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Abstract Neotropical montane forests are often dominated
by ectomycorrhizal (EM) tree species, yet the diversity of their
EM fungal communities remains poorly explored. In lower
montane forests in western Panama, the EM tree species
Oreomunnea mexicana (Juglandaceae) forms locally dense
populations in forest otherwise characterized by trees that
form arbuscular mycorrhizal (AM) associations. The objective
of this study was to compare the composition of EM fungal
communities associated with Oreomunnea adults, saplings,
and seedlings across sites differing in soil fertility and the
amount and seasonality of rainfall. Analysis of fungal nrITS
DNA (nuclear ribosomal internal transcribed spacers) re-
vealed 115 EM fungi taxa from 234 EM root tips collected
from adults, saplings, and seedlings in four sites. EM fungal
communities were equally species-rich and diverse across
Oreomunnea developmental stages and sites, regardless of
soil conditions or rainfall patterns. However, ordination anal-
ysis revealed high compositional turnover between low and
high fertility/rainfall sites located ca. 6 km apart. The EM
fungal community was dominated by Russula (ca. 36 taxa).

Cortinarius, represented by 14 species and previously report-
ed to extract nitrogen from organic sources under low nitrogen
availability, was found only in low fertility/high rainfall sites.
Phylogenetic diversity analyses of Russula revealed greater
evolutionary distance among taxa found on sites with con-
trasting fertility and rainfall than was expected by chance,
suggesting that environmental differences among sites may
be important in structuring EM fungal communities. More
research is needed to evaluate whether EM fungal taxa asso-
ciated with Oreomunnea form mycorrhizal networks that
might account for local dominance of this tree species in oth-
erwise diverse forest communities.
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Introduction

Nutrient uptake and transfer via mycorrhizal associations strong-
ly influences the growth and survival of most plant species in
nearly all of earth’s most species-rich and threatened terrestrial
biomes (Smith and Read 2008; Bonfante and Genre 2010). In
tropical forests, trees predominantly form associations with
arbuscular mycorrhizal (AM) fungi (Glomeromycota) (Janos
1983; St John and Uhl 1983; Béreau and Garbaye 1994;
Onguene and Kuyper 2001; St John 1980; McGuire 2008).
However, forests dominated by tree species that associate with
ectomycorrhizal (EM) fungi, especially Basidiomycota, have
been recognized in all major tropical regions (Becker 1983;
Connell and Lowman 1989; Hart et al. 1989; Henkel 2003).
Ectomycorrhizal plants in lowland tropical forests belongmostly
to the Dipterocarpaceae and Fabaceae (primarily a narrow group
of Caesalpinioideae), whereas Fagales (including members of
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the Juglandaceae, Betulaceae, and Fagaceae) frequently occur in
montane sites (Itoh 1995; Conway and Alexander 1992; Hart
et al. 1989; Henkel 2003; Morris et al. 2008). In some cases,
these EM species grow in Bmonodominant^ forests, wherein a
single tree species accounts for more than 50 % of canopy trees
in a stand (Connell and Lowman 1989). Why these
monodominant forests persist in otherwise diverse plant commu-
nities is not fully understood (Peh et al. 2011).

Mast fruiting, low rates of disturbance, high tolerance of
shade by seedlings, slow litter decomposition, and escape from
herbivory have been proposed asmechanisms to explain tropical
monodominance (reviewed by Peh et al. 2011). Strikingly, a
common feature of many monodominant tree species in tropical
forests is the formation of EM associations (Malloch et al. 1980;
Connell and Lowman 1989; Henkel 2003). In temperate forests,
natural isotope abundance and radio-isotopic labeling experi-
ments have shown that some EM tree species can develop EM
networks, where hyphal connections transfer water, carbon, and
nutrients from adult to juvenile plants (Simard et al. 1997;
Plamboeck et al. 2007; Booth and Hoeksema 2010; see
Simard et al. 2012 for review). In tropical forests, direct evidence
of resource transfer among individuals is currently lacking, but
decreased survival and growth of seedlings when isolated from
neighboring plants is consistent with EM network effects
(Onguene and Kuyper 2002; McGuire 2007).

Ectomycorrhizal networks may increase survival of conspe-
cific seedlings in a spatially structured fashion, disproportion-
ately increasing their abundance near adult trees (Onguene and
Kuyper 2002; Henkel 2003; McGuire 2007; Teste et al. 2009;
Booth and Hoeksema 2010) in a manner consistent with posi-
tive plant–soil feedbacks (reviewed by Bever et al. 2012). In
turn, the presence and strength of plant–soil feedback depends
on the functional traits and taxonomic composition of the EM
fungal community (e.g., Dickie et al. 2002; O’Brien et al. 2010;
Kennedy et al. 2012). Determinants of EM fungal community
composition remain poorly understood in tropical forests. For
example, there is conflicting evidence regarding host specificity
in tropical EM fungal communities (e.g., for evidence of host
preference, see Tedersoo et al. 2008, 2010a and Morris et al.
2009; for evidence of low host specificity, see Diédhiou et al.
2010; Tedersoo et al. 2011; and Smith et al. 2011, 2013).
Similarly, the influence of soil type on EM fungal community
composition remains unresolved, in part because EM fungal
communities associated with the same host species have rarely
been studied across a range of soil conditions.

