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Abstract
The diverse soilborne fungi that recruit to seeds after dispersal include some of
the most important agents of seed mortality, as well as strains that enhance
germination or inhabit seeds without detriment. Ecological factors that influence
seed colonization are not well understood yet are fundamental to the interactions
between soilborne fungi and seeds that ultimately influence plant demography
and community structure. Here we present current perspectives on seed defense
syndromes and related frameworks for predicting colonization success of fungi,
with a focus on seeds of tropical pioneer trees. We present a case study that tests
whether fungal host range can be predicted by field observations of host use, seed
defense syndromes, or phylogenetic relatedness of fungi or hosts. We show that
phylogenetic relatedness of hosts, but not fungi, is a strong predictor of fungal
colonization of seeds. We posit that the impacts of individual fungi and microbial
consortia on seed viability and germination may in turn reflect fungal interactions
with the suites of plant defenses codified recently under the broad framework of
seed dormancy-defense syndromes. Our findings set the stage for experiments
that track colonization, germination, and seedling establishment in the field,
important for understanding impacts of fungi on the recruitment of tropical trees.

Keywords
Barro Colorado Island · Clonostachys · Effective specialization · Fusarium ·
Lasiodiplodia · Phylogenetic signal · Pioneer trees · Trichoderma

22.1 Introduction

Fungi are important drivers of plant distributions, demography, and fitness,
influencing the growth, survival, reproduction, and nutrient uptake of the plants
with which they interact (Kirkpatrick and Bazzaz 1979; Harley and Smith 1983;
Agrios 2005; Augspurger and Wilkinson 2007). Insights into their ecology and
natural history in agricultural and agroforestry systems are important for clarifying
the economic aspects of plant-fungal interactions and their response to altered
ecosystems (e.g., Parker and Smith 1990; Agrios 2005; Gilbert 2005; Desprez-
Loustau et al. 2007; Barrett et al. 2009; Bonfante and Anca 2009). Despite a
growing interest in plant-fungal interactions in natural systems, substantial gaps in
knowledge remain regarding the diversity, composition, functional traits, and
importance of the fungi that affiliate with plants in unmanaged plant communities.
These gaps are especially profound for one of the most important but least-studied
guilds of fungi: those that interact with seeds in the soil.

Together, the diverse soilborne fungi that recruit to seeds after dispersal include
some of the most important agents of seed mortality, as well as fungal strains that
enhance germination or coexist with seeds without detriment (see Gallery et al. 2007;
Kluger et al. 2008; Zalamea et al. 2015; Sarmiento et al. 2017; Shaffer et al. 2018).
These impacts are especially profound in earth’s most diverse terrestrial
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ecosystems—tropical forests—where soilborne fungi have emerged as major
determinants of seed fate (Gallery et al. 2010; Dalling et al. 1998; Sarmiento et al.
2017; Zalamea et al. 2018).

As a prelude to the effects of pathogens and mutualists that interact with seedlings
at establishment and in early phases of growth (e.g., Mangan et al. 2010; Bashyal
et al. 2014), seed-associated fungi act as a primary filter that determines the capacity
of tropical seeds to survive and germinate (Zalamea et al. 2015). Understanding the
factors that shape fungal colonization of seeds, and their subsequent impacts on seed
germination and viability, is important for developing predictions about host range,
host specificity, and the roles of fungi in shaping the dynamics of natural and human-
maintained ecosystems from the earliest stages of tree recruitment.

Recent studies suggest that many tropical seed-associated fungi are generalists in
terms of their ability to colonize diverse hosts (e.g., Gallery et al. 2007; Kluger et al.
2008). However, host-specific effects on seed viability and germination are common
and important (Sarmiento et al. 2017). Such functional or effective specialization
plays out in the form of differential impacts of individual fungi on diverse plant
species and, in turn, differential responses of individual plant species to diverse fungi
(Sarmiento et al. 2017).

To date most of the analyses of interactions between tropical seeds and soilborne
fungi have focused on germination and seed viability of species of tropical pioneer
trees (e.g., Sarmiento et al. 2017; Shaffer et al. 2018). Pioneer trees are compelling for
the study of seed-fungal interactions because the small seeds of such early succes-
sional trees frequently persist in soils after dispersal for periods ranging fromweeks to
decades, only germinating when conditions become appropriate (e.g., when canopy
gaps form; Schupp et al. 1989; Dalling et al. 1998). Because the time between gap
formation events in a given site can be on the order of many years, many pioneer trees
have seed traits that allow them to persist in the soil seed bank for years to decades
(Dalling and Brown 2009).

