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Abstract

Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community
composition, diversity, abundance, and spatial distribution - critical components for measuring the contribution of lianas to
forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas =1 cm rooted in a 50-ha plot
on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently
rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree
species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree
densities have increased on BCl compared to surveys conducted 30-years earlier. This study represents the most
comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted
liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of
woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana
species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly
indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for
stems =1 cm diameter and nearly 140% for stems =5 cm diameter, while tree density on BCl decreased 11.5%; a finding
consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density
and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps,
and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCl and
other neotropical forests.
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Introduction mechanisms that control liana species abundance and distribution
within forests. For example, a highly aggregated liana distribution
would be consistent with the hypothesis that within-forest liana
distribution is driven by treefall gaps [8,17], and thus lianas would
likely have a large effect on gap-phase regeneration, e.g. [9]. Many
liana species colonize gaps primarily via stems that fall with the
gap-making tree and then rapidly propagate through clonal
reproduction [1,3,18,19]. Thus, we would expect the liana species
that can capitalize on treefall gaps should arrive soon after gap
formation, possibly via clonal reproduction, and that most of the
stems within aggregations would be similarly sized. In contrast,
liana species that recruit into the understory (from either seed or
by clonal stems) should colonize more continuously over time,
regardless of canopy openness, and thus we would expect to find
much more variation in stem sizes within aggregations.
Currently, there exists little information on landscape-level liana
distribution and spatial structure, and how the production of

Lianas (woody vines) are a common plant growth-form in
lowland tropical forests where they affect many aspects of tropical
forest dynamics and function. Lianas reduce tropical tree
recruitment, growth, survival, fecundity, and diversity [1-10]. At
the community level, lianas appear to influence tree species
composition by competing intensely with certain tree species, but
not with others [9,11-13]. At the ecosystem level, lianas have the
potential to substantially alter forest carbon, nutrient, and water
dynamics by decreasing whole-forest carbon sequestration and
storage, redistributing nutrients horizontally across the forest
landscape, and reducing available soil moisture during seasonal
droughts [14-16].

Determining landscape-level distributions and spatial patterns of
lianas 13 essential to accurately predict the forest areas and
processes on which lianas will have the greatest influence, to assess
the community ecology of lianas, and to provide insights into the
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clonal stems influences these factors. Most studies of liana ecology
are conducted at relatively small spatial scales (<1 ha; e.g.
[1,2,11,20]) or include only very large lianas (=100 mm diameter;
e.g. [21,22]). Thus, previous studies rarely provide a sample size
large enough to examine how lianas are distributed across the
landscape. Few studies have systematically examined the preva-
lence of clonality of many liana species, and how this mode of
regeneration can dictate liana abundance and distribution within a
forest (but see [23]). Furthermore, few studies have compared liana
and tree spatial distributions, which may differ substantially if the
distribution of each growth form is determined by different
mechanisms. For example, while the distribution of many tree
species within a forest may be influenced by edaphic factors, e.g.
[24,25], within-forest liana distribution may be more strongly
influenced by the occurrence of canopy gaps [8,17,26].

Moreover, the relative abundance and biomass of lianas appear
to be increasing throughout the neotropics [27]. On Barro
Colorado Island (BCI), liana productivity and flower production
has increased substantially compared to trees [28,29], and the
proportion of trees infested by lianas has increased from 32% to
nearly 75% over the past four decades [10]. In 1979, lianas were
censused in ten 0.1 ha plots on the central plateau on BCI [1], in
the area where the BCI 50-ha plot is now located, but until now
we lacked comparable data to examine whether liana density has
increased on BCI. An increase in liana density is likely to have
significant consequences for community and ecosystem level
processes in tropical forests [30].

In this study, we present the most comprehensive spatially
contiguous sampling of lianas ever conducted and we provide the
first full description of the liana community of the BCI 50-ha plot.
We quantified the abundance, diversity, and distribution of all
lianas (=1 cm diameter) rooted in the BCI 50-ha forest dynamics
plot, located in central Panama. We used this dataset to address
the following five questions.

1) What is the contribution of lianas to woody species richness,
stem density, and basal area in the BCI 50-ha plot?

2)  What is the spatial structure and distribution of lianas in the
BCI 50-ha plot and how do distributions vary among liana
species?

3)  How do liana species vary in their production of clonal
stems, and do liana species with a high propensity for clonal
reproduction have higher stem density and larger mean
stem diameter than species with a low propensity for clonal
reproduction?

