Using Deep Learning to Predict Optimum **Crop Management** Decisions

Rodrigo G. Trevisan^{1, (D)}

rodrigo7@illinois.edu

David S. Bullock² Nicolas F. Martin^{1, D}

¹ Department of Crop Sciences, University of Illinois ² Department of Agricultural and Consumer Economics, University of Illinois

Introduction

• On-farm experimentation • Precision agriculture tools

Predicting the spatial variability of optimum crop management decisions

Figure 1: During the training process, the error in the training set is reduced while the error in the independent validation set is increased, characterizing model overfitting.

- Crop response variability • Spatial and temporal variability • Predictive models
- Convolutional Neural Networks
- Semantic segmentation

Objective

To evaluate deep learning models to predict the optimum seed and nitrogen rates as well as the crop yield at the optimum rates

using an adapted semantic

segmentation convolutional

neural network

Figure 2: Spatial distribution of observed (top) and predicted (bottom) corn yield (kg/ha).

- Checkerboard style field trials • Four cornfields in Illinois • Six topographic derivatives + EC • Opt. seed and nitrogen + yield
- U-Net based CNN
- Image-based data augmentation Leave-one-out cross-validation

Results

- Importance of independent training and validation sets • Low power of generalization in new
- fields
- Need for more predictor variables and independent observations

Figure 3: Spatial distribution of observed (top) and predicted (bottom) optimum seed rates (kseeds/ha).

This research was funded in part by a USDA National Institute of Food and

Agriculture Food Security Program grant, award number 2016-68004-

190

Figure 4: Spatial distribution of observed (top) and predicted (bottom) optimum nitrogen rates