Recent work has shown that seeds of pioneer trees possess suites of defensive
traits that are relevant for their interactions with fungi (Zalamea et al. 2018; see also
Dalling et al. 2011). These “dormancy-defense syndromes” (DDS) represent consti-
tutive physical and chemical defenses that, in particular combinations, can be linked
directly to seed dormancy classes (Zalamea et al. 2018). Broadly, tropical pioneer
trees can have seeds that are ephemeral in the soil (i.e., are quiescent, do not display
strong physical or chemical defenses, and typically germinate without dormancy
when conditions are right). Other species have seeds that are permeable and chemi-
cally well-defended (e.g., with phenols), corresponding to physiological dormancy
(Zalamea et al. 2018). As a third strategy, some species have seeds that are imper-
meable and exhibit robust physical defenses, corresponding to physical dormancy
(Zalamea et al. 2018). Strikingly, physical and chemical defenses of tropical seeds
do not display univariate trade-offs, instead working in concert and linked directly to
dormancy classes (Zalamea et al. 2018).

The DDS framework fosters a predictive approach whereby seed dormancy class
can be used as a proxy for estimating strategies of seed defense against fungi. Such
predictions can be tested experimentally. Sarmiento et al. (2017) and Shaffer et al.
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(2018) have shown that seeds of tropical pioneer trees respond differently to
particular fungi, with the next step being an explicit linkage of the outcome of
such interactions to the DDS model. An important first step is to explore the factors
that shape the earliest phases of interactions between soilborne fungi and seeds—that
is, the process and dynamics of seed colonization, when fungal hyphae first contact
seed surfaces and colonize seed interiors.

Factors that influence colonization of seeds have not been identified for tropical
seed-associated fungi but may include seed traits that reflect the evolutionary
placement and relatedness of host species or functional traits relevant to DDS that
do not necessarily reflect phylogenetic relatedness. Plants that are closely related to
one another typically share more fungal associates with one another than with
evolutionarily distant plants, suggesting that traits reflecting phylogenetic related-
ness are important in determining host ranges of fungi (Webb et al. 2002; Blomberg
et al. 2003; Gilbert and Parker 2016). In line with that prediction, common garden
experiments with nine species of tropical pioneer trees in a lowland tropical forest in
Panama revealed that the communities of fungi that infect seed interiors after burial
in soil (mimicking dispersal) are structured much more strongly by host taxon (e.g.,
host species) than by burial duration, burial location, or seed viability (Sarmiento
et al. 2017). This suggests that the early phases of colonization should reflect the
evolutionary relatedness of hosts. However, some functional traits of seeds are
relatively decoupled from phylogeny, instead appearing to reflect trait convergence.
For example, different species in the genus Trema produce seeds that represent
different dormancy classes (Zalamea et al. 2018). In some cases such functional
traits might vary with phylogenetic relatedness, but in tropical pioneer trees,
members of different families have converged on particular DDS (Zalamea et al.
2018).

Here we provide a case study in which we examine seed colonization by soilborne
fungi. Our aim is to quantify the host range of fungal strains isolated originally from
seeds of tropical pioneer trees, which they colonized in soil in the experiments
described by Zalamea et al. (2015) and Sarmiento et al. (2017). We evaluate whether
host range can be predicted by field observations of host use, seed dormancy-defense
syndromes, or phylogenetic relatedness of fungi or hosts. On the basis of previous
work, we predicted that host range observed in the field would represent a subset of
the potential host range of each strain, that strains would be host-generalists with
regard to seed colonization, and that the earliest phase of seed colonization would
reflect seed traits in a manner consistent with the DDS framework.

Consistent with our first prediction, we show that each fungus colonized multiple
tree species beyond those observed in field surveys. In line with our second predic-
tion, individual strains differed in their capacity to colonize different tree species. In
contrast to our third prediction, we found that phylogenetic relatedness of hosts was a
stronger predictor of fungal colonization than seed dormancy class alone. This
suggests that the ultimate filter of community composition in a given seed may be
the host taxon, consistent with the results shown by Sarmiento et al. (2017). In turn,
effective specialization, which results in differential impacts of fungi on seed viability
and germination in different tree species, may be structured by factors relevant to
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dormancy-defense syndromes of host plants and the functional traits of fungi
themselves.

