Anti-Helmholtz magnetic trap

David Chen

January 5, 2014

1 Electromagnetism review

A point charge q located at \mathbf{r}_{q} and moving at a velocity \mathbf{v}_{q} generates the magnetic field

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} q \mathbf{v}_{\mathbf{q}} \times \frac{\mathbf{r}-\mathbf{r}_{q}}{\left|\mathbf{r}-\mathbf{r}_{q}\right|^{3}} \tag{1}
\end{equation*}
$$

In the case of a charge distribution, we replace $q \mathbf{v}_{q}$ by $d^{3} r \mathbf{J}$, where \mathbf{J} is the current flow. The magnetic field becomes

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \tag{2}
\end{equation*}
$$

For a unidimensional conductor we can integrate the transverse direction. Equation (2) reduces to the Biot-Savart law,

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \int d \mathbf{r}^{\prime} \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \tag{3}
\end{equation*}
$$

where $d \mathbf{r}^{\prime}$ is a line integration and I is the current through the wire.
Far from the conductor, i.e. $|\mathbf{r}| \ll\left|\mathbf{r}^{\prime}\right|$, the eq. (3) can be expanded via the series $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}=\frac{1}{\left|\mathbf{r}^{\prime}\right|^{3}}+\frac{3 \mathbf{r} \cdot \mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|^{3}}+\ldots$

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \int d \mathbf{r}^{\prime} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \frac{1}{\left|\mathbf{r}^{\prime}\right|^{3}}+\frac{3 \mu_{0} I}{4 \pi} \int d \mathbf{r}^{\prime} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|^{5}} \tag{4}
\end{equation*}
$$

2 Anti-Helmholtz trap

This quadrupole trap is formed by two identical ring-shape wires shifted vertically and carrying current in opposite directions.

Let us first calculate the expression in (4) for a single ring of radius R and shifted vertically in $+a$. The integration coordinate is $\mathbf{r}^{\prime}=R \cos \theta^{\prime} \hat{x}+R \sin \theta^{\prime} \hat{y}+a \hat{z}$ and its differential is $d \mathbf{r}^{\prime}=R \hat{\theta} d \theta^{\prime}$. Let us consider

$$
\begin{align*}
\hat{\theta} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right) & =\left(-\sin \theta^{\prime}, \cos \theta^{\prime}, 0\right) \times\left(x-R \cos \theta^{\prime}, y-R \sin \theta^{\prime},-a\right) \\
& =\left(-a \cos \theta^{\prime},-a \sin \theta^{\prime}, R-y \sin \theta^{\prime}-x \cos \theta^{\prime}\right) \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{r} \cdot \mathbf{r}^{\prime}=x R \cos \theta^{\prime}+y R \sin \theta^{\prime}+z a \tag{6}
\end{equation*}
$$

Given eqs. (5) and (6), the first and second integrals on the RHS of (4) are $\frac{\mu_{0} I R^{2}}{2\left(R^{2}+a^{2}\right)^{3 / 2}} \hat{z}$ and $\frac{3 \mu_{0} I a R^{2}}{2\left(R^{2}+a^{2}\right)^{5 / 2}}\left(-\frac{x}{2},-\frac{y}{2}, z\right)$ respectively (only the linear terms in \mathbf{r} were kept). Therefore, the field is

$$
\begin{equation*}
\mathbf{B}_{+a}(\mathbf{r})=\frac{\mu_{0} I R^{2}}{2\left(R^{2}+a^{2}\right)^{3 / 2}} \hat{z}+\frac{3 \mu_{0} I a R^{2}}{2\left(R^{2}+a^{2}\right)^{5 / 2}}\left(-\frac{x}{2},-\frac{y}{2}, z\right) . \tag{7}
\end{equation*}
$$

To calculate the field produced by the second ring, we can simply do $I \rightarrow-I$ and $a \rightarrow-a$. This leads to

$$
\begin{equation*}
\mathbf{B}_{-a}(\mathbf{r})=-\frac{\mu_{0} I R^{2}}{2\left(R^{2}+a^{2}\right)^{3 / 2}} \hat{z}+\frac{3 \mu_{0} I a R^{2}}{2\left(R^{2}+a^{2}\right)^{5 / 2}}\left(-\frac{x}{2},-\frac{y}{2}, z\right) . \tag{8}
\end{equation*}
$$

Finally, the total field is ${ }^{1}$

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}) \equiv \mathbf{B}_{+a}(\mathbf{r})+\mathbf{B}_{-a}(\mathbf{r})=B_{0}\left(\frac{x}{2}, \frac{y}{2},-z\right) \tag{9}
\end{equation*}
$$

where $B_{0} \equiv-\frac{3 \mu_{0} I a R^{2}}{2\left(R^{2}+a^{2}\right)^{5 / 2}}$; and the potential is

$$
\begin{equation*}
U_{m a g}(\mathbf{r})=g_{F} m_{F} \mu_{B}|\mathbf{B}(\mathbf{r})| . \tag{10}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ I think these results are calculated in Stan's thesis via a multipole expansion.