4)  How do spatial aggregation patterns of liana species
compare to those of trees? Furthermore, how do spatial
aggregation patterns of liana species with many clonal stems
compare to liana species with few clonal stems?

5)  Has liana density (both absolute and relative to trees)
increased in the BCI forest over the past 30 years?

Methods

Study Site

The forest of the BCI 50-ha plot is almost entirely old-growth
seasonally moist lowland tropical forest, with a small (~1 ha)
portion of late secondary forest (>100 yrs-old [31]). Mean annual
rainfall is around 2600 mm, with a dry season from December
until May. In 1980-1982, all trees =1 cm diameter were
measured, mapped, identified, and tagged in the 50 ha plot and
have been censused every five years thereafter [32]. Tree data used
in this study are from the 2005 census (published in 2011 on the
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CTFS website: https://ctfs.arnarb.harvard.edu/webatlas/
datasets/bci/abundance/). Because this study was conducted on
the Barro Colorado Nature Monument, no specific permits were
required. Descriptions of the geology, climate, flora and fauna of
BCI, as well as the census of the 50-ha plot can be found in
references [32-35].

Liana Census of the BCl 50-ha Plot

From February through December 2007, we tagged, mapped,
measured, and identified all rooted lianas =1 cm diameter using
the census methods described in [35] and [36]. We measured liana
stem diameter 1.3 m from the rooting point and tied a uniquely
numbered aluminum tag to the stem. We mapped the rooting
point of each liana using the existing 20,000 5x5 m grid markers
to aid in recording the precise location of the stem (within 0.5 m),
and we digitized all maps. We considered each separately rooted
liana that was not connected aboveground to any other liana in
the study to be an “apparent genet” because it appeared to be a
genetically distinct individual [5]. When a single liana had multiple
rooted stems =1 cm in diameter, we considered the largest
diameter stem to be the “principal stem” (and apparent genet),
and each of the smaller stems to be the clonally produced ramets
[5,35,36]. Thus, throughout the manuscript we use the terms
“principal stem” and “clone” to distinguish between these two
stem types. Stems that branched within 40 cm of the rooting point
are notoriously difficult to measure accurately [35]; therefore, for
these stems, we measured all branches 1.3 m from the rooting
point and calculated basal area as the sum of the branch basal
areas (follows [5,35,36]). Branches were not considered to be
clones because they did not have a separate root system and were
analogous to the branches of a tree rather than a clonal stem
[5,35,36].

We identified lianas to species in the field using a combination
of stem, leaf, and flower characteristics, and we were able to
identify 98.5% (46,495) of the individuals to species. We were
unable to identify to species 1.5% (688) of the individuals, usually
because we were unable to see the leaves to confirm the species
identity. We were also unable to identify to species 27 individuals
in the genus Smilax (Smilacaceae), so we excluded this genus, along
with the unidentified stems, from all species-level analyses.

Quality Control

During the course of the 10-month census, we reduced errors by
implementing five levels of quality control [35]. 1) All datasheets
were examined weekly for anomalies or missing data and
anomalous data were checked and revised in the field. 2) Two
field supervisors used the maps to locate lianas in each of the 1250
20x20 m quadrats to ensure that the liana locations were mapped
correctly. Mapping errors were corrected in the field prior to
digitizing the maps. 3) The field supervisors checked stem
measurement locations for randomly selected lianas in each
20x20 m quadrat to ensure that the correct stem measurement
protocol was followed; errors were corrected in the field. 4) The
field supervisors checked the accuracy of the diameter measure-
ments by re-measuring approximately 5% of the lianas in each
20x20 m quadrat, thus ensuring that there were no systematic
measurement errors among the field technicians. 3) We quantified
the error rate for our estimate of liana clonal reproduction by
randomly selecting and revisiting 5% (64) of the 1250 20x20 m
quadrats and counting and re-measuring all rooted liana ramets
(clones) that were =1 cm diameter and still connected to the
principal stem (3,768 stems total). The mean error rate for
determining clonal reproduction was <1% at both the quadrat
level (0.89%) and at the individual liana level (0.50%).
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Diversity Estimates and Liana Species-area Accumulation
Curves

We calculated liana and tree species richness (number of
species), Fisher’s alpha, Shannon diversity index, dominance, and
evenness for all independently rooted principal stems (Table S1).
We compared relative abundance patterns between lianas and
trees in two ways. First, we constructed frequency distributions of
the log-transformed number of species falling within relative
abundance classes. Second, we constructed rank-abundance
curves for both lianas and trees by plotting log relative abundance
of a species on the y-axis and species rank abundance on the x-
axis.