22.2 Case Study

Our case study was conducted in conjunction with a common garden experiment in
lowland tropical forest on Barro Colorado Island (BCI), Panama, where we are the
seed dormancy-defense syndrome hypothesis (Zalamea et al. 2015, 2018; Sarmiento
et al. 2017). The study examines the defensive traits and microbial associations of
seeds of 18 species of pioneer trees. Briefly, seeds of each species were collected from
multiple maternal sources, surface-sterilized, and buried in mesh bags to exclude
macroscopic predators in common gardens at five locations on BCI. Bags were
retrieved at timepoints ranging from 0 to 30 months, after which seeds were assessed
for viability, germinability, seed coat integrity, and microbial infection (Zalamea
et al. 2015, 2018; Sarmiento et al. 2017).

The experimental design permits seed traits to be linked to microbial infection at
the level of individual seeds, providing an opportunity to estimate the observed host
range of each fungus and their effect on seed survival (Sarmiento et al. 2017). Fungi
were isolated on 2% malt extract agar (MEA) from surface-sterilized seeds that had
been buried in forest soil. The viability of each of those seeds was scored by
tetrazolium staining (Peters 2000), such that each fungal isolate could be traced to a
given tree species, experimental garden, seed burial duration, and seed viability class.
Each strain was vouchered at the University of Arizona Robert L. Gilbertson Myco-
logical Herbarium (ARIZ) and sequenced bidirectionally for a ca. 1000 base pair
fragment comprising the nuclear ribosomal internal transcribed spacers and 5.8S gene
(ITSrDNA) and ca. 600 base pairs of the nuclear ribosomal large subunit (LSUrDNA)
(Sarmiento et al. 2017). These data were used to establish operational taxonomic units
(OTUs) at 95%, 97%, 99%, and 100% sequence similarity, and taxonomic analyses
were placed strains to the genus level and above (Sarmiento et al. 2017).

For the present case study, eight isolates were selected to represent a phylogenetically
diverse pool of strains that contain both distantly and closely related taxa (Table 22.1).
Together the focal strains represent four genera and four families of Ascomycota and a
range of observed abundance, host range, and host effects (Sarmiento et al. 2017). Our
selection included two pairs of isolates that are 99% similar in the ITSrDNA-LSUrDNA
region, and a pair of isolates that are 95% similar (Table 22.1). We present results that
use 99% ITSrDNA-LSUrDNA similarity as our OTU designation, though results with
other OTU cutoffs gave qualitatively similar results.

These fungi were used to inoculate seeds of five species of pioneer trees in vitro:
Apeiba membranacea (Malvaceae, physical dormancy), Ficus insipida (Moraceae,
quiescent), Zanthoxylum ekmanii (Rutaceae, physiological dormancy), Trema
micrantha “brown” (Cannabaceae, quiescent), and Trema micrantha “black”
(Cannabaceae, physiological dormancy; see Dalling et al. 1997; Silvera et al. 2003;
Pizano et al. 2010). These species co-occur on BCI (Dalling et al. 1997) and are being
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studied as part of the larger experiment described above (Sarmiento et al. 2017;
Zalamea et al. 2018).

22.2.1 Experimental Procedures

Fresh, mature fruits or recently fallen seeds of each focal species were collected from
multiple adult trees per species at BCI. Seeds were removed from the fruits, cleaned,
allowed to dry, and stored using standard protocols for each species (Zalamea et al.
2018). Our methods followed Sarmiento et al. (2017) and Shaffer et al. (2018).
Briefly, we exposed 5 sets of 20 seeds of each species to each fungal isolate. Prior to
inoculation, seeds were surface-sterilized by sequential immersion (95% EtOH, 10 s;
0.7% NaClO, 2 min; 70% EtOH, 2 min). This procedure removes surface microbes,
but does not affect germination or viability (Gallery et al. 2007; Sarmiento et al.
2017). Seeds then were placed on a lawn of actively growing fungal mycelium
(ca. 11–13 days old) on 2%MEA in 60 mm Petri dishes (20 seeds/dish). Dishes were
wrapped with Parafilm and incubated in the dark at ambient temperatures (consistent

Table 22.1 Seed-associated fungi used in case study to assess seed colonization in in vitro trials

OTU
identification

Isolate
frequency
(%)

Viability
score Observed associations

Focal
isolate
(s)

Original
source

Clonostachys
sp.

