\begin{equation*}
B|a\rangle=b|a\rangle \tag{4}
\end{equation*}
$$

Therefore, $|a\rangle$ is simultaneously an eigenstate of A and B, and it is usually labeled by their eigenvalues, i.e. $|a, b\rangle$

2 Degenerate case

For simplicity, let's assume a twofold degeneracy, but it can be easily generalized.

$$
\begin{align*}
A\left|a^{(1)}\right\rangle & =a\left|a^{(1)}\right\rangle \tag{5}\\
A\left|a^{(2)}\right\rangle & =a\left|a^{(2)}\right\rangle \tag{6}
\end{align*}
$$

In the way as above, $B\left|a^{(1)}\right\rangle$ and $B\left|a^{(2)}\right\rangle$ are eigenstates of A with eigenvalue a. However, because $\left|a^{(1)}\right\rangle$ and $\left|a^{(2)}\right\rangle$ are degenerate, we can only state that

$$
\begin{align*}
& B\left|a^{(1)}\right\rangle=b_{11}\left|a^{(1)}\right\rangle+b_{12}\left|a^{(2)}\right\rangle \tag{7}\\
& B\left|a^{(2)}\right\rangle=b_{21}\left|a^{(1)}\right\rangle+b_{22}\left|a^{(2)}\right\rangle \tag{8}
\end{align*}
$$

We can diagonalize B in the sub-space associated to a, which is spanned by $\left\{\left|a^{(1)}\right\rangle,\left|a^{(2)}\right\rangle\right\}$, resulting ${ }^{1}$

$$
\begin{align*}
& B\left|b^{(1)}\right\rangle=b_{1}\left|b^{(1)}\right\rangle \\
& B\left|b^{(2)}\right\rangle=b_{2}\left|b^{(2)}\right\rangle \tag{9}
\end{align*}
$$

Finally, we can express $\left|b^{(i)}\right\rangle$ in terms of $\left\{\left|a^{(1)}\right\rangle\right\}$ and $\left\{\left|a^{(2)}\right\rangle\right\}$

$$
\begin{equation*}
\left|b^{(i)}\right\rangle=\sum_{j=1,2}\left\langle a^{(j)} \mid b^{(i)}\right\rangle\left|a^{(j)}\right\rangle \tag{10}
\end{equation*}
$$

$\left|b^{(1)}\right\rangle$ and $\left|b^{(2)}\right\rangle$ are eigenstates of B by definition, Eq.(9), and we can see from Eq.(10) that they are also eigenstates of A. As before, the state $\left|b^{(i)}\right\rangle$ is usually denoted as $|a, b\rangle$

3 Example

The Hamiltonian operator of a free particle is

$$
\begin{equation*}
\hat{\mathcal{H}}=\frac{\hat{p}^{2}}{2 m} \tag{11}
\end{equation*}
$$

There are two degenerate eigenstates for this operator, and the common eigenvalue is $p^{2} / 2 m$. On the other hand, it is clear that the momentum operator \hat{p} commutes with $\hat{\mathcal{H}}$. Therefore, there is a common basis for both operators, which is $\{|E, p\rangle,|E,-p\rangle\}$ where $E=p^{2} / 2 m$.

References

[1] Gasiorowics, Quantum Physics
[2] Sakurai, Modern Quantum Mechanics

[^0]
[^0]: ${ }^{1}$ Assuming that $\left|a^{(1)}\right\rangle$ and $\left|a^{(2)}\right\rangle$ are orthogonal. What happens in the general case?