We determined liana species-area curves across the entire
1000 mx500 m (50 ha) plot by calculating mean liana species
richness for non-overlapping square quadrats ranging in size from
25 m? (20,000 5x5 m plots) to 250,000 m* (two 500x500 m
plots). In total we used 13 quadrant size classes, and for each
quadrat size class we calculated the mean species richness of the
replicate quadrats. We sampled from the southwest corner of the
plot and continued to the northeast corner to preserve the
geographical integrity of liana distribution across the plot [37]. For
quadrat sizes that did not divide evenly across the 50 hectares, the
remaining areas that did not fit into the quadrants (the northern
and eastern edges) were excluded from the analysis (methods
follow [37]). We examined liana accumulation for three different
minimum diameter size classes (=1 cm, =5 cm, and =10 cm),
both including and excluding clonal stems. We determined
species-area curves for the three size classes for both lianas and
trees to compare species accumulation with area sampled between
the growth forms.

Liana Clonality and Relative Abundance

We quantified clonal reproduction of a species as the percentage
of rooted stems =1 cm diameter that were still physically attached
to larger rooted stems in the census. We did not excavate stems to
determine underground connections among stems, and clones
likely decay over time, so our estimates of clonal reproduction are
conservative. We calculated per-species percent clonal reproduc-
tion as the number of clones divided by the sum of the principal
stems and clones for each species. We used Pearson’s correlation to
examine the relationship between a species’ observed percent
clonal reproduction and its log-transformed principal stem density
and mean diameter — testing the hypothesis that liana species
attain high abundance and size due to their ability to reproduce
clonally. We excluded 12 species with very low sample sizes from
this analysis (eight singletons and four species with only two
individuals).

Liana and Tree Species Spatial Distribution Patterns

We analyzed the spatial distribution patterns for the 82 liana
species with more than 65 principal stems. We used 65 as our
threshold abundance because this is the minimum population size
to accurately detect tree habitat associations within the BCI 50-ha
plot [38]. Thus, our analysis provides a consistent comparison with
trees [17,38]. For comparisons between lianas and trees, we
matched each of the 82 liana species with a unique tree species in
the BCI 50-ha plot having the most similar population sizes,
resulting in a total of 44,971 lianas and 44,515 trees. Mean
differences in population sizes between the liana and matched tree
taxa were less than 4%.

To compare aggregation patterns of trees and lianas, we used
Ripley’s K function to assess whether species distributions were
significantly clumped [39], then fit a Poisson cluster model (PCM)
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to the species K function following the method of Plotkin et al.
[40]. The PCM treats a species distribution pattern as a function of
the parameters p, an estimate of the density of population clusters
per unit area, and o, an estimate of the mean cluster size
(diameter). To determine whether the propensity of a liana species
to produce clones influenced its spatial pattern across the 50-ha
plot, we correlated the values of p and & with the proportion of
stems that were clones for the 82 most abundant lianas using
Spearman’s rank correlation. We performed these tests both
including and excluding clonal stems from the estimation of the
PCM parameters.

To determine whether the 82 liana species differed in their
within-cluster stem diameter distributions, we analyzed the spatial
correlation of liana diameter distribution through the A&, function
[41], using the Stoyan’s mark correlation function as a test
function [42] using R (R development core team, 2011). We used
the random labeling null model to test independence in the mark
distribution [43], and the translation correction to address any bias
introduced by edge effects [44]. Empirically derived values of the
K., function that were above the upper 95% quantile of the null
model imply that liana stem diameters within clusters were more
similar than expected by chance, suggesting that individual stems
of that liana species recruited at similar times. Values of below the
lower 95% quantile of the null model imply that liana stem
diameters for that species were less similar than expected by
chance, suggesting that the individual stems recruited sequentially
over time. Values of within the 95% quantile bounds of the null
model simulation indicate that there is no within-cluster liana stem
diameter pattern for that species. We tested for stem diameter
differences within aggregations both including and excluding
clones using Wilcoxon rank sum test.