1.6 0.09 AS, LL, TB PS0504 TB

Fusarium
sp. 1

0.06 0.33 AM, AS, CI, CL, CP, CG
LS, TB, ZE

PS0018 AM

PS0943 AS
Fusarium
sp. 2

0.02 0 TB PS0547 TB

Fusarium
sp. 3

1.2 0.32 AS, CP, JC, LL, TB, ZE PS0993 AS

Lasiodiplodia
sp.

2.8 0.63 AS, AM, CI, CL, CP, CV,
FI, HA, JC

PS0042 AM

LL, LS, TB, ZE PS1042 AS
Trichoderma
sp.

5.2 0.63 AS, AM, CI, CL, CP, FI,
HA, LL, OP, TB, ZE

PS0037 AM

Table lists the genus-level identification of each operational taxonomic units (OTU, based on 99%
ITSrDNA-LSUrDNA sequence similarity); the isolation frequency for each OTU (based on the
number of isolates among a total of 5323 isolates collected; Sarmiento et al. (2017)); the proportion
of seeds from which the OTU was isolated that were viable; the host range (observed associations)
for field collections of each OTU; the focal isolates used in these experiments; and the species from
which each focal isolate was originally obtained
Plant species names: AS, Annona spraguei; AM, Apeiba membranacea; CG, Colubrina
glandulosa; CI, Cecropia insignis; CL, Cecropia longipes; CP, Cecropia peltata; CV,
Cochlospermum vitifolium; LL, Lindackeria laurina; LS, Luehea seemannii; HA, Hieronyma
alchorneoides; FI, Ficus insipida; JC, Jacaranda copaia; OP, Ochroma pyramidale; TB, Trema
micrantha “black”
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with outdoor temperatures; ca. 26 !C) for 5–7 days. Control seeds were surface-
sterilized, placed into Petri dishes containing 2% MEA but no fungal growth, and
incubated as above. Overall, 4500 seeds were included in the case study.

After incubation, seeds were examined for visible colonization by fungi by
scoring the number of seeds per plate with evident hyphal growth on their seed
coats. Fungi on seeds were judged to be consistent with the inoculated strains (rather
than contaminants) by visual inspection of morphological characteristics.

To test whether colonization was an indication of internal infection, we surface-
sterilized a subset of seeds and transferred them to sterile Petri plates lined with
sterile filter paper. We moistened the filter paper with sterile water, sealed the plates
with Parafilm, and placed them in a shadehouse at ambient outdoor temperature
(Gallery et al. 2007). Fungi reappeared in each Petri plate, providing evidence of
internal infection.

22.2.2 Data Analyses

Except when otherwise noted, colonization was examined using generalized linear
models with a quasibinomial error family, implemented with glm() in R
(R Development Core Team 2009). A quasibinomial error family was used because
our data showed more between-plate variation than expected under a binomial
distribution. The per-dish colonization fraction was used as the response variable.
Values of 0% or 100% were amended by adding one success and one failure to each
plate, as the logit transformation needed for a binomial or quasibinomial error family
is undefined at 0 and 1.

We measured whether fungi had host-specific colonization rates by determining
the significance of (seed species) " (fungal OTU) interactions. Generalized linear
models require that a particular fungal OTU and seed species be chosen as the null
case, against which interactions are judged (Crawley 2007). The no-fungus control
was an obvious choice for a fungal null case, as the null hypotheses were that fungi
did not colonize seeds differently. However, there was no obvious choice for a null
seed species, and the choice altered which interactions were significant. To account
for this, we assessed the number of significant interactions taking every seed species
as the null case.

We tested two hypotheses about the host range of fungi: (1) fungi cannot infect
seeds outside of their observed host range, and (2) fungi are capable of infecting
seeds outside of their observed host range, although colonization rates are low. The
first hypothesis was tested by observing whether fungi colonized seed species that
were not one of their known associations. Known associations were defined by the
observation of that OTU in a seed of that species in the field experiments detailed by
Sarmiento et al. (2017) (Table 22.1). We tested the second hypothesis by determin-
ing if seed colonization was higher on species known previously to be associated
with that OTU vs. species for which such associations had not been observed in the
field (Table 22.1). We used a generalized linear mixed model with known associa-
tion as a fixed effect and fungal OTU and seed species as random effects (to account
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for fungi being differently able to colonize seeds and seeds being differently
protected against fungal colonization). We also included an interaction between
fungal OTU and known association, in case some fungi were more able to colonize
seeds outside of their known host range.

