| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           | 00                 |              | 00      | 0          |
|              |                    |              |         |            |

Deep-learning based 3D map sharpening in cryo-electron microscopy

#### Mona Zehni, Minh N Do, Zhizhen Zhao

University of Illinois at Urbana-Champaign, CSL

mzehni2@illinois.edu

February 27, 2020



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| • O          |                    | 000          | 00      | O          |
| Motivation   |                    |              |         |            |

• Proteins play a crucial role in our lives!





| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| • 0          |                    | 000          | 00      | O          |
| Motivation   |                    |              |         |            |

- Proteins play a crucial role in our lives!
- Their functionality  $\iff$  3D structure





| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| •O           |                    | 000          | 00      | O          |
| Motivation   |                    |              |         |            |

- Proteins play a crucial role in our lives!
- Their functionality  $\iff$  3D structure
- Cryo-Electron Microscopy: Recovers the 3D structure





| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| ••           |                    | 000          | 00      | O          |
| Motivation   |                    |              |         |            |

- Proteins play a crucial role in our lives!
- Their functionality  $\iff$  3D structure
- Cryo-Electron Microscopy: Recovers the 3D structure
- Shortcomings in reconstructing the structure → Harder to find atomic structure





| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| ••           |                    | 000          | 00      | O          |
| Motivation   |                    |              |         |            |

- Proteins play a crucial role in our lives!
- Their functionality  $\iff$  3D structure
- Cryo-Electron Microscopy: Recovers the 3D structure
- Shortcomings in reconstructing the structure → Harder to find atomic structure



Need for methods to enhance the quality of maps



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| O            |                    | 000          | 00      | O          |
| Outline      |                    |              |         |            |

- Problem definition
- Related work
- Our approach
- Preliminary results
- Conclusion



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           | •0                 |              | 00      | 0          |
| Problem (    | definition         |              |         |            |



# Turn a low-resolution map in to a high-resolution one!



| Introduction<br>00 | Problem definition | Our approach<br>000 | Results | Conclusion<br>O |
|--------------------|--------------------|---------------------|---------|-----------------|
| Problem            | definition         |                     |         |                 |



Turn a low-resolution map in to a high-resolution one!

**Challenges:** 



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           | • o                | 000          | 00      | O          |
| Problem of   | definition         |              |         |            |



Turn a low-resolution map in to a high-resolution one!

#### **Challenges:**

• Variable resolution across the map



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Problem of   | definition         |              |         |            |



Turn a low-resolution map in to a high-resolution one!

### Challenges:

- Variable resolution across the map
- Unclear forward mapping between the low and high resolution pairs



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Problem of   | definition         |              |         |            |



Turn a low-resolution map in to a high-resolution one!

### Challenges:

- Variable resolution across the map
- Unclear forward mapping between the low and high resolution pairs

イロト イヨト イヨト イヨト

4/11

• Computational complexity



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Previous     | work               |              |         |            |



・ロト ・日・・ヨ・ ・ヨ・ うへの

5/11

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Previous wor | k                  |              |         |            |

• Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>

 $<sup>\</sup>frac{1}{2}$  Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $<sup>^2 \</sup>rm Optimal$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion<br>O |
|--------------------|--------------------|--------------|---------------|-----------------|
| Previous wor       | ·k                 |              |               |                 |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  ${\rm map}^3$

<sup>&</sup>lt;sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

<sup>&</sup>lt;sup>2</sup>Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

Jakobi et al, Model-based local density sharpening of cryo-EM maps, 2017

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           | 00                 |              | 00      | 0          |
| Dravious     | work               |              |         |            |
| Frevious     | WORK               |              |         |            |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  $map^3$
- Approximate a blurring operator and use that to sharpen a map<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $<sup>^2 {\</sup>rm Optimal}$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

 $<sup>^3 {\</sup>rm Jakobi}$  et al, Model-based local density sharpening of cryo-EM maps, 2017