Here, we examine EM fungal communities associated with
Oreomunnea mexicana (Standl.) J.-F. Leroy, a widely distrib-
uted neotropical tree in the walnut family (Juglandaceae), and
one of the few examples of a monodominant EM species in
the Neotropics. In montane forests in western Panama,
Oreomunnea forms locally monodominant stands within oth-
erwise highly species-rich forest comprisedmostly of taxa that
form AM associations (Andersen et al. 2010). In this region,

Oreomunnea forms dominant stands on several distinct soil
types that are distributed over a scale of only a few kilometers.
These soils are derived from contrasting parent materials and
occur in areas that differ in the seasonality and quantity of
annual rainfall (Andersen et al. 2010), making this system
unique for the study of EM fungal ecology. Preliminary field
surveys of fungal fruiting bodies indicated that diverse com-
munities of EM fungi associate with Oreomunnea in these
stands (A. Corrales et al. unpublished data).

In this first characterization of the EM fungal community
associated withOreomunnea, we used data generated from root
tips of seedlings, saplings, and adult trees across this landscape
to test four predictions. First, we predicted that infection fre-
quency of EM fungi would be lower in more fertile soils, con-
sistent with the general view that benefits of EM fungi depend
on soil conditions (Treseder 2004). Second, we predicted that
the diversity, composition, and phylogenetic diversity of EM
fungi would vary with soil fertility. Third, we expected to see
(a) commonalities in EM fungal communities shared across
seedling, sapling, and adult life stages of Oreomunnea, and that
(b) community similarity among developmental stages would
be particularly strong in the lowest fertility soils, where selection
for EM networks or particularly beneficial symbionts would
likely be strongest. Fourth, we expected lower phylogenetic
diversity of EM fungi in high-fertility sites, reflecting lower
colonization rates and consequently lower community diversity.

Methods

The study focused on stands of Oreomunnea mexicana
(Juglandaceae; hereafter, Oreomunnea) in three watersheds
in a primary lower montane forest (1000–1400 m.a.s.l.) in
the Fortuna Forest Reserve in western Panama (Fig. 1; here-
after, Fortuna; 8°45′N, 82°15′W). Oreomunnea is a mid-
elevational canopy tree distributed from southern Mexico to
western Panama at 900–2600 m.a.s.l. (Stone 1972). It pro-
duces ca. 100 mg, wind-dispersed fruits, which can generate
high-density seedling patches in the understory (Table 1).
Oreomunnea is locally dominant at some of our study sites,
accounting for up to 70 % of individuals and stand basal area
at the Honda watershed (A. Corrales unpublished data).
Dominance by Oreomunnea is not directly related to particu-
lar functional traits such as leaf chemistry (i.e., nitrogen (N)
and phosphorus (P)) and wood density, which are close to
community averages for the area (K. Heineman unpublished
data). However, in contrast to almost all co-occurring tree
species at Fortuna, Oreomunnea forms EM associations. EM
status was reported from Mexican populations of
Oreomunnea (Quist et al. 1999) and confirmed for popula-
tions at Fortuna based on clearing of roots with 10 % KOH
and staining with trypan blue. Mantle and Hartig net structures
were observed with a light microscope. Other EM tree species
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that are present in the study area (i.e., Quercus insignis, Q. cf
lancifolia, and Coccoloba spp.) occur at low densities (typi-
cally <10 individuals >10 cm DBH per hectare) both within
and outside of Oreomunnea-dominated stands.

Climate records indicate that the mean annual temperature
for Fortuna ranges from 19 to 22 °C (Cavelier 1996). Annual
rainfall averages ca. 5800 mm at our sites in Hornito and Alto

Frio, and 9000 mm at our sites in Honda A and Honda B,
although all were drier during our study (Table 1; Fig. 1).
Hornito and Alto Frio typically have 1–2months per year with
<100 mm of precipitation; in contrast, no months with
<100 mm of rainfall have been recorded over the 7-year peri-
od for which records are available at Honda A and Honda B
(Andersen et al. 2012; J. Dalling unpublished data).

Alto Frio

Hornito

Honda B
Honda A

Fig. 1 Upper panel, location of
Fortuna Forest Reserve, Panama.
Lower panel, sampling sites at
Fortuna: circles represent low
fertility/high rainfall sites (Honda
A and B) and squares represent
high fertility/low rainfall sites
(Hornito and Alto Frio).
Reproduced with modifications
from Andersen et al. (2010)
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In addition to differences in rainfall, these sites differ mark-
edly in soil characteristics, with contrasting pH, N, P, and base
cation availability (Table 1). These distinctive soil traits are
related to underlying geology: low-fertility Ultisols at Honda
A and Honda B are derived from rhyolite, whereas high fer-
tility soils at Hornito (Ultisol) and Alto Frio (Inceptisol) are
derived from dacite and andesite (Andersen et al. 2012; B.
Turner unpublished data). Sites differing in soil fertility are
ca. 6 km apart, with 200 m separating the two low fertility
sites (Honda A and B) and 1 km separating the two high
fertility sites (Hornito and Alto Frio). A third soil type of
intermediate fertility derived from andesite separates the high
and low fertility sites in this study, and does not support pop-
ulat ions of Oreomunnea (Andersen et al . 2010).
Characteristics of our study sites are shown in Table 1, and
methods for distinguishing potential effects of spatial proxim-
ity, fertility, and rainfall on community structure of EM fungi
are described below.