Increasing Liana Density on BCl

To test the hypothesis that liana density has increased on BCI
over the past 3 decades, we compared our data with those of Putz
[1], who, in 1979, sampled all rooted liana stems in 10 randomly
placed 25 x40 m plots (1 ha total) on the BCI central plateau - the
same general area where the BCI 50-ha plot is located. To make
our sampling comparable with that of Putz [1], we computed the
mean density of all rooted lianas in 500 25 x40 m plots within the
50-ha plot. We compared the two datasets using a non-parametric
Wilcoxon rank sum test. We compared the number of rooted
stems in the =1 cm and =5 cm size classes to determine whether
lianas were increasing uniformly between these two size-classes.
Since most liana biomass is concentrated in stems =5 cm (see
Results), determining the change in this size class allowed us to
assess directly whether liana biomass is increasing in this forest. To
examine whether lianas have increased relative to trees, we
compared the change in liana density to the change in trees
density (stems =1 c¢m) in the BCI 50-ha plots from 1982 until 2005
using tree data from the CTFS website.

Results

Liana Density, BA, and Diversity in the BCl 50-ha Plot
Over the 50-ha area there were 47,183 separately rooted liana
principal stems =1 cm diameter (943.7 lianas ha™'; Figure 1).
There were 428 large (=10 c¢m diameter) principal stems (8.6 large
lianas ha '), accounting for less than 1% of all principal stems.
The three largest liana stems in the BCI 50-ha plot were 55.1 cm,
42.8 cm, and 37.0 cm in diameter, and were identified as
Prionostemma asperum (Hippocrateaceae), Entada gigas (Fabaceae),
and Bauhinia guianensis (Fabaceae), respectively. The total basal area
of liana principal stems =1 cm diameter was 36.76 m®
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Lianas BCI

Figure 1. The rooted liana stems (=1 cm diameter) in the Barro Colorado Island, Panama 50-ha plot. The plot is 1000 m on the x-axis
and 500 m on the y-axis. Blue circles denote principal stems and orange circle indicate clonal stems that are rooted in the plot but still attached to a
principal stem. Basal area is indicated by the size of the circle, with the largest liana 55.1 cm diameter and the smallest lianas 1 cm diameter.

doi:10.1371/journal.pone.0052114.g001

(0.74 m® ha™"). Liana principal stem density decreased predict-
ably with increasing diameter size classes, with the majority of all
stems in the smaller size classes (Figure 2). Half (50.6%) of the total
principal stem basal area (and thus more than half of the estimated
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Figure 2. The number of liana and tree stems (log-transformed
and excluding clonal stems) across 1 cm diameter size classes
in the Barro Colorado Island, Panama 50-ha plot. Error bars
represent 95% confidence intervals, which were calculated by boot-
strapping over 20x20 m quadrants.
doi:10.1371/journal.pone.0052114.g002
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biomass) was contained in stems =5 cm diameter and 17.3% of
the principal stem basal area was contained in stems =10 cm
diameter, even though these size classes constituted only 8.6% and
0.9% of the liana principal stems, respectively (Table 1).

Throughout the BCI 50-ha plot, there were 162 liana species
from 36 families. In comparison, in 2005 there were 299 tree
species from 57 families. More than half of the liana species (83)
were in the five most liana-species-rich families: Bignoniaceae (22
species), Sapindaceae (22), Fabaceae (16) Malpighiaceae (15),
Apocynaceae (9). Eleven plant families had only one liana species
and seven plant families had only two liana species (Table 2). The
most abundant liana species was Coccoloba excelsa (Polygonaceae),
with 9.1% of all principal stems. Hiraea reclinata (Malpighiaceae)
and Maripa panamensis (Convolvulaceae) were the second and third
most abundant species comprising 6.0% and 5.6% of all principal
stems, respectively. The ten most abundant species comprised
nearly half (48.0%) of the total principal stem density and 40.6%
of the total principal stem basal area. Thirty-four species (21% of
all species) were represented by fewer than 10 individuals, and 8
species (~5% of all species) were represented by only one
individual over the entire 50 ha area. Liana dominance hierar-
chies changed slightly at the larger sizes classes, with Prionostemma
asperum (Hippocrateaceae) being the most abundant species at the
=5 cm and =10 cm diameter size classes, and Maripa panamensis
and FEntada gigas (Fabaceae) being the second most abundant liana
species at these larger size classes, respectively.