<sup>&</sup>lt;sup>4</sup>Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| muoduction  | Problem definition | Our approach | Results | Conclusion |
|-------------|--------------------|--------------|---------|------------|
| 00          | 0                  |              | 00      | 0          |
| Previous wo | rk                 |              |         |            |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  $map^3$
- Approximate a blurring operator and use that to sharpen a map<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $<sup>^2 {\</sup>rm Optimal}$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

 $<sup>^3 {\</sup>rm Jakobi}$  et al, Model-based local density sharpening of cryo-EM maps, 2017

<sup>&</sup>lt;sup>4</sup>Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           | 00                 |              | 00      | 0          |
| Dravious     | work               |              |         |            |
| Frevious     | WORK               |              |         |            |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  $map^3$
- Approximate a blurring operator and use that to sharpen a map<sup>4</sup>

• Need for an explicit forward/reference model

<sup>&</sup>lt;sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $<sup>^2 {\</sup>rm Optimal}$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

 $<sup>^3</sup>$ Jakobi et al, Model-based local density sharpening of cryo-EM maps, 2017

<sup>&</sup>lt;sup>4</sup>Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Previous     | work               |              |         |            |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  $map^3$
- Approximate a blurring operator and use that to sharpen a map<sup>4</sup>

- Need for an explicit forward/reference model
- Solve for each example separately time consuming

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

<sup>&</sup>lt;sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $<sup>^2 {\</sup>rm Optimal}$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

<sup>&</sup>lt;sup>3</sup>Jakobi et al, Model-based local density sharpening of cryo-EM maps, 2017

<sup>&</sup>lt;sup>4</sup>Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | O          |
| Previous     | work               |              |         |            |

- Weighting low and high frequency terms of Fourier series to maximize connectivity and surface area<sup>12</sup>
- $\bullet\,$  Use an atomic reference model to sharpen local patches of the density  $map^3$
- Approximate a blurring operator and use that to sharpen a map<sup>4</sup>

- Need for an explicit forward/reference model
- Solve for each example separately time consuming

# A data-driven model that maps low-res to high-res volumes.

<sup>1</sup>Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018

 $^2 {\rm Optimal}$  Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryo-microscopy

<sup>3</sup>Jakobi et al, Model-based local density sharpening of cryo-EM maps, 2017

Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| 00       | 00   | ●00 <sup>11</sup> | 00 | 0 |
|----------|------|-------------------|----|---|
| Our appr | oach |                   |    |   |

### Our approach



▲□▶ ▲□▶ ▲≡▶ ▲≡▶ □ ● ● ●

6/11

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | ●00          | 00      | O          |
| Our appro    | bach               |              |         |            |





6/11

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | ●oo          | 00      | O          |
| Our appro    | bach               |              |         |            |







| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | Oeo          | 00      | O          |
| Dataset      |                    |              |         |            |



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion<br>O |
|--------------------|--------------------|--------------|---------------|-----------------|
| Dataset            |                    |              |               |                 |

• Protein structures from SCOPe database<sup>1</sup>



 $<sup>^{1}</sup>$ Chandonia et al, SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019.

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| OO           |                    | ⊙●⊙          | 00      | O          |
| Dataset      |                    |              |         |            |

- Protein structures from SCOPe database<sup>1</sup>
- $\bullet~\sim 15,000$  protein structures



<sup>&</sup>lt;sup>1</sup>Chandonia et al, SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019.

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | ⊙●⊙          | 00      | O          |
| Dataset      |                    |              |         |            |

- Protein structures from SCOPe database<sup>1</sup>
- $\bullet \sim 15,000$  protein structures
- Simulating atoms with Gaussian blobs with  $\sigma$  width and weight relative to their atomic number using Chimera<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Chandonia et al, SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019.

<sup>&</sup>lt;sup>2</sup>UCSF Chimera-a visualization system for exploratory research and analysis. Pettersen et al, J Comput Chem. 2004 Oct;25(13):1605-12

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | ⊙●⊙          | 00      | O          |
| Dataset      |                    |              |         |            |

- Protein structures from SCOPe database<sup>1</sup>
- $\bullet~\sim 15,000$  protein structures
- Simulating atoms with Gaussian blobs with  $\sigma$  width and weight relative to their atomic number using Chimera^2
- Generate samples with different resolutions



<sup>1</sup>Chandonia et al, SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019.