Sampling of ectomycorrhizas

Root tips of Oreomunnea were collected at all sites between
January and July 2012 (Table 2). At Honda A, Honda B, and
Hornito, samples were collected from a total of 44 individuals
per site: four adults per site (mean DBH=50 cm) located
>50 m apart, five seedlings (5–20 cm height) within 20 m of
each adult, and five saplings (40–100 cm height) within 20 m
of each adult. The area where the trees were sampled was
approximately 4500±3500 m2 per site. Adults and juveniles
of Oreomunnea were less common at Alto Frio, such that 17
individuals were sampled there (four adults, nine seedlings,
and four saplings).

Five lateral roots were excavated 2–3 m from the trunk of
each adult tree until fine roots that were clearly connected to
the tree were found. From each adult we collected up to 50 cm
of total root length representing multiple root branches. All
roots obtained from adult trees were included in field

Table 1 Characteristics of the study sites at Fortuna Forest Reserve, Panama

Site Honda A Honda B Hornito Alto Frio

Elevation (m) 1175 1266 1404 1176

Annual rainfall 2013 (mm) 6055 6440 1990 1895

Soil variables

Geology Rhyolite Rhyolite Dacite Andesite

NaOH–EDTA inorg. P (μg cm−3) 17.9 15.1 24.3 27.7

NaOH–EDTA org. P (μg cm−3) 73.4 60.8 122.7 248.8

NH4 (μg cm−3) 2.2 1.8 1.8 3.8

NO3 (μg cm−3) 1.2 0.4 1.2 2.6

K2SO4 extract. org. C (μg cm−3) 152.2 92.0 95.3 92.8

pH in water 4.63 3.63 5.76 5.62

Total N (mg cm−3) 2.92 2.39 2.87 4.72

Total C (mg cm−3) 43.9 40.9 35.0 51.1

Total P (μg cm−3) 180.6 127.7 280.2 503.0

Resin P (μg cm−3) 0.2 1.9 2.2 1.4

Bulk density (g cm−3) 0.11 0.13 0.39 1.00

Al (cmol (+) L−1) 1.1 1.3 0.5 0.0

Ca (cmol (+) L−1) 0.05 0.15 4.94 8.47

K (cmol (+) L−1) 0.02 0.02 0.18 0.12

Light variables

Canopy openness (%) 6.66 7.90 8.70 9.32

Vegetation variables

Community basal area >10 cm dbh (m2ha-1) 45.6 46.5 52.9 40.7

Number of Oreomunnea seedlings m-2 9.9 7.8 0.7 0.2

Annual seedling mortality rate (%) 0.31 0.17 0.19 0.5

Oreomunnea adults per 0.1 ha 31 79 71 42

Oreomunnea basal area >10 cm (m2 0.1 ha-1) 1.59 2.48 2.58 1.80

Honda A and Honda B are low fertility/high rainfall sites, and Hornito and Alto Frio are high fertility/low rainfall sites. Soil data are expressed in volume
basis due to large variation in bulk density among plots
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collections even if EM fungal infection was not visible mac-
roscopically. The entire root system of each focal seedling and
sapling was collected.

Roots were stored in plastic bags and refrigerated within
2 h of collection. Each sample was carefully cleaned with tap
water, cut into 1-cm pieces, and observed with a dissecting
stereoscope. Three 1-cm pieces with EM structures were col-
lected haphazardly from each sample and preserved in 95 %
alcohol at 4 °C for DNA extraction. Infection frequency was
calculated for each sample as the number of root tips among
ten haphazardly chosen 1-cm fragments with presence of an
EM mantle observed under a dissecting microscope.

Molecular analysis

Molecular analyses followed Peay et al. (2011) with slight
modifications. Genomic DNA was extracted from EM root
tips and the internal transcribed spacers and 5.8S rDNA of
fungal associates was amplified directly using the
REDExtract-N-Amp plant PCR kit (following the manufac-
turer’s instructions; Sigma-Aldrich) with primers ITS1F and
ITS4 or ITS4B. PCR conditions consisted of 95 °C for 1 min,
and then 35 cycles of 95 °C for 30 s, 52 °C for 30 s, and 72 °C
for 45 s, with a final extension time at 72 °C for 10 min. PCR
amplicons were visualized on 1.5 % agarose gel stained with
ethidium bromide or SYBR Green. Positive products were
cleaned using ExoSap-IT (Affymetrix, Santa Clara, CA,
USA; 1.5 μL Exosap, 7.5 μL PCR product) and sequenced
bidirectionally using the Applied Biosystems BigDye
Terminator v3.1 cycle sequencing kit and the original PCR
primers on an Applied Biosystems 3730xl DNA Analyzer
(Foster City, CA, USA) at the University of Arizona
Genetics Core (UAGC). Sequences were assembled and qual-
ity scores were assigned using phred and phrap (Ewing and
Green 1998; Ewing et al. 1998) with orchestration by
Mesquite v. 1.06 (http://mesquiteproject.org), and then
manually verified and edited in Sequencher 5.1 (Gene Codes
Corporation, MI, USA) following U’Ren et al. (2012).