We tested for evolutionary constraints on host range and host affinity among fungi
using three methods. First, we tested for evolutionary constraints over short timescales
by testing whether colonization differed within fungal OTU. We did this by testing for
significant (seed species) " (fungal isolate) interactions among our 99% similar isolates
(i.e., within Fusarium sp. 1 and Lasiodiplodia sp.) or among those representing our 95%
similar species pair (i.e., Fusarium sp. 2 and Fusarium sp. 3). Second, we tested for
evolutionary constraints at intermediate timescales by testing if within-OTU differences
in colonization were smaller than between-OTU differences in colonization. The differ-
ence in colonization between isolates was quantified using two dissimilarity indices.
First, mean dissimilarity (djk) between two isolates j and k is

d jk ¼ I j $ Ik

where I j and Ik are the mean colonization fraction of isolates j and k, respectively,
across all seed species. Second, relative dissimilarity (rjk) is

r jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s

"
Isj $ I j

#
$
"
Isk $ Ik

#" #2r

where Isj and Isk are the proportion of seeds of seed species s that were colonized by
fungal isolate j and k in vitro, and the summation is over all seed species. Thus, if
strain j had a higher colonization rate on all seeds than strain k, but each had
relatively similar colonization once the mean difference was removed (e.g., both
specialized on physically dormant seeds), then djk would be large and rjk would be
small. We tested whether within-OTU dissimilarity was smaller than between-OTU
dissimilarity using a one-tailed randomization test (n ¼ 1,000,000), implemented in
R. To calculate p-values, we factored out cases where the randomized within-OTU
dissimilarities were the same as the actual within-OTU dissimilarities.

Finally, we tested whether host range and affinity are conserved among fungi over
longer timescales by testing for phylogenetic constraints in the colonization fraction on
seeds of each plant species, the mean colonization fraction across all species, and the
relative colonization fraction (i.e., colonization fraction of a given species—mean
colonization overall). A phylogenetic tree for the fungi examined here was generated
using LSUrDNA data (obtained by Sarmiento et al. 2017). Sequences were aligned
using Muscle (Edgar 2004), and a tree was inferred in RAxML (Stamatakis 2006).
Phylogenetic constraints were assessed with Blomberg’s K (Blomberg et al. 2003) and
Pagel’s λ (Pagel 1992), as each produces slightly different outcomes (Godoy et al. 2014).
Significance was assessed using randomization (n ¼ 1,000,000) and likelihood ratio
tests, respectively, implemented using phylosig in R (R Development Core Team 2009).

We tested whether fungal colonization reflects plant relatedness or dormancy-
defense syndromes by testing how much variation in fungal colonization could be
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explained by clade or dormancy class. There were 40 ways that the 5 plant species
could be categorized into 2 or 3 groups (i.e., there were 10 3-1-1 groupings, 10 3-2-0
groupings, 5 4-1-0 groupings, and 15 2-2-1 groupings). One of these groupings was
by plant order (F. insipida, T. micrantha “brown,” and T. micrantha “black” are
Rosales, A. membranacea is Malvales, and Z. ekmanii is Sapindales). Another was
by dormancy class (F. insipida and T. micrantha “brown” are quiescent,
T. micrantha “black” and Z. ekmanii are physiologically dormant, and
A. membranacea is physically dormant), as dormancy class can provide insight
into the seed defense syndrome (Dalling et al. 2011; Zalamea et al. 2018). We
assessed how well each of the 40 groupings fit the data using a generalized linear
model with a binomial error family. Our model had fungal OTU, seed species, and
group identity as fixed effects, along with the (seed species) " (group identity)
interaction. The grouping with the lowest Akaike information criterion (AIC, Akaike
1974) was considered to be the best. We compared the ranking of clade and
dormancy class among all possible groupings.