In the context of all woody plants (lianas and trees =1 cm),
liana principal stems constituted 18.5% of total woody plant
density (Figure 2) and 35.3% of the species in the BCI 50-ha plot,
but only 2.2% of the total woody plant basal area (Table 3).
Compared to trees, liana stems were smaller and their frequency
decreased faster with increasing diameter (Figure 2). Liana
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diversity, as measured by the Shannon diversity index, was slightly
higher than trees because the lower species richness of lianas was
balanced by higher evenness (Table 3). Indeed, liana rank-
abundance curves had lower y-intercepts, were initially shallower,
and were subsequently steeper than those of trees (Figure 3).

Clonal Reproduction

Clonal reproduction of lianas was surprisingly high; there were
20,264 clonal stems (=1 cm diameter) rooted in the 50-ha plot
and still connected to a principal stem. Adding clonal stems
increased liana density 43% to 67,447 total lianas rooted in the 50-
ha area (1350 lianas ha™'; Figure 1). Clonal stems added 12.46 m?
in basal area, which increased liana basal area 34% to 49.21 m?
over the 50 hectares (0.98 m? ha™'), and liana clones were
prevalent even at very large size classes (Figure 2). Rooted liana
density and basal area (including clones) as a percentage of all
woody individuals were 24.5% and 2.9% of all woody stems.
Species varied from zero to 63% in the percentage of all stems that
were clonally derived, and only 3 of the 129 species with more
than 10 individuals lacked rooted clones. There was a weak but
significantly positive correlation between species’ observed percent
clonal reproduction and the relative density of principal stems
(p=0.03, R?=0.03, n=149). There was a strong significant
positive relationship between species’ observed percent clonal
reproduction and its mean stem size throughout the plot
(p<<0.0001, R2=0.37, n = 149).

Liana Species-area Patterns

Across the 50-ha plot, mean liana richness was 75 species ha ™!
based on 100x100 m plots. Liana species richness increased
rapidly to approximately 125 species at 6 ha, and then increased
more gradually up to 50 ha (Figure 4). Approximately seventy
percent of the species were included in the first six hectares;
however, species were still accumulating at the maximum plot size,
suggesting that rare species would continue to accumulate if we
sampled more than 50 hectares. Nonetheless, our census of the
BCI 50-ha plot captured over 90% of liana species reported for the
entire 1600 ha island [33]. The pattern of liana species
accumulation was similar for all three size-classes; however, only
around one-third of the species present in the 50-ha plot reached
the large liana size-class (=10 cm diameter). Species accumulation
curves followed similar trajectories for trees and lianas (Figure 4).
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Table 1. Size distributions of lianas and trees and shrubs for individuals =1 ¢cm in the BCl 50-ha plot.
Diameter class (cm)  Lianas Trees
Principal clonal rooted Non-rooted Total basal Branches plus
rooted stems stems branches area Principal stems clones Total basal area
(ha™") (ha™") (ha™") (m? ha ") (ha™") (ha™") (m? ha™")
1-2 475.1 2344 54.7 0.122 1479.2 429.2 0.308
2-5 394.7 151.6 13.1 0.417 1695.3 160.9 1.409
5-10 65.3 19.1 0.7 0.300 576.1 114.6 2.759
10-20 8.1 1.4 0.0 0.114 261.7 233 4.069
20-30 0.4 0.0 0.0 0.019 723 0.2 3.396
30-40 0.1 0.0 0.0 0.013 66.4 0.1 8.940
>50 0.0 0.0 0.0 0.000 16.7 0.0 10.811
Liana data are presented as principal rooted stems, all rooted stems (principal stems plus clones), non-rooted branches, and the sum of the basal area of all three stem
types. Tree data are presented as principal rooted stems, all stems (principal stems plus clones plus branches), and the sum of the basal area of all three stem types.
Lianas were censused in 2007 and the trees in 2005.
doi:10.1371/journal.pone.0052114.t001

Liana Spatial Distribution Across the BCl 50-ha Plot

Distributions of the 82 most abundant liana species (excluding
clones) were significantly spatially aggregated at the 50 ha scale.
When the population aggregation pattern was further decomposed
into cluster density (clusters per ha) and size (mean cluster area),
we found that lianas had significantly fewer population clusters
than the matched sample of tree species (Figure 5a; Wilcoxon test,
W=1911, p<<0.001; median cluster densities: lianas 0.30 ha™',
trees 0.83 ha™ '), indicating that lianas had more individuals per
cluster. In contrast, liana and tree cluster size did not differ
(Figure 5b; Wilcoxon test, W = 3490, p = 0.48), although variance
in cluster size was greater for lianas than trees (K-S test, D =0.27,
p<<0.01). Including liana clones did not significantly change our
results for the density of clusters in the plot (Wilcoxon test,
W=3306, p>0.05) or cluster size (Wilcoxon test, W=3112,
p>>0.05); however, including liana clones increased the number of
lianas within clusters.