Sequences were assigned to operational taxonomic units
(OTUs) using a 97 % sequence similarity cutoff (see Smith
et al. 2007a; Hughes et al. 2009) with Sequencher 5.1 (see
Arnold et al. 2007; U’Ren et al. 2009).

Statistical analyses

Two-way ANOVA was used to assess the effect of de-
velopmental stage (seedling, sapling, and adult) and site
(Honda A, Honda B, Hornito, and Alto Frio) on infec-
tion frequency. An alternative model was also assessed
where sites were grouped into high fertility/low rainfall
sites (Hornito and Alto Frio) and low fertility/high rain-
fall sites (Honda A and B). Species accumulation
curves were used to compare OTU richness among de-
velopmental stages and sites. Total species richness was
estimated using the bootstrap estimator (Smith and van
Belle 1984; U’Ren et al. 2012).

To explore broader patterns of EM fungal diversity, we
compiled records from EM fungal inventories of temperate
and tropical forests, including studies reviewed by Tedersoo
et al. (2012) and three more recent studies by Diédhiou et al.
(2014), Smith et al. (2013), and Kennedy et al. (2012). We
calculated diversity for data presented in each study using
Fisher’s alpha, which is robust to differences in sample size,
and compared temperate versus tropical forests using a one-
way ANOVA.

Differences in EM fungal community composition among
sites and developmental stages were visualized by Nonmetric
Multidimensional Scaling (NMDS). Only nonsingleton OTUs
were used in these analyses, allowing us to evaluate the dis-
tributions of the more common species while reducing the
potential for rare species, whose occurrence in the dataset
may be influenced by undersampling, to influence inferences
about composition. Nonetheless, results with and without sin-
gletons were very similar (results not shown). NMDS analyses
were based on Bray-Curtis dissimilarity matrices using abun-
dance and presence-absence data. Significance of visualized

Table 2 Number of ectomycorrhizal root tips sequenced, root tips collected, individuals sampled, and OTUs observed for each site in Fortuna, and
each developmental stage of Oreomunnea

Site Honda A Honda B Hornito Alto Frio Total

Root tips sequenced/total root tips collected (individuals sampled)

Adults 22/48 (4) 17/33 (4) 30/57 (4) 25/49 (4) 94/187 (16)

Saplings 30/52 (20) 35/67 (20) 19/54 (19) 4/10 (5) 88/183 (64)

Seedlings 12/25 (20) 15/34 (20) 14/30 (20) 11/14 (9) 52/103 (69)

Number of OTUs

Adults 17 13 23 15 55

Saplings 26 25 18 4 59

Seedlings 11 13 12 7 39
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differences was determined using permutational analyses of
dissimilarity (ADONIS) using 200 permutations and a
Euclidean distance matrix (Oksanen et al. 2008).

Because location, soil fertility, and rainfall patterns were
correlated in this study, we used a statistical approach to ex-
plore the interplay of these factors with regard to observed
community structure. A Mantel test based on 999 permuta-
tions first was used to examine the relationship of community
composition to geographic distance among sites. However,
geographic proximity also reflected environmental similarity
(Fig. 1, Table 1). Therefore, a principal component analysis
(PCA) was used to reduce 14 environmental variables (see
Table 1) to two axes (describing 62.56 and 15.30 %, respec-
tively, of the total variance). Environmental variables included
in the PCAwere site-specific annual rainfall from May 2012
to April 2013 and soil characteristics: bulk density (g cm−3),
total C, inorganic N, and P (mg cm−3), NaOH–EDTA inor-
ganic P (μg cm−3), NaOH–EDTA organic P (μg cm−3), resin P
(μg cm−3), NH4 (μg cm−3), NO3 (μg cm−3), K2SO4 extract-
able organic C (μg cm−3), and base cations Al, Ca, and K
(cmol (+) L−1). The first two of the resulting PCA axes were
used in a NMDS analysis, with correlation coefficients be-
tween the PCA axes and the NMDS axes identifying differ-
ences between sites with contrasting fertility and rainfall pat-
terns (Ter Braak 1995). All statistical analyses were carried
out using the package vegan 2.0-6 in R 2.15.1 (R
Development Core Team 2011).

Taxonomic placement

Taxonomic placement of OTUs was estimated by compari-
sons via BLAST with GenBank (blastn; Altschul et al. 1990)
and the UNITE database (Kõljalg et al. 2013). The databases
gave matching results with high confidence at the genus level
for 92 % of sequences (Table S1). The remaining 8 % of
sequences showed <50 % query length and were left as unde-
termined (19 sequences representing 12 OTUs). Sequences
that matched named sequences at 91–97 % identity in
GenBank and UNITE were identified only to genus. Genus
names were only assigned to OTUs when all sequences within
the OTU returned species in the same genus after BLAST/
UNITE searches. For Russula, species-level taxonomic place-
ment of OTUs also was informed by phylogenetic inference
including GenBank sequence data from vouchered and iden-
tified specimens (see below).