22.2.3 Results

Seeds of five species of tropical pioneer trees were colonized by all focal fungi in in vitro
inoculation trials (Fig. 22.1). Fungal colonization success varied as a function of fungal
strains and plant species (Fig. 22.1). However, even accounting for this, there were on
average 8 significant (seed species) " (fungal OTU) interactions (p< 0.05) and 4 highly
significant interactions (p< 0.01), out of a possible 24. Thus, if one selected two fungal
isolates and one seed species at random, there was about a one in three chances that those
isolates had significantly different colonization rates on that seed (and one in six chances
that they differed at the p < 0.01 level). Similarly, if two seed species and one fungal
isolate were selected at random, there was about a one in three chances that those that
isolate had different colonization rates on each seed. Our results were similar if we

Fig. 22.1 Fraction of seeds colonized by fungi. Each bar represents the fraction of seeds colonized
in each OTU-seed species pairing (20 seeds per plate, for a total of 100 seeds). Error bars represent
% 1 standard error. Bars marked with “þ ” indicate OTU that were isolated from seeds of that species
in field surveys, and bars marked with “–” have not yet been isolated from seeds of that species. Clo,
Clonostachys sp.; Fus, Fusarium sp; Las, Lasiodiplodia sp.; Tri, Trichoderma sp.
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focused on individual isolates instead of OTU: an average of 12.4 interactions were
significant (p < 0.05), and an average of 8.8 interactions were significant (p < 0.01),
out of a possible 32.

All fungi were able to colonize seeds outside of their previously observed
associations (Fig. 22.1). When average colonization fraction was accounted for, fungi
showed no difference in their ability to colonize seeds in their known host range
vs. seeds of other species (p ¼ 0.74).

Our results suggested a limited amount of phylogenetic constraint on host range
among fungi. Isolates within the same OTU (both at 99% and 95% of sequence
similarity) differed in their ability to colonize seeds of at least one plant species
(Fig. 22.2). Colonization patterns for a given isolate were marginally more similar to
that of isolates of the same OTU than isolates of different OTU (relative dissimilarity;
p ¼ 0.06 for 99% OTU and p ¼ 0.07 for 95% OTU). However, mean dissimilarity, djk,
was not significantly lower within-OTU vs. between them (p ¼ 0.15 for 99% OTU and
p ¼ 0.13 for 95%OTU).Mean colonization across all seed species showed phylogenetic
constraint using both focal statistics (p ¼ 0.055 for K and p ¼ 0.02 for λ, Table 22.2).
We found evidence for phylogenetic constraint in the relative ability to colonize
Z. ekmanii (i.e., similar fungi had similar colonization rates on Z. ekmanii, p ¼ 0.048
for K and p ¼ 0.061 λ, Table 22.2). In other cases, the colonization fraction showed a
significant constraint for only one of the two statistics.

Plant order was the best grouping (AIC ¼ 1088) for explaining fungal colonization
(Fig. 22.3). The next four best groupings also grouped species into monophyletic
groups: they placed Z. ekmanii and A. membranacea in their own group and then
contained every possible permutation of T. micrantha “brown,” T. micrantha “black,”
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Fig. 22.2 Fraction of seeds colonized by fungi as a function of seed species and fungal isolate. Each
bar represents 100 seeds. Error bars represent % 1 standard error. Bars marked with “þ ” indicate
OTU that were isolated from seeds of that species in field surveys, and bars marked with “–” have not
yet been isolated from seeds of that species. Any significant ( p < 0.05) within-OTU differences in
colonization or germination are marked with a star. Las strain 1 (PS0042) and Las strain 2 (PS1042)
are 99% similar in their ITSrDNA-LSUrDNA. Fus 1 strain 1 (PS0018) and Fus 1 strain 2 (PS0943)
are 99% similar in their ITSrDNA-LSUrDNA. Fus 2 and 3 (Fusarium sp. 3 and 4) are 95% similar in
their ITSrDNA-LSUrDNA
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and F. insipida. Dormancy class was the 11th best grouping, with an AIC of 1250
(Fig. 22.3).

22.2.4 Perspectives

Seed-associated fungi play a critical role in the demography of tropical trees
(Kirkpatrick and Bazzaz 1979; Harley and Smith 1983; Arnold et al. 2003; Agrios
2005; Augspurger and Wilkinson 2007; Sarmiento et al. 2017). However, basic
details about the host range and specificity of seed-associated fungi are rarely
known. Our experiments complement previous observations about seed fate and
seed-fungal associations in a lowland tropical forest (Sarmiento et al. 2017; Zalamea
et al. 2018). Our results suggest that the fungi we considered had a wide host range in
terms of colonization but had isolate-specific colonization rates on different hosts.
We found that all fungal OTU were able to colonize species they had not been
associated within field surveys, suggesting that potential host range is larger than
observed host range. We found that host range was evolutionarily labile. Finally, we
found that host taxonomy was a strong predictor of fungal colonization patterns.
Because infection persisted among the subset of seeds that was surface-sterilized
after allowing for colonization by fungi, our results imply that colonization indicated
internal infection. This suggests that the fungi we considered have a wide potential
host range, even if their observed host range appears narrow.