To explore the effects of clonal reproduction on liana
aggregation patterns, we examined the relationship between the
proportion of clonal stems per species and the values of p and &
for the 82 most abundant lianas. We found that species with more
clonally derived stems had fewer clusters (Spearman r= —0.28,
p=0.012) and, when clones were excluded from the analysis,
species with greater clonality also had smaller mean cluster size
(Spearman r=—0.27, p=0.016). Thus, clonal reproduction
resulted in fewer but more densely packed liana aggregation
patterns.

Similar stem sizes within clusters could indicate that the
individuals of that species recruited at the same time, while a
significant variation in stem sizes could indicate that individuals of
that species colonized sequentially over time. We found that 24 of
the 82 species (29%) had more similar stem diameter sizes per
cluster than expected by chance, whereas 25 species (30%) had
significantly more variation in stem diameters within clusters than
expected by chance (Table 2). The remaining 40% of the species
did not have a significant correlation among stem sizes within
clusters (p>0.05). Including clonal stems did not substantively
change these findings, and only one species (degiphila elata) showed
a complete switch in stem size similarity when the clonal stems
were included in the analysis (Table 2). The different stem
diameter organization within clusters (more or less variation than
expected by chance) among species was not correlated with the
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structure for individuals =1 ¢cm in the BCl 50-ha plot.

Liana Abundance, Diversity, & Distribution on BCI

Table 3. Comparison of lianas and freestanding woody plants (trees and shrubs) in their total abundance and community

Rooted liana

Diversity Index individuals

All rooted lianas Rooted trees & Shrubs

Stem Density 47,185 (18.5%)

Total Basal Area (m?) 36.76 (2.2%)
Species Richness 162 (35.1%)
Fisher's Alpha 21.19
Shannon Diversity 4.01
Dominance 0.031
Evenness 0.339

67,449 (24.5%)
49.22 (2.9%)
162 (35.1%)

208,387
1672.09
299
34.32
3.96
0.049
0.175

doi:10.1371/journal.pone.0052114.t003

number of individuals of a species nor the percentage of clonal
reproduction (p>0.05).

Increasing Liana Density on BCl

From 1979 until 2007, liana density increased by 75% for stems
=1 cm diameter and by nearly 140% for stems =5 cm diameter.
We found 134.9 (%3.7 se) rooted liana stems =1 cm per 25 x40 m
plot in 2007, significantly more than the 77.3 (%10.8) recorded by
Putz in 1979 [1] (P=0.008). For lianas =5 cm, we found 10.2
(£0.3) liana stems per 25x40 m plot versus 4.3 (£1.3) in 1979
(P<<0.001). Thus, lianas have increased an average of 21 stems
=1 cm ha™' year™' and 2.1 stems =5 cm ha”' year ', and
compounding increases of 2.0% and 2.7% per year, respectively

Liana data are presented as both rooted principal stems only (individuals excluding clones) and all rooted stems (principal stems plus clones). Lianas were censused in
2007 and the trees in 2005. The percentage of total woody species are listed in parentheses.

(assuming arithmetically constant rate of increase). In contrast, the
density of trees =1 cm on the BCI 50-ha plot decreased 11.5%
from 235,338 individuals 50 ha™! in 1982 to 208,387 in 2005, an
average decrease of 23 trees ha™ ' year™ !, or 0.6% per year. Tree
density peaked in 1990 at 244,059 individuals 50 ha™' and then
decreased more than 14.5% over the subsequent 15 years.