Phylogenetic analysis of Russula species

Preliminary collections of fruiting bodies in the study area
indicated that Russula was common in the EM fungal com-
munity associated with Oreomunnea. Given that this genus is
an important component of many EM fungal communities in
the tropics (e.g., Peay et al. 2010; Smith et al. 2011; Tedersoo

et al. 2011) and appears to shift in community composition
with changes in soil N availability (Lilleskov et al. 2002; Avis
et al. 2003; Avis et al. 2008), it was chosen to test hypotheses
concerning phylogenetic diversity. To augment data on
Russula distribution obtained from root tips, Russula fruiting
bodies were collected every 2 weeks throughout the study
period from January to July 2012 along four 50×4 m transects
in each site. Transects were established inOreomunnea stands
at the same sites fromwhich root tips were sampled, averaging
150 m (±110 m) linear distance from root tip sampling points.
Macromorphology of fresh Russula fruiting bodies was re-
corded in the field, and a sample of tissue was preserved for
DNA extraction. Sequences from fruiting bodies were obtain-
ed as described above. Vouchers of fruiting bodies are depos-
ited at the University of Arizona Robert L. Gilbertson
Mycological Herbarium (MYCO-ARIZ).

To evaluate the structure of Russula communities as a
function of Oreomunnea developmental stage and soil
fertility/rainfall level, we inferred phylogenetic relationships
of species within the genus using 109 sequences
representing root tips and fruiting bodies collected in this
study (Table S2), and 32 sequences downloaded from
GenBank. Sequences were selected from GenBank only if
they were obtained from vouchered and identified speci-
mens, and if there was a >90 % BLAST match with one
or more sequences from the study site. This approach per-
mitted us to select high-quality, fully identified sequences
from GenBank to estimate taxonomic placement of
Oreomunnea-associated species. Four sequences from
voucher specimens of Stereum hirsutum (Willd.) Pers.
(AY854063), Amylostereum laevigatum (Fr.) Boidin
(AY781246), Gloeocystidiellum porosum (Berk. & M.A.
Curtis) Donk (AY048881), and Bondarzewia montana
(Quél.) Singer (DQ200923) were used for the outgroup fol-
lowing Miller and Buyck (2002) and Buyck et al. (2008).

Sequences were aligned using MUSCLE (Edgar 2004).
The resulting alignment was edited using Gblocks 0.91b
(Castresana 2002) to exclude positions that were poorly or
ambiguously aligned. The final data set consisted of 639 char-
acters and 144 terminal taxa. The tree was inferred using max-
imum likelihood analysis using the GTR+I+Gamma model of
evolution in GARLI 2.0 (Zwickl 2006). Support was assessed
using 1000 bootstrap replicates.

The resulting phylogenetic tree was used as input for
two subsequent analyses. First, we calculated Faith’s phy-
logenetic diversity index (PD) using the package Picante
1.5-2 in R (Kembel et al. 2010) to compare the phyloge-
netic diversity of Russula within each fertility/rainfall en-
vironment (i.e., alpha diversity). Faith’s PD, defined as the
sum of the branch lengths connecting all taxa within a
local community (Faith 1992), was calculated based on
random subsets of 19 OTUs (the smallest number of
Russula OTUs recovered per site).
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Second, UniFrac permutation analysis (Lozupone et al.
2006, 2010) was used to determine whether the phyloge-
netic structure of communities differed in a manner con-
sistent with environmental filtering. For comparisons
among communities associated with different sites, soil
fertility/rainfall conditions, or developmental stages of
Oreomunnea, the lengths of branches in the phylogeny
that were unique to each community were calculated and
compared to 50 permutations in which assignment of taxa
to communities was randomized. If the environment or
developmental stage selects for fungi that share phyloge-
netically conserved traits, then we would expect commu-
nities from similar environments or stages to share more
of their branch length (i.e., be more closely related) than
the random expectation (Lozupone et al. 2006).

Results

Ectomycorrhizal fungi were common in roots ofOreomunnea
at all developmental stages and sites at Fortuna, Panama.
Seedlings, saplings, and adults of Oreomunnea did not differ
significantly in infection frequency (i.e., the percentage of root
tips with visible EM infection) (F=2.69, df=2, 160, P=0.07),
although a trend suggested somewhat lower incidence in seed-
lings (Fig. 2).

Infection frequency by EM fungi differed significantly
among sites (F=2.88, df=3, 159, P=0.04), reflecting a signif-
icantly higher infection frequency at Alto Frio than Honda B
(Tukey HSD P=0.043). Consistent with the differences
among sites, we observed significant differences in infection
frequency when the sites were grouped by soil fertility/rainfall
(P=0.0195; Fig. 2). There was no evidence that variation in
infection frequency reflected a meaningful interaction of site
and developmental stage (F=0.16, df=6, 151, P=0.98).

Richness and diversity of EM fungi

In total, 473 mycorrhizal root tips were collected from adult
trees, saplings, and seedlings. Sequences obtained from 234
root tips (49.3 %; Table 2) yielded 115 OTUs (Fig. 3). Overall
EM fungal diversity was high (Shannon-Wiener Index, H′=
4.56; Simpson’s Index, 1-D=0.99, Fisher’s alpha=89.5;
Table 3; see also Fig. 3).

