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I. INTRODUCTION

A. Problem Formulation

Sparse optimization is an important problem defined as

minimize
x∈Rn

F (x) , f(x) + ρ‖x‖1, (1)

where ρ ≥ 0, ‖x‖1 =
∑
|xi|, and f is a smooth (twice differen-

tiable in our analysis) convex function with L-Lipschitz continuous
gradient. Problem (1) is of central importance in compressed sensing.

B. Fast Iterative Soft Thresholding Algorithm

The Fast Iterative Soft Thresholding Algorithm (FISTA), intro-
duced by Beck and Teboulle [1], is a well-known approach to solving
problems where the objective function is the sum of a smooth
and non-smooth term. Throughout we will refer to the following
algorithm as FISTA:∣∣∣∣ yk+1 = xk + αk(x

k − xk−1)

xk+1 = proxλkg
(yk+1 − λk∇f(yk+1))

starting with arbitrary x0, x1 ∈ Rn. This is the same as Beck and
Teboulle’s framework but we allow for arbitrary sequences for the
parameters.

C. Local Linear Convergence

FISTA is based on the well-known Iterative Soft Thresholding
Algorithm (ISTA) for Problem (1). It has been observed that ISTA
exhibits local linear convergence [2], which means that after some
finite number of iterations ISTA identifies a manifold on which the
solution lies, and thereafter convergence is linear. Unlike ISTA, it
is not known whether FISTA obtains local linear convergence for
Problem (1).

D. Contributions

We show that FISTA obtains local linear convergence for Problem
(1). Specifically we show that after a finite number of iterations,
FISTA reduces to minimizing a local function on a reduced support
subject to an orthant constraint. We provide explicit bounds on the
number of iterations for this to occur thus generalizing the analysis
of ISTA by Hale et al. [2].

II. OPTIMALITY CONDITIONS

Examination of the optimality conditions of Problem (1) reveals
the following useful theorem. Let X∗ be the solution set.

Theorem 1 ([2]). For problem (1), x∗ ∈ X∗ if and only if
∇f(x∗) = h∗ where for all i, h∗ satisfies

h∗i
ρ


= −1 if ∃ x ∈ X∗ : xi > 0
= +1 if ∃ x ∈ X∗ : xi < 0
∈ [−1, 1] else.

Furthermore ∇f(x′) = ∇f(x∗) , h∗ for all x′, x∗ ∈ X∗.

The following two sets will be crucial to our analysis. Let D ,
{i : |h∗i | < ρ} and E , {i : |h∗i | = ρ}. Note that D ∩ E =
∅ and D ∪ E = {1, 2, . . . , n}. By Theorem 1, we can infer that

supp(x∗) ⊆ E for all x∗ ∈ X∗. Finally, define ω to be the following
useful quantity: ω , min{ρ− |h∗i | : i ∈ D} > 0.

III. RESULTS

The following theorem proves finite convergence to 0 for the
components in D (i.e. in a finite number of iterations), and finite
convergence to the correct sign for the components in E. The number
of iterations of this “manifold identification period” can be explicitly
bounded in terms of the salient parameters and variables of the
problem. Let νk = ρλk. The full proof of Theorem 2 is available at
[3].

Theorem 2. Assume {λk} is nondecreasing and satisfies 0 < λk ≤
1/L, and there exist α, α ∈ [0, 1) such that {αk} satisfies α ≤ αk ≤
α for all k. Then, there exist constants KD > 0 and KE > 0 such
that, for all k > KE the iterates of FISTA applied to Problem (1)
satisfy

sgn
(
yk+1
i − λk∇f(yk+1)i

)
= −h

∗
i

ρ
, ∀i ∈ E,

and, for all k > KD

xki = yki = 0, ∀i ∈ D.

Furthermore, for any x∗ ∈ X∗, KE does not exceed

1

ν21

[
2α(1 + α)(F (x1)− F ∗)

α(1− α)L2
+ ‖x1 − x∗‖2 − α‖x0 − x∗‖2

]
+

α

1− α
and KD does not exceed

1

ω2ν21

[
2α(1 + α)(F (x1)− F ∗)

α(1− α)L2
+ ‖x1 − x∗‖2 − α‖x0 − x∗‖2

]
+

α

1− α + 2.

Remark We can recover the result by Hale et al. for ISTA (Theorem
4.5 [2]) by setting α and α to 0. The theorem applies to Beck and
Teboulle’s parameter choice if one replaces αk with min(αk, α),
with α chosen in [0, 1).

Further work in the spirit of [2] allows us to show that after the
manifold identification period FISTA reduces to minimizing f(xE)+
ρ‖xE‖1, where xE is equal to the vector x on E but 0 elsewhere.
This allows us to deduce a linear rate of convergence so long as either
this local function is strongly convex or a strong complementarity
condition holds.
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