Discussion

Our study represents the largest and most comprehensive
assessment of tropical liana density, diversity, and distribution to
date. Lianas in the BCI 50-ha plot are both abundant and diverse,
and they are increasing in density and biomass, possibly due to

10 A
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& e Trees (1cm)
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Figure 3. Liana and tree rank-abundance curves over a 50 ha area on Barro Colorado Island, Panama.

doi:10.1371/journal.pone.0052114.g003
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Figure 4. Liana and tree species-area curves for three size
classes over 50 ha on Barro Colorado Island, Panama. Triangles
represent trees and circles represent lianas. Panel A is based on
untransformed data and panel B is based on transformed data.
doi:10.1371/journal.pone.0052114.9g004

global change [27,30]. Lianas are spatially clumped throughout
the BCI 50-ha plot — more so than trees — which may be due to the
ability of lianas to rapidly colonize treefall gaps, particularly via
clonal reproduction [1,3,17,19]. Furthermore, lianas had higher
community evenness and a lower proportion of rare species than
did the tree community. By studying how liana density, BA, and
species richness change across large spatial scales, and how these
patterns differ from those of trees, we gain insight into where and
when lianas will have the largest effect on trees, as well as the
processes governing community assembly of woody tropical plants.

BCI Liana Community Compared to Other Forests

In the BCI 50-ha plot there were a total of 67,447 rooted lianas
(1350 ha™" including rooted clones; 944 ha™' excluding clones)
and 162 species, constituting 24.5% of the woody stems and
35.3% of the woody species (75 species ha™ ). In relation to other
forests, liana density and species richness on BCI was moderate.
For example, liana density and diversity was much higher at
Yasuni National Park in Ecuador, where there were around 1600
rooted lianas (=1 cm diameter) and approximately 180 species in
an area totaling one hectare subsampled throughout a 30 ha area
[43]. If the accumulation in liana individuals and species with area
at Yasuni is similar to that of BCI, we would expect approximately
80,000 individuals and 390 species in the Yasuni 50-ha plot. Tree
diversity is also high at Yasuni (>1,100 tree species in the 50-ha
plot), and thus lianas composed around 25% of the woody species
at Yasuni. In a highly seasonal forest in lowland Bolivian Amazon,
liana density was exceedingly high, with 2471 lianas ha™' (=2 cm
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diameter), yet was less species-rich than BCI (51 species ha ™ *;
[11]). In contrast, mean liana density on BCI was 21% higher
(including only principal stems) than in the ever-wet forest of La
Selva Biological Station in Costa Rica, which had 777 lianas
(=1 em diameter) ha™' and 60 species in 0.78 ha [20]. The
relatively moderate liana density and basal area on BCI is
consistent with global multi-forest comparisons showing that liana
density and basal area [26,46], as well as species richness [47],
tend to increase with increasing seasonality and decreasing mean
annual rainfall.

Clonal Reproduction

Clonal reproduction was common in the liana community of
BCI. Adding clonal stems to principal stems increased rooted liana
density and BA by 43% and 34%, respectively. Our estimate of
clonal reproduction is conservative because connections among
liana ramets may be underground or may decay after the ramet
becomes established, e.g. [1,5,48]. Thus, we likely considered
many lianas to be apparent genets when they were actually clones
that had lost their attachment to the parent stem or whose
attachment to the parent stem was not visible.

The frequency of clonal reproduction was highly variable
among liana species. Both common and rare liana species
displayed evidence of varying levels of clonal reproduction, with
some common species exhibiting extremely high levels of clonal
reproduction (>50% of stems being clonal) and other common
species exhibiting very low levels of clonal reproduction (<5% of
stems being clonal). The significant positive correlation between
observed clonal reproduction and species principal stem density
suggests that clonal reproduction is generally an advantageous
strategy for lianas; however, the very low R? indicates that it not a
strong predictor of stem density for a given species. In contrast, the
strong positive correlation between clonal reproduction and mean
stem diameter indicates that stems of species that produced many
clones tended to be larger than species that produced few clones.
This latter relationship may be driven by rapid growth of clonal
stems, which could gain an advantage from resources supplied by
the maternal stem or, alternatively, larger stems may simply have
more resources to produce clonal stems.

The degree of clonal reproduction can influence liana
population structure. For liana species with a high propensity for
clonal reproduction, all apparently distinct individuals could
theoretically belong to a single giant clone. Although few studies
have examined liana population structure over large distances
using genetic techniques, e.g. [49], observational studies have
shown that liana stems can extend long distances from their root
systems by growing laterally from tree crown to tree crown
throughout the forest, extending more than 500 m from their
initial rooting point in extreme cases [1]. When a tree falls, the
lianas in that tree’s crown are commonly pulled into the gap,
where they resprout vigorously, create new root systems [1,3,50],
and eventually climb back up to the forest canopy far from the
principal rooting point [5,19]. Repeated cycles of lianas climbing
to the forest canopy, growing laterally away from their root
systems, falling to the forest floor, and then resprouting and
growing back to the forest canopy may allow genetically identical
liana stems to spread slowly through the forest over large spatial
and temporal scales.