Table 22.2 Phylogenetic conservatism in fungal colonization

Seed species K estimate p-value λ estimate p-value
A. membranacea—mean 8.16 " 10$ 5 0.307 0.204 0.696
F. insipida—mean 5.65 " 10$ 4 0.032 0.744 0.110
T. micrantha “black”—mean 1.46 " 10$ 4 0.156 0.614 0.066
T. micrantha “brown”—mean 1.68 " 10$ 3 0.090 0.906 0.001
Z. ekmanii—mean 1.26 " 10$ 4 0.196 0.000 1.000
A. membranacea—relative 9.27 " 10$ 5 0.245 0.000 1.000
F. insipida—relative 5.40 " 10$ 4 0.051 0.000 1.000
T. micrantha “black”—relative 7.39 " 10$ 5 0.238 0.295 0.434
T. micrantha “brown”—relative 1.55 " 10$ 4 0.139 0.856 0.011
Z. ekmanii—relative 3.76 " 10$ 4 0.048 0.959 0.061
Overall mean 2.46 " 10$ 4 0.055 0.772 0.024

Phylogenetic constraint was assessed using Blomberg’s K (Blomberg et al. 2003) and Pagel’s λ
(Pagel 1992). Mean colonization fraction on a particular seed species is the fraction of seeds
colonized across all five replicates. Mean overall colonization is the mean colonization across the
entire study (i.e., all five replicates of all five tree species). Relative colonization is the mean
colonization on a particular species minus the mean overall colonization and is used to disentangle
overall colonization ability from the ability to colonize particular seeds. Significant or marginally
significant ( p < 0.07) values are shown in bold. Significant constraints indicate that related fungi
are more likely to have a similar colonization fraction on a given seed species, a similar colonization
fraction overall, or a similar relative colonization fraction on a given seed species
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Potential host range could be wider than the observed host range for several
reasons. First, some seed-fungal associations may be rare and thus simply have not
yet been catalogued in field surveys. Alternatively, these seed-fungus associations
may be short-lived, rare, or absent under natural conditions because of competition
with other microbes (Barrett et al. 2009). This could be tested in part by inoculating
seeds with fungal consortia and testing if colonization is reduced in some cases. A
third alternative is that in vitro colonization may not be indicative of the ability to
infect seeds under natural conditions, where factors such as soil chemistry, or
remnants of fruit on seed surfaces (here removed by treatment before inoculation),
could be important. These questions could be addressed with a colonization experi-
ment performed under more natural conditions. For example, instead of placing
seeds on agar that have been colonized by fungus, we could place seeds in soil that
has been sterilized and then inoculated with a small amount of fungi.

The observation that the actual host range of plant-associated fungi is often more
narrow than their potential host range has been documented previously for a number
of pathogenic fungi, including fungi associated with seeds (Beckstead et al. 2014,
see also de Vienne et al. 2009). However, while many studies have documented this
trend, relatively few have explored for predictors for novel plant-fungus associations
(de Vienne et al. 2009). It is becoming clear that phylogenetic relatedness of hosts is
a strong factor in determining whether they are likely to share certain pests (reviewed
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Fig. 22.3 Predictors of fungal colonization on seeds. A histogram displays the AIC values of a
generalized linear model of every possible fungal grouping. There are 40 possible ways to group
5 fungi into 2–3 groups. The “plant order” grouping (Z. ekmanii by itself, A. membranacea by itself,
and a group of T. micrantha “brown,” T. micrantha “black,” and F. insipida) is the best grouping
(AIC 1088), indicated by an arrow and one star (*). The dormancy class grouping (F. insipida
paired with T. micrantha “brown,” Z. ekmanii paired with T. micrantha “black,” and
A. membranacea by itself) is the 11th best grouping (AIC 1250), indicated by the arrow and two
stars (**). The second, third, fourth, and fifth best grouping paired Z. ekmanii with A. membranacea
and then included every possible permutation of the other species
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in Gilbert and Parker 2016). Here, we add merit to the importance of host relatedness
in predicting susceptibility to seed-associated fungi by showing that plant order best
explained seed colonization by fungi (Fig. 22.3).

