# Non-interacting Bose-Einstein Condensate 

David Chen

October 20, 2009

The partition function in the grand canonical ensemble is

$$
\begin{equation*}
\Xi=\sum_{l} e^{-\beta\left(E_{l}-\mu N_{l}\right)} \tag{1}
\end{equation*}
$$

In the case of non-interacting and indistinguishable particles

$$
\begin{aligned}
E_{l} & =N_{1} \epsilon_{1}+N_{2} \epsilon_{2}+\ldots \\
N & =N_{1}+N_{2}+\ldots
\end{aligned}
$$

Therefore

$$
\begin{align*}
\Xi & =\sum_{N_{1}, N_{2}, \ldots .} e^{-\beta\left(N_{1} \epsilon_{1}+N_{2} \epsilon_{2}+\ldots-\mu\left(N_{1}+N_{2}+\ldots\right)\right)} \\
& =\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)} \cdot \sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)} \cdot \ldots \\
& =\prod_{\lambda=1}^{\infty} \sum_{N_{\lambda}} e^{-\beta N_{\lambda}\left(\epsilon_{\lambda}-\mu\right)} \\
& =\prod_{\lambda=1}^{\infty} \xi_{\lambda} \tag{2}
\end{align*}
$$

where $\xi_{\lambda} \equiv \sum_{N_{\lambda}} e^{-\beta N_{\lambda}\left(\epsilon_{\lambda}-\mu\right)}$ is the partition function of the state $\lambda$.
Given that the probability of occupying the state $l$ is $P_{l} \equiv e^{-\beta\left(E_{l}-\mu N_{l}\right)} / \Xi$, the
mean occupation number is

$$
\begin{align*}
\bar{N} & =\frac{1}{\Xi} \sum_{l} N_{l} e^{-\beta\left(E_{l}-\mu N_{l}\right)}  \tag{3}\\
& =\frac{1}{\beta \Xi} \sum_{l} \frac{\partial}{\partial \mu} e^{-\beta\left(E_{l}-\mu N_{l}\right)} \\
& =\frac{1}{\beta \Xi} \frac{\partial}{\partial \mu} \sum_{l} e^{-\beta\left(E_{l}-\mu N_{l}\right)} \\
& =\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \Xi \\
& =\sum_{\lambda=1}^{\infty} \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \xi_{\lambda} \\
& =\sum_{\lambda=1}^{\infty} \bar{N}_{\lambda}
\end{align*}
$$

where $\bar{N}_{\lambda} \equiv \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \xi_{\lambda}$
The equations derived so far are equally valid for fermions or bosons. For the particular case of bosons we have $\xi_{\lambda}=\sum_{N_{\lambda}=0}^{\infty}\left(e^{-\beta\left(\epsilon_{\lambda}-\mu\right)}\right)^{N_{\lambda}}=\frac{1}{1-e^{-\beta\left(\epsilon_{\lambda}-\mu\right)}}$ and, therefore, $\bar{N}_{\lambda}=\frac{1}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1}$. Hence, the mean occupation number is

$$
\begin{equation*}
\bar{N}=\sum_{\lambda} \frac{1}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1} \tag{4}
\end{equation*}
$$

It is more convenient to sum over energies rather than individual states $\lambda$. If we use the density of states $g$, which has the general form $g(\epsilon)=C_{\alpha} \epsilon^{\alpha-1}$, then

$$
\begin{align*}
\bar{N} & =\sum_{\epsilon} \frac{g(\epsilon)}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1} \\
& =\int d \epsilon \frac{g(\epsilon)}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1} \\
& =C_{\alpha} \int d \epsilon \frac{\epsilon^{\alpha-1}}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1} \tag{5}
\end{align*}
$$

The parameter $\alpha$ depends on the spatial configuration of the trap. For example, in free space $\alpha=3 / 2$ and in a quadratic trap $\alpha=3$.

The condensation temperature $T_{c}$ is defined as the highest temperature at which the lowest-energy state becomes macroscopically occupied.

Right on $T_{c}$, the chemical potential $\mu$ is zero (why?), and the eq.(5) becomes

$$
\begin{equation*}
\bar{N}=C_{\alpha} \Gamma(\alpha) \zeta(\alpha)\left(k T_{c}\right)^{\alpha} \tag{6}
\end{equation*}
$$

At $T<T_{c}$, the presence of a condensed phase implies that $\bar{N}=\bar{N}_{0}+\bar{N}_{e x}$, where $\bar{N}_{e x}$ is the number of excited atoms

$$
\begin{align*}
\bar{N}_{e x} & \equiv \int d \epsilon C_{\alpha} \frac{\epsilon^{\alpha-1}}{e^{\beta\left(\epsilon_{\lambda}-\mu\right)}-1} \\
& =C_{\alpha} \Gamma(\alpha) \zeta(\alpha)(k T)^{\alpha} \tag{7}
\end{align*}
$$

Therefore, combining (6) and (7)

$$
\begin{equation*}
\frac{\bar{N}_{e x}}{\bar{N}}=\left(\frac{T}{T_{c}}\right)^{\alpha} \quad \text { and } \quad \frac{\bar{N}_{0}}{\bar{N}}=1-\left(\frac{T}{T_{c}}\right)^{\alpha} \tag{8}
\end{equation*}
$$

The phase-space density is defined as $\varpi \equiv \bar{n} \lambda_{T}^{3}$, where $\bar{n} \equiv \bar{N} / V$ is the particle density and $\lambda_{T}=\frac{h}{\sqrt{m k_{B} T}}$ is the de Broglie wavelength.

Note: we have kept the mean value symbol on $N$ to highlight the fact that in the grand canonical ensemble the atom number is not fixed, but fluctuates around the mean.

## References

[1] C. J. Pethick, "Bose-Einstein Condensation in Dilute Gases"