Diversity of EM fungi was similar among developmental
stages of Oreomunnea (Table 4, Fig. 4). In contrast to our
prediction, EM fungal diversity was also similar among sites,
with no apparent relationship to soil fertility/rainfall (Table 4,
Fig. 4). Although the community of EM fungi was highly
diverse, accumulation curves were asymptotic once singletons
were removed (Fig. 4).

Community composition of EM fungi

Consistent with our prediction, we found that communities of
EM fungi did not differ as a function of Oreomunnea devel-
opmental stage (ADONIS; F=1.09, df=2, 30, P=0.34).
However, ADONIS revealed significant differences in EM
fungal community composition among sites (F=1.81, df =3,
29, R2=0.17, P=0.005). Only one species (Laccaria sp. 4)
was found in all sites. Six OTUs occurred in at least three sites
(Table S1). Overall community composition was most similar
between Honda A and Honda B, which shared 16 OTUs.

NMDS suggested differences in the EM fungal community
as a function of soil fertility/rainfall: the low fertility/high rain-
fall sites (Honda A and B) grouped separately from the high
fertility/low rainfall sites (Hornito and Alto Frio) (Fig. 5).
However, the Mantel test also revealed a significant, positive
correlation between geographic proximity and community sim-
ilarity (R=0.61, P=0.001). Because geographic proximity is
positively associated with environmental similarity in our
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study, the relative importance of spatial and environmental fac-
tors is difficult to interpret. We therefore examined the impor-
tance of environmental factors alone by evaluating correlations
of PCA axes with NMDS. Only the first PCA axis (PC1) was
significantly correlated with the first two axes of the NMDS
(R2=0.69, P=0.001; Fig. 5). PC1 accounted for 62.5 % of the
variation in environmental variables and was negatively asso-
ciated with soil fertility and positively associated with annual
rainfall. Correlation of the PCA axis with the NMDS suggests
environmental filtering driven by rainfall and/or soil fertility
influences EM fungal community composition in addition to
geographic proximity.

Taxonomic placement of EM fungi

Overall, 99 % of sequenced root tips were colonized by EM
fungi belonging to 13 lineages sensu Tedersoo et al. (2010b): /

amanita, /byssocorticium, /boletus, /clavulina, /laccaria, /
cortinarius, /elaphomyces, /cantharellus, /coltricia, /inocybe, /
russula-lactarius, /sebacina, /tomentella-thelephora, and /
tricholoma. The most OTU-rich lineages were /russula-
lactarius (36 OTUs from 97 root tips), /tomentella-thelephora
(25 OTUs from 39 root tips), /cortinarius (14 OTUs from 27
root tips), /boletus (10 OTUs from 12 root tips), and /laccaria (5
OTUs from 17 root tips). Three root tips were colonized by
members of the Strophariaceae, Marasmiaceae, and a genus
of Atheliaceae considered to be saprotrophic; these were ex-
cluded from further analysis.

Russula, Tomentella, and Laccariawere present in all sites.
Laccaria was especially abundant in the high fertility/low
rainfall sites (Table S1). Cortinarius was not observed in
Alto Frio and was rarely observed in Hornito (high fertility/
low rainfall sites), but was abundant in Honda A and B, mak-
ing up 16 and 26 % respectively, of the total number of se-
quenced root tips. Boletus and Clavulina were found only in
low fertility/high rainfall sites (Honda A, Honda B), but were
not common.

The four most abundant OTUs represented Russula
(16 % of sequences). These included one unidentified
species (Russula sp. 2), Russula cyanoxantha (Russula
sp. 3), Russula puellaris, and Russula cf. pectinata (see
Table S1 for information about OTUs and taxonomic
distributions across sites). Russula spp. were found in
association with roots of adults, saplings, and seedlings
(Fig. 6).

Phylogenetic diversity of Russula

The most commonly found clades within Russula included
representatives from roots as well as fruiting bodies
(Fig. S1). In some clades, BLAST matches were consistent
with estimated taxonomy based on phylogenetic analysis, but
in other cases taxonomic placement at the species level dif-
fered between the two approaches. For example, one of the
more common morphotypes is related to R. cyanoxantha (se-
quences from this study form a clade with identified vouchers
from Hibbett (GQ452059) and Smith et al. (2007b)
(DQ974758)).
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Fig. 3 Species (OTU) accumulation curves of EM fungi colonizing root
tips of Oreomunnea mexicana at Fortuna. OTUs were based on 97 %
sequence similarity. The analysis includes all sequences obtained in the
present study. The gray solid line indicates observed OTU richness; dot-
ted gray lines represent the 95 % confidence interval around observed
richness; the black solid line indicates the bootstrap estimate of total
species richness; the dashed black line indicates the accumulation curve
for nonsingleton OTUs

Table 3 Diversity of the EM
fungal community for each site
and for all developmental stages
of Oreomunnea