<sup>2</sup>UCSF Chimera–a visualization system for exploratory research and analysis. Pettersen et al, J Comput Chem. 2004 Oct;25(13):1605-12

| Introduction | Problem definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Our approach | Results | Conclusion |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------|
| 00           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000          | 00      | 0          |
| NL I         | and the second sec |              |         |            |
| Network 2    | architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |            |

### Fully convolutional architectures



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion<br>O |
|--------------------|--------------------|--------------|---------------|-----------------|
| Network a          | architecture       |              |               |                 |

### Fully convolutional architectures





8/11

| Introduction         | Problem definition | Our approach | Results | Conclusion |  |
|----------------------|--------------------|--------------|---------|------------|--|
| 00                   |                    | 00●          | 00      | O          |  |
| Network architecture |                    |              |         |            |  |

### Fully convolutional architectures



8/11

| Introduction | Problem definition | Our approach<br>000 | Results<br>©O | Conclusion<br>O |
|--------------|--------------------|---------------------|---------------|-----------------|
| Visual res   | ults-simulated     |                     |               |                 |
|              |                    |                     |               |                 |

• PDB ID: 2b5r Low-res (input)



High-res (gt.)





| Introduction  | Problem definition | Our approach | Results | Conclusion |
|---------------|--------------------|--------------|---------|------------|
| 00            |                    | 000          | O       | O          |
| Visual result | s–experimental     |              |         |            |

• EMD-7550





Kucukelbir et al, Quantifying the Local Resolution of Cryo-EM Density Maps, Nature Methods., 2014. Terwilliger et al, Automated map sharpening by maximization of detail and connectivity, 2018 Aportela et al, Automatic local resolution-based sharpening of cryo-EM maps, 2019

| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | •          |
| Conclusion   |                    |              |         |            |



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      | •          |
| Conclusion   |                    |              |         |            |

• Proposed a data-driven model for enhancing the quality of Cryo-EM density maps



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion<br>• |
|--------------------|--------------------|--------------|---------------|-----------------|
| Conclusion         |                    |              |               |                 |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion<br>• |
|--------------------|--------------------|--------------|---------------|-----------------|
| Conclusion         |                    |              |               |                 |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task
- Trained a FCN using the synthetic dataset



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion |
|--------------------|--------------------|--------------|---------------|------------|
| Conclusion         |                    |              |               |            |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task
- Trained a FCN using the synthetic dataset
- Our results are better/comparable to state-of-the-art methods and our method is faster.



| Introduction<br>00 | Problem definition | Our approach | Results<br>00 | Conclusion |
|--------------------|--------------------|--------------|---------------|------------|
| Conclusion         |                    |              |               |            |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task
- Trained a FCN using the synthetic dataset
- Our results are better/comparable to state-of-the-art methods and our method is faster.

#### Future work



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      |            |
| Conclusion   |                    |              |         |            |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task
- Trained a FCN using the synthetic dataset
- Our results are better/comparable to state-of-the-art methods and our method is faster.

#### Future work

• Using the knowledge of protein sequence to better enhance the quality of the map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ● のへの

11/11



| Introduction | Problem definition | Our approach | Results | Conclusion |
|--------------|--------------------|--------------|---------|------------|
| 00           |                    | 000          | 00      |            |
| Conclusion   |                    |              |         |            |

- Proposed a data-driven model for enhancing the quality of Cryo-EM density maps
- Generated a synthetic dataset for this task
- Trained a FCN using the synthetic dataset
- Our results are better/comparable to state-of-the-art methods and our method is faster.

### Future work

- Using the knowledge of protein sequence to better enhance the quality of the map
- Consider other type of map degradation in experimental density maps