Liana Distribution and Spatial Structure within the 50-ha
Plot

Lianas were spatially clumped in the BCI 50-ha plot - a pattern
that could be driven by the strong colonization and regeneration
responses of lianas to common forest disturbances, such as the
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Figure 5. Spatial clustering parameters for 82 liana species with >65 apparent genets (filled bars), and for a sample of 82 tree
species with similar population sizes (open bars) in the Barro Colorado Island, Panama 50-ha plot. Parameters are: a) p, the density of

individuals within clusters; and b) o, the mean cluster size.
doi:10.1371/journal.pone.0052114.g005

formation of treefall gaps. Because lianas respond rapidly to
disturbance [1,3,50,51], treefall gaps may be the foci of liana
recruitment [8,9], and this type of small-scale disturbance may
explain the clumped distribution of lianas throughout the forest.
The clumped distribution pattern may be strongly influenced by
highly clonal liana species (Table 1), which had much higher stem
density per cluster and may be more disturbance adapted than less
clonal species [52]. Consequently, the distribution of liana species
within a forest may be driven largely by treefall gaps [3,8,26,53],
and liana species with a high frequency of clonal reproduction may
be responsible for the pattern of densely packed liana aggregations
throughout the forest. Furthermore, by killing canopy trees [10],
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lianas create the very niche that promotes their regeneration,
which may largely explain how liana diversity is maintained in the
forest.

Contrasting patterns of stem diameter size among liana species
within aggregations may also be related to disturbance and may
indicate different liana colonization strategies. We hypothesize
that the presence of many similar-sized individuals within
aggregations indicate a one-step colonization strategy, in which
most stems of a liana species, including clones that were
subsequently separated from the parent stem, recruit at one time,
presumably in the high light environment of a treefall gap [3]. In
contrast, liana species with a wide variation in stems sizes within

December 2012 | Volume 7 | Issue 12 | e52114



aggregations colonize via a consecutive-step strategy, in which
individuals recruit over a longer time span. This latter pattern may
be indicative of more shade-tolerant species that recruit under a
closed canopy.

Determining differences in colonization strategies among liana
species may provide insight into the mechanisms driving liana
increases in neotropical forests [27]. For example, if liana increases
are driven by increasing disturbance, we would expect more
disturbance-adapted and highly clonal liana species to increase in
abundance. In contrast, if other mechanisms such as increasing
aridity, nitrogen deposition, hunting, or elevated atmospheric CO4
are responsible for liana increases [27,30], we may expect that
both disturbance-adapted and highly shade-tolerant liana species
will increase in abundance. If, as we hypothesize, the variation in
stem size within aggregations is a good indicator of shade-
tolerance, then species-specific patterns of liana stem-size distri-
bution throughout the forest and within aggregations provide
useful data for testing hypotheses to explain the observed increases
in liana abundance and biomass in tropical forests.

Increasing Liana Density on BCl

By comparing our data to those collected nearly 30 years earlier,
we found that liana density on BCI increased 75% for stems
=] cm diameter and nearly 140% for stems =5 cm diameter — a
finding that is consistent with other metrics of increasing lianas on
BCI. For example, the amount of liana leaf litter compared to that
of trees on the BCI 50-ha plot increased 40% from 1986 until
2002 [28]. Liana flower productivity also increased faster than that
of trees during this same period [29]. The percentage of trees that
carried (and presumably competed with) lianas increased from
32% in 1967—-1968 to 75% in 2007, and the number of trees with
severe liana infestation in their crowns (>75% crown coverage by
lianas) increased 65% from 1996 to 2007 [10]. Because trees with
severe liana infestation have twice the probability of mortality of
trees with lesser or no liana infestation [10], liana increases will
result in decreased tree growth and survival, which will lead to
decreased forest-wide carbon storage [16,30]. Our data, combined
with previous studies, confirm that lianas are increasing on BCI,
and thus the effects of lianas are also likely to be increasing at this
site.

Liana increases are not unique to BCIL. Over the past three
decades, lianas have increased dramatically relative to trees
throughout the neotropics, and there are now more than ten
published studies to support this emerging pattern [27]. In
addition to Panama, lianas have been reported to increase in
forests in Bolivia [54], Brazil [55], Costa Rica [19,56], French
Guiana [22], and in subtropical forests in South Carolina, USA
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