Index Honda A Honda B Hornito Alto Frio Seedlings Saplings Adults

Simpson 0.94 0.94 0.95 0.94 0.97 0.97 0.97

Shannon 3.07 3.07 3.09 2.57 3.67 3.64 3.61

Fisher’s alpha 73.3 33.9 64.7 28.5 79.4 78.3 55.5

PD 0.87 0.99 1.33 0.98

Simpson and Shannon indexes are based on 99 randomizations and restricted to 24 samples per site and 42
samples per developmental stage (consistent with the minimum number of samples recovered per site or stage;
see Table 2). Faith’s phylogenetic diversity index (PD) was calculated based on sampling 19 Russula OTUs per
site
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Phylogenetic diversity of Russula did not differ as a func-
tion of fertility/rainfall (PDhigh fertility/low rainfall=2.15, PDlow

fertility/high rainfall = 3.53, t=−0.9521, df=2, P=0.506)
(Table 4). We found no significant structure in the Russula
phylogeny as a function of Oreomunnea developmental stage
(Fig. S1), either when comparing adults and seedlings
(UniFrac analysis, P=0.29) or seedlings and saplings (P=
0.73). However, consistent with our prediction, the phyloge-
netic composition of Russula communities differed signifi-
cantly among sites (P<0.001) and when sites were grouped
according to fertility/rainfall (P<0.001). Significant differ-
ences were observed between Alto Frio and Honda A
(P<0.001), Alto Frio and Honda B (P<0.001), and Honda
B and Hornito (P=0.01–0.05), but not between sites with
similar fertility/rainfall.

Discussion

This is the first detailed inventory of EM fungi associated with
the widely distributed neotropical treeO. mexicana and one of
the few analyses of EM fungal community diversity in a trop-
ical montane forest. Ectomycorrhizal tree species that have
been studied in detail in the neotropics include Dicymbe
corymbosa (Fabaceae), Pakaraimaea dipterocarpacea
(Dipterocarpaceae), Quercus crassifolia and Q. laurina
(Fagaceae), and Coccoloba spp. (Henkel 2003; Miller et al.
2000; Moyersoen 2006; Morris et al. 2009; Tedersoo et al.
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Fig. 4 Ectomycorrhizal species accumulation curves and 95 % confidence
intervals based on 1) All OTUs (black) and 2) excluding singletons (gray)
OTUs derived from 97 % sequence similarity. Upper panel: accumulation

curves per site for Honda A, Honda B, Hornito, and Alto Frio. Lower panel:
accumulation curves for three developmental stages: seedlings 5–20 cm in
height, saplings 40–100 cm in height, and adults
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Fig. 5 Nonmetric multidimensional scaling (NMDS) plot showing
differences in the EM fungal community composition among sites
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of environmental variables (PC1) was significantly correlated with
compositional variation (R2=0.69, P<0.001; see text for further
explanation). Stress=0.116
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2010a; Smith et al. 2011, 2013). Our study adds new data for a
representative of the Juglandaceae in an area of high plant
species richness, and dramatic local-scale differences in soil
types and rainfall patterns.

Our results reveal that species diversity of EM fungi asso-
ciated withOreomunnea is high despite the small spatial scale
at which this study was carried out. In conjunction with other
inventories, our data suggest that tropical forest EM fungal
communities can be as species-rich as those found in temper-
ate forests (i.e., Smith et al. 2011; Henkel et al. 2012;
Diédhiou et al. 2014). A comparison of EM fungal diversity
in root tips using Fisher’s alpha showed no significant differ-
ence between temperate forests (mean Fisher’s alpha=46.87,
SD=55.23) and tropical forests studied thus far (mean
Fisher’s alpha=47.06, SD=52.65; F<0.001, df=1, 46, P=
0.992). When comparisons were restricted only to angio-
sperms, the results still did not differ significantly (temperate
forests, mean Fisher’s alpha=62.02, SD=80.97; P=0.618).

All of the major EM fungal clades sensu Tedersoo et al.
(2010b) encountered in this study have been reported previous-
ly in both temperate and tropical EM fungi inventories (Peay
et al. 2010; Smith et al. 2011; Tedersoo et al. 2011; Phosri et al.
2012; Diédhiou et al. 2014).Members of the /russula-lactarius, /
cortinarius, and /tomentella-thelephora lineages were

particularly abundant, accounting for 72 % of OTUs. An over-
all dominance by Russula has been found in other above- and
belowground EM fungal inventories in tropical forests (Peay
et al. 2010; Smith et al. 2011; Tedersoo et al. 2011; Henkel et al.
2012; Phosri et al. 2012; Diédhiou et al. 2014), suggesting that
this is an important taxonomic group to focus on in future
biogeographic and systematics-based studies.

Consistent with the few previous studies of EM fungal
communities in tropical forests, we observed strong commu-
nity dissimilarity of EM fungi across sites. For example, in
Dicymbe-dominated forest in Guyana, Smith et al. (2011)
found significant differences in EM fungal species composi-
tion among 19 sites with an average inter-site distance of
689 m. Peay et al. (2010) found significant clustering in com-
munity composition in sites with similar soil types in
dipterocarp-dominated forest in Lambir Hills National Park,
Sarawak (Malaysia). Our results suggest that variation in EM
fungal communities at small spatial scales also may be a fea-
ture in montane tropical forests, expanding the scope for local
turnover to greatly enhance alpha and beta diversity at small
spatial scales.