Overall, results of our case study suggest that host range and affinity of seed-infecting
fungi are evolutionarily labile: there was little evidence of phylogenetic constraint on
specialization (Table 22.2), and even fungal strains that were 99% similar at the
ITSrDNA-LSUrDNA locus differed in colonization on seeds of different plant species
(Fig. 22.2). It is possible that these differences are due to within-OTU variation in loci
that code for functional traits. Alternatively, these fungal isolates may differ in other
factors, such as infection with endohyphal bacteria (Hoffman and Arnold 2010; Shaffer
et al. 2016). Given how quickly microbes adapt to new hosts under experimental
conditions (e.g., Little et al. 2006; Wallis et al. 2007; Agudelo-Romero et al. 2008), it
seems reasonable that specialization at the species level could change quickly over
evolutionary time.

Interestingly, our results suggest that generalized colonization ability was
phylogenetically conserved among fungi, even if species-specific colonization rates
were not: mean colonization showed phylogenetic constraint among both statistics,
whereas the majority of colonization on individual plant species showed no significant
constraint (Table 22.2). This result would be unlikely if the ability to colonize each
seed species evolved independently. The evolution of host-specific virulence often
comes at a cost of virulence on another host (Ebert 1998); it is thus reasonable to
suspect that the ability to colonize particular hosts is more labile than the ability to
colonize any host. Alternatively, the effect we detected may reflect a phylogenetic
signal in the environmental conditions that promote colonization by particular strains
or taxa. Infection is partly a function of environmental conditions (Parker and Gilbert
2004; Barrett et al. 2009), and different symbiont species can be differently infectious
under different conditions (Whipps 1987; Pažoutová et al. 2000). Perhaps the phylo-
genetic signal was observed because the fungal isolates with high in vitro colonization
were most infectious under the temperature, moisture, and nutrient conditions in our
study, and their sister taxa had similar environmental requirements. This could be
tested by doing another inoculation experiment under different conditions and testing
whether colonization fractions change but phylogenetic signal holds.

Although related fungi did not necessarily colonize the same species of plants,
related plants were colonized similarly by fungal isolates: plant taxonomy was the
strongest predictor of fungal colonization (Fig. 22.3). We know of only one study
that examined both phylogenetic constraint in host defenses and pathogen virulence,
and they found that pathogens were far less phylogenetically constrained than their
hosts in terms of associations (Mariadassou et al. 2010). This result should perhaps
not be surprising, given that the generation time of fungi is far shorter than that of
trees (Gilbert and Parker 2016).

Overall, dormancy class (and thus DDS) did not emerge as clear predictor of fungal
colonization. We anticipate that DDS may be particularly important at the next phase of
seed-fungal interactions: that is, we expect that host taxon is the first major filter that will
select communities of seed-associated fungi, as suggested by Sarmiento et al. (2017).
Subsequently, those that survive in seeds and function, individually or in consortia, to
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influence seed viability and germination may be influenced by the defense and dor-
mancy traits codified as DDS. In that situation we would anticipate that fungi would be
differentially sensitive to phenols and other seed chemical defenses, especially those
mobilized by seed imbibition and the physiological cascades associated with
germination.

22.3 Future Directions

The case study presented here represents an early step in documenting the natural
history of seed-associated fungi in tropical soils, with special attention to the earliest
phases of fungal contact with and establishment in seeds. In general, our results
suggest fungal host range in nature is limited more by competition or environmental
conditions, rather than an inability to infect certain seeds. The ability of fungi to
colonize seeds was more labile than the ability of seeds to protect themselves from
fungal colonization. Our study points to the primary role of host taxonomy in
determining colonization success but suggests also the need to learn more about
fungal functional traits. Although phylogenetically diverse, the fungi that colonize
seeds of tropical trees are especially common among genera such as Fusarium and
Xylaria (see Shaffer et al. 2016), suggesting the potential to evaluate functional traits
in robust phylogenetic contexts at the genus level.

In future work we advocate exploring the relevance of DDS for predicting the
responses of seeds to infection by individual fungi and consortia and cataloguing
fungal traits to understand how growth rate, enzyme production, and nutrient
scavenging may influence the host breadth, colonization efficiency, and impacts
on seed fate of soilborne fungi. Recent attention to the capacity of some soilborne
fungi to harbor endohyphal bacterial symbionts that influence seed colonization by
fungi and their subsequent impacts on seed viability and germination (Shaffer et al.
2018) speak to important and under-explored roles of such traits in driving the
dynamics of seeds in soil seed banks, in turn relevant to the dynamics of earth’s
most diverse terrestrial ecosystems.
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