Geographic distance and environmental similarity are con-
founded in our study area, as the distance between sites within
the same soil/rainfall characteristics was small (0.2–1 km)

a

b

Fig. 6 a Relative abundance of
OTUs based on 97 % sequence
similarity. Columns in black show
OTUs infecting adults, saplings,
and seedlings. b Relative
abundance of fungal genera
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compared to the distance between sites with different charac-
teristics (6 km). However, our analyses suggest an important
role of environmental factors, here defined as soil fertility and
rainfall patterns, in potentially filtering community structure.

At present, our sampling is not sufficient to define the rel-
ative importance of soil fertility versus rainfall patterns in
shaping EM fungal communities in Oreomunnea. In general,
high rainfall sites tend to have low nutrient availability due to
increased leaching (Austin and Vitousek 1998); however, var-
iation in fertility in our sites is determined by differences in
underlying geology. Variation in fungal community
composition may also in part be driven by dispersal
limitation, which also could underlie a significant
Mantel correlation between geographic distance and
community dissimilarity. In spite of our inability to
identify the exact environmental variables that drive
EM fungal beta diversity, our study suggests that abiotic
factors can drive high levels of species turnover in EM
fungal communities that associate with the same host
species.

Turnover in the EM fungal community as a whole was
echoed by turnover in OTU assemblages among sites in key
fungal genera. For example, even when singletons were re-
moved, 14 of 21 Russula OTUs found at the high fertility/low
rainfall sites were not found in either of the low fertility/high
rainfall sites. UniFrac results also showed significant differ-
ences in the phylogenetic relatedness of Russula communities
across sites consistent with environmental filtering: Russula
communities associated with the two high fertility/low rainfall
sites were less closely related with the ones found in low
fertility/high rainfall sites than expected by chance.

Temperate Russula, particularly from the subsection
Foetentineae, tend to inhabit more fertile habitats with rela-
tively higher N availability (Avis et al. 2003; Avis et al. 2012)
and have been reported to increase in abundance in response
to N fertilization in permanent plots (N addition of 5.4 or
17 g N m−2 year−1 in oak savanna; Avis et al. 2003). Several
authors have also noted that EM fungi associated with N-rich
habitats may form less beneficial or parasitic relationships
with their hosts (Johnson et al. 1997; Egger and Hibbett
2004; Avis 2012). It is possible that less beneficial EM fungi
reduce the competitive advantage of Oreomunnea relative to
co-occurring tree species in the more fertile sites studied here
(Table 1).

In contrast, all of the 14 species of Cortinarius observed
here were found infecting root tips at the low fertility/high
rainfall sites. Some Cortinarius species have been shown ex-
tract N from organic sources under conditions of low N avail-
ability (Taylor et al. 2000; Lilleskov et al. 2002; Avis et al.
2003). More research on functional traits may help us under-
stand the influence of fertility and rainfall on fungal commu-
nity composition, and its effect on associated plant
communities.

We found that diversity and composition of EM fungal
communities did not differ among developmental stages of
Oreomunnea. Strikingly, some of the most abundant Russula
OTUs were found in all stages, and UniFrac analyses revealed
the similarity of Russula communities in both adults and seed-
lings, and seedlings and saplings. A similar result was found
in seedlings and adults of EM tree species in Guinean tropical
rain forest, where the OTUs infecting several developmental
stages were the most abundant in the EM fungal community
(Diédhiou et al. 2010).

Russula as a candidate for ectomycorrhizal network
effects in Oreomunnea

Indirect evidence consistent with the existence of EM net-
works in tropical forest comes from experiments showing that
hyphal exclusion increases the mortality and decreases the
growth rate of EM seedlings (Onguene and Kuyper 2002;
McGuire 2007). However, no study has yielded direct evi-
dence of resource transfer (i.e., nutrients or water) to seed-
lings, nor identified the EM fungi potentially involved in such
transfer, in tropical forest. Analyses of EM fungal composition
is important, as EM networks effects are unlikely to strongly
impact recruitment of host trees unless common EM fungal
taxa infect both seedlings and adults. At Fortuna, network
effects on Oreomunnea might be more likely to occur at the
low fertility/high rainfall sites of Honda A and B, where seed-
ling densities are exceptionally high, and seedling mortality
rates are low below crowns (Table 1). In our surveys, OTUs
representing Russula cyanoxantha, Russula sp3, Russula
puellaris, and Russula cf. pectinata accounted for 24 % of
sequences in the low fertility/high rainfall sites. Further stud-
ies might profitably target whether resource transfer to seed-
lings occurs via members of this group.

Although inventories of EM fungal fruiting bodies and root
tips have been made in oak-dominated forests in Central
America (Halling and Mueller 2005; Mueller et al. 2006;
Morris et al. 2009), this is one of the first belowground sur-
veys of EM fungi in a tropical montane forest and provides
insight into the diversity of EM fungal species associated with
Oreomunnea across sites varying in fertility and in the amount
and seasonality of rainfall. The rationale for this project was to
provide information for future experiments that will explicitly
test for the existence of mycorrhizal networks and their effects
on Oreomunnea seedling performance. This information will
be useful to uncover the factors driving plant–soil feedback
and EM host tree dominance in tropical montane forests